
Challenges and techniques for code protection in
a distributed environment

Ivica Pesovski*, Katerina Zdravkova**

* Brainster Next College, Skopje, Macedonia
** Ss. Cyril and Methodius University, Skopje, Macedonia
ivica@next.edu.mk, katerina.zdravkova@finki.ukim.mk

Abstract—The digital transformation is impacting every
aspect of our everyday life. The recent social-distancing and
isolation measures accelerated the migration of many very
traditional processes to online operation. Different vendors
develop their own applications for diverse purposes, which
expose end-users to significant security risks. Source code
protection is crucial for making the internet world a secure
environment. This paper discusses code obfuscation,
white-box encryption, tamper-proofing, and diversification
techniques. The recommendations and discussions in this
article contribute toward ensuring a secure digital world.
Following them and comprehending their advantages and
disadvantages will enable the delivery of code that end users
will trust and use.

Keywords: browser extensions, source code protection, code
obfuscation, white-box encryption, tamper-proofing, code
diversification, cybersecurity

I. INTRODUCTION

During the COVID-19 era, many new software
solutions have arisen aiming to support the increased
demand for online activities that partially or entirely
replace the traditional face-to-face activities. The
transformation of methodologies tech companies
implement during software delivery has triggered the
necessity to enhance source code protection.
Unfortunately, not all parties involved in this migration
are familiar with source code protection, which has
resulted in an unprecedented number of internet scams
and hijackings], caused by the massive high-tech
pervasiveness and the diversity of delivery models the
internet offers [1]. Software applications are embedded in
every single electronic device and gadget and even
simple devices, like doorbells, are nowadays smart
devices that incorporate software that is shipped together
with the hardware. The topic that will be covered in this
paper is what are the available techniques for protecting
these kinds of software applications.

The motivation for this paper was an extension
submitted for the Google Chrome browser that was
rejected by Google. The response from Google is shown
in Fig. 1. The only reason for rejecting this extension was
that the code was obfuscated. Obfuscation is a technique
for making the source code obscure or unclear in order to
protect it against intellectual property infringement or
inclusion in third-party libraries. It is particularly
important during the creation of open-source applications
where the extensions are automatically open-sourced
even without our knowledge or control. This browser
extension is the event that inspired this paper.

In order to publish an extension to any of the browser
web stores, the developer needs to upload the complete
code of the extension to the store's web administration
panel for approval. If it is approved, it is added to the
store from where the end users can add the extension to
their browsers. If they choose to add a certain extension,
the code that the developer submits is downloaded to the
end-user’s computer from where the browser loads it on
every start-up. The end-user can then open and examine
the code just by manually navigating to the folder
location where the extension is stored. This qualifies as
open-source, even though it is not explicitly classified as
such.

Figure 1. Response from Google after submitting for
approval extension with obfuscated code

This paper will be organized into 4 sections. The first
section is the introduction which introduces the existing
problem that the paper will reason about. The second
section contains the methodology and how different
vendors have solved the problem. The third section
contains the discussion where proposed solutions for the
problem are outlined and finally the last section
concludes with a brief summary of every exposed
approach.

mailto:ivica@next.edu.mk
mailto:katerina.zdravkova@finki.ukim.mk

II. LITERATURE REVIEW AND METHODOLOGY

The goal of this paper is to point out the available
techniques for protecting source code in a distributed
environment. Browser extensions work in such an
environment and are a perfect example of the proposed
methods. We will not analyze the security concerns which
exist in the distributed environments. Instead, we will
focus on analyzing the available solutions that prevent
their occurrence. Most of the available approaches related
to security concerns of browser extensions are general
and cover common problems for each browser [2], [3],
[4]. In 2016, Arunagiri, Rakhi, and Jevitha made a
systematic literature review of security measures for
browser extensions [5]. There is also a tiny amount of
dedicated research for different browsers. In their paper
from 2012, Carlini, Porter Felt and Wagner proposed
solutions for the Google Chrome extensions platform
which should increase the security of the end-users [6].
Two papers from nearly the same period can be found as
clearly aimed toward improving this segment [7], [8].
Moreover, there are several reports of possible security
threats in other browsers too, like Safari, Firefox and
Edge [9], [10], [11], but knowing that Google Chrome
dominates the browser market with 66.31% share before
Safari which has around 15% and all others less than 3%
[12], it is understandable that the attackers and the
solutions will be aimed towards Google Chrome.

