
The 8th Conference for Informatics and Information Technology (CIIT 2011)

©2011 Institute of Informatics.

HARDWARE CHALLENGES FOR COMPUTER SCIENCE STUDENTS

Nevena Ackovska, Milosh Stolikj, Sashko Ristov

Ss. Cyril and Methodius University / Faculty of Natural Sciences and Mathematic – Institute of Informatics

Skopje, Macedonia

e-mail: {nevena, milos, sasko}@ii.edu.mk

ABSTRACT

This paper describes the modifications made in the course

Microprocessors and Microcontrollers, intended to challenge

the computer science students to learn low-level hardware

interfacing, interrupt handling, and other microprocessors

issues, as well as embedded systems through learning

microcontrollers. Implementing the changes lead to the

improvements in many fields, such as better grade

distribution, completion of many practical projects, increased
number of passed students etc. It becomes more interesting,

easy to learn, while still holding the necessary weight of an

important academic course.

I. INTRODUCTION

Teaching computer science students how hardware devices

work and how they can be employed in their designs is a very

difficult process. Many different methodologies and

approaches for teaching and learning computer science

students about hardware