Many of the concerns and solutions outlined in the
reviewed articles have been overcome since web
browsers are constantly being upgraded with security
add-ons. This frequent update cycle means that known
bugs and concerns will be fixed often, but also that new
opportunities for hackers can be revealed often as well.
Because of the dynamic nature of the browser world, this
paper will focus on the techniques that were and have
remained possible throughout the years. The steps
outlined here can and should be used unrelated to the fact
of how fast browsers are evolving and also can be used in
other situations where source code is shipped to the
end-users. Some such scenarios include software shipped
in IoT devices, publicly accessible devices, etc.

We have inspected the techniques used for protecting
source code since the early 1980s. At that time, some of
the recommended solutions included using physical
devices known as tamper-resistant modules. These
modules, later known as hardware security modules, are
still used today, particularly in IoT devices. The first
publications offering concrete implementation techniques
for code security appeared in the 1990s. Techniques like
code obfuscation, encryption, and diversification are
among them. These strategies are still the main force
behind code protection measures in the early 2000s. Fast
forward two decades, and the source code protection
strategies in use today are still the same, even though the
methods for code distribution have transformed. New and
enhanced obfuscation and tamper-proofing methods are
still state-of-the-art defense mechanisms against source
code corruption [13], [14], [15].

We identified four techniques for source code
protection that can be used on any occasion, without
regarding the nature of the application. These are: code
obfuscation, white-box encryption, tamper-proofing and
code diversification. The next section will offer a more

in-depth analysis of these four techniques.Results and
discussion
The four mentioned techniques will be covered in the
dedicated subsections that follow.

A. Code obfuscation
The first observed technique covers code obfuscation

as a means of attaining code protection. This is a built-in
feature in various application and software development
frameworks, which is why many developers are
unfamiliar with it. Google, for example, ships all of its
products with obfuscated client-side code. They have
even patented their own algorithm for obfuscation [14].
Conversely, Google decided to block add-on apps and
extensions for its products if they are obfuscated, as a
result of numerous malicious programs breaching its
firewalls due to a lack of code clarity [15].

Obfuscation by definition is modifying the source code
in order to make it not readable for humans, yet still
executable for the machine. The purpose of obfuscation is
to transition from human-readable to gibberish-looking
code without affecting the app's performance. The
important thing to understand is that obfuscation differs
from minifying and uglifying code because they are both
reversible processes, whereas obfuscation is not. Still, we
must mention that with enough time and effort, almost
any code can be reverse-engineered.

Code obfuscation is accomplished by implementing
various combinations of code transformations to
accomplish creative outcomes. The most used and
efficient ones are described below.

- Rename obfuscation
The purpose of renaming is to make source code

unclear for the potential reader by renaming variables and
methods. New names are usually simple letters or
numbers, unprintable or invisible characters or characters
from different character sets. This makes the original
intent of using variables and methods in source code
intelligently masked. This technique not only helps
toward protection but also contributes to faster code
execution as names can remain small and thus use less
memory.

- Control flow obfuscation
This method advises changing conditional statements

and iterative constructs so that they still produce valid
executable logic, but show non-deterministic results when
being reverse-engineered. A visual implementation of this
method is shown in Fig. 2 on the next page. The left side
presents the normal code execution, while the right side
reveals the obfuscated one. If both sequences are run with
the same input parameters they will always give the same
results, yet the obfuscated variant is extremely hard to
decompile by a human. Contrary to the previous
technique, control flow obfuscation can impact runtime
performance and should not be overused.

- Dummy code insertion
This is a rather simple method of inserting code that

doesn’t affect app execution but makes reverse
engineering of such code more difficult. The inserted
dummy code is usually starving, meaning that machines
will never execute it as it is unreachable following the
control flow, but it can also be code that is executed and
which still doesn’t affect the final outcome in any way.

- Removal of metadata
This is also a simple method to implement and

understands removing non-essential metadata from the
source code in order to reduce the information available
for the potential attacker or debugger.

Figure 2. Control flow obfuscation

B. White-box encryption
This protection mechanism enables optimum security

on shared platforms by allowing secure applications to
run even in hostile environments. Trusted encryption
methods typically use encryption keys, and modern
software applications usually run on client devices. As a
result, the key challenge here is figuring out how to ship
encryption keys alongside encrypted software so that it is
securely encrypted, can be decrypted for their intended
purpose, but cannot be decrypted by malicious users or
programs. White-box cryptography (WBC) is the term for
this technique [16].

Cryptographic algorithms are by definition public and
they provide security guarantees as long as we keep some
information secret. This is actually an ancestor to
Kerckhoffs’s Principle which states that a cryptosystem
should be secure even if everything about the system,
except the key, is public knowledge [17]. The issue that
we are faced with source code protection is how to use
cryptography when the complete code is shipped to the
client and there is no option for certain code to remain
secret. WBC was introduced to provide security in such
situations. It is implemented using various mathematical
operations and transformations with an aim to tie together
the app code and the cryptographic keys so that secure
cryptographic operations can be executed. This enables
the keys to be shipped together with the application while
it also prevents the keys from being observed or extracted
from the app. There is no single WBC technique. Usually,
such implementations are strictly confidential and known
only to the creator.

C. Tamper proofing
Tamper proofing is one of the oldest mechanisms for

software protection. Its goal is not to recognize malicious
or unwanted software, but to detect changes in the
protected software. To detect potential tampering, early
computing equipment incorporated hardware devices.
Nowadays, we use software to create tamper-resistant
applications. The main benefit of this technique is
keeping the end-user secure by early and timely detection
of possible security threats. Because significant
companies' world-driving apps do so by default, we
assume the same behavior from every other app we
encounter. The technique of using checksums to detect

fraud is usually implemented [19]. This technique is
especially important for browser extensions since the
code is easily available and modifiable by everyone. It is
usually implemented in a way in which a hash is stored
on a remote server. The hash is generated using a
one-way hashing algorithm over all the app’s code, Then,
whenever the user proceeds to download and install the
software or run the application, a match of the hashes is
initiated. If there is a match, then the original code from
the original author is in use and it hasn’t been tampered
with since even the slightest change invalidates the hash.
Together with obfuscation and white-box cryptography
the hash of the original code can be shipped together with
the code, so there is no need to validate the hash against a
remote computer and everything can be done on the
client-side.

D. Diversification
A single point of failure in an application is a big

concern and can quickly drive a company out of business.
Diversity has its root in nature, where different species of
the same kind have different responses to the same
stressors differently. This trait has actually allowed
humans to persevere in the face of adversity. It is an
exciting challenge to recreate similar features in the
digital realm. The goal of code diversification is to offer
multiple versions of the same software so that malware
finding a bug in one instance doesn’t affect the whole
ecosystem. Its goal is to prevent the `break once, break
everywhere` attacks (software monoculture). Its most
common usage is in IoT devices since they usually come
distributed with the same source code and are therefore
susceptible to such attacks. There are different methods to
provide code diversification. Some of the most widely
used are:

- N-version programming: different teams developing
the same application using the same specifications [18].
The developed applications are functionally equivalent,
but their source code and possible bugs are completely
different since the multiple applications were developed
independently. The goal is to reduce the chance of
identical software faults occurring in all application
instances.

- In-Place Code Randomization: changing the binary
executable files to accomplish code randomization. The
main goal is to prevent return-oriented programming
(ROP) attacks. Because ROP attacks rely on the
predictable order of execution of different code blocks,
attackers try to exploit it by inserting data on carefully
selected memory blocks in order to interfere with code
execution [19]. The in-place code randomization makes it
almost impossible for the attackers to predict the memory
blocks suitable for inserting the malicious data because
the code binaries are randomized in-place, just before app
execution starts.

- Versioning: keeping different versions of the
software. Although the goal of versioning is to have a
way to chronologically follow code changes and recover
from possible bugs introduced with new software
versions, it can also be used as a measure to provide
diversified software for the software consumers. Many
applications are being offered in different versions and it
is often up to the user to decide which version to use. If
one version malfunctions, users should be able to easily
switch to another version.

III. CONCLUSION

The repercussions of source code leakage should be
sufficient to persuade and open the eyes of those
developing software applications whose source code
should be shipped to the end-user. The principle "better
prevent than cure" should be deeply ingrained in the
activities of all individuals and institutions that deliver
software applications to customers. In general, source
code should not be shipped if it is not necessary, but as
we saw, there are certain situations when the developers
do not have any control over the manner in which the
code they write is distributed.

The different obfuscation techniques discussed in the
previous sections are usually combined together to
produce a variant of the source code that is hard for the
attacker to reverse-engineer but is still straightforward for
the machine executing the code. Some of the advised
methods contribute toward code optimization and faster
execution as they decrease the amount of memory needed
(this mechanism is called rename-obfuscation) while
others can increase execution times as unnecessary cycles
that have no impact on the final outcome are performed
with the intent to aggravate code decompiling (like
control-flow obfuscation). Developers should consider
these things when combining the adviced or any other
mechanism.

White-box cryptography is used when sensitive data
needs to be operated from within the app. It offers a way
to encrypt this data using keys that are embedded in the
source code for it to use but are still inaccessible to
potentially malicious attackers. There is no unique way to
implement this technique for source code protection
because algorithms that provide such functionalities are
most often strictly confidential and known only to their
creator.

Tamper proofing as a protection mechanism makes the
end-user sure that the genuine version of the desired
software is used. It is most often implemented using
checksums calculated with a one-way hashing algorithm
on the entire code base so that even the slightest change
in the source code will invalidate the checksum and the
user will be warned that the application is potentially
harmful.

Finally, code diversification guarantees both the
end-users and the app developers that a malfunction in
one version of the code will not bring the whole system
down. This technique is especially useful as it provides a
fallback option to both concerned groups in case of an
attack or an exploit.

Combining all of these techniques is not mandatory
and is redundant in certain scenarios. If the application
doesn’t utilize encryption techniques and doesn’t require
any secret keys to be shipped with the source code then
white-box cryptography is a surplus. We recommend
always combining obfuscation and diversification
techniques in order to protect code from being
reverse-engineered and limit the impact of potentially
harmful operations on end-users if that happens.
Tamper-proofing techniques are always a good feature
and are becoming a standard in shareable code, especially
code distributed through content delivery networks
(CDNs), since they guarantee the authenticity and
genuineness of the source code.

The actions recommended and discussed in this study
provide a strong starting ground for being on the safe side
of things. Following these techniques and understanding
their benefits and drawbacks will allow delivering
software applications that end-users will trust and use.
This will lead to attaining business objectives and driving
digital transformation with no roadblocks along the way.

REFERENCES

[1] Weil, T., & Murugesan, S. (2020). IT risk and resilience —
Cybersecurity response to COVID-19. IT professional, 22(3),
4-10.

[2] Barth, A., Felt, A. P., Saxena, P., & Boodman, A. (2010).
Protecting browsers from extension vulnerabilities.

[3] Sanchez-Rola, I., Santos, I., & Balzarotti, D. (2017). Extension
breakdown: Security analysis of browsers extension resources
control policies. In 26th USENIX Security Symposium (USENIX
Security 17) (pp. 679-694).

[4] Guha, A., Fredrikson, M., Livshits, B., & Swamy, N. (2011, May).
Verified security for browser extensions. In 2011 IEEE symposium
on security and privacy (pp. 115-130). IEEE.

[5] Arunagiri, J., Rakhi, S., & Jevitha, K. P. (2016). A systematic
review of security measures for web browser extension
vulnerabilities. In Proceedings of the International Conference on
Soft Computing Systems (pp. 99-112). Springer, New Delhi.

[6] Carlini, N., Felt, A. P., & Wagner, D. (2012). An evaluation of the
google chrome extension security architecture. In 21st USENIX
Security Symposium (USENIX Security 12) (pp. 97-111).

[7] Liu, L., Zhang, X., Yan, G., & Chen, S. (2012, February). Chrome
Extensions: Threat Analysis and Countermeasures. In NDSS.

[8] Aravind, V., & Sethumadhavan, M. (2014). A framework for
analysing the security of chrome extensions. In Advanced
Computing, Networking and Informatics-Volume 2 (pp. 267-272).
Springer, Cham.

[9] Verdurmen, J. (2008). Firefox extension security. Raboud
University, Netherlands.

[10] Saini, A., Gaur, M. S., & Laxmi, V. (2013, November). The darker
side of firefox extension. In Proceedings of the 6th International
Conference on Security of Information and Networks (pp.
316-320).

[11] Ursell, S., & Hayajneh, T. (2019, March). Desktop Browser
Extension Security and Privacy Issues. In Future of Information
and Communication Conference (pp. 868-880). Springer, Cham.

[12] Browser market share. (n.d.). Retrieved May 15, 2022, from
https://netmarketshare.com/browser-market-share.aspx

[13] Collberg, C. S., Thomborson, C. D., & Low, D. W. K. (1999).
Obfuscation techniques for enhancing software security (Patent
No. WO1999001815A1).
https://patents.google.com/patent/WO1999001815A1/en

[14] Trustworthy Chrome Extensions, by default. (n.d.). Chromium
Blog. Retrieved May 15, 2022, from
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions
-by-default.html

[15] Beunardeau, M., Connolly, A., Geraud, R., & Naccache, D.
(2016). White-box cryptography: Security in an insecure
environment. IEEE Security & Privacy, 14(5), 88-92.

[16] Petitcolas, F. (1883). La cryptographie militaire. J. des Sci.
Militaires, 9, 161-191.

[17] N-version programming. (2020). In Wikipedia.
https://en.wikipedia.org/w/index.php?title=N-version_programmin
g&oldid=957678903

[18] Pappas, V., Polychronakis, M., & Keromytis, A. D. (2012, May).
Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In 2012 IEEE Symposium on
Security and Privacy (pp. 601-615). IEEE.

[19] Chang, H., & Atallah, M. J. (2001, November). Protecting
software code by guards. In ACM Workshop on Digital Rights
Management (pp. 160-175). Springer, Berlin, Heidelberg.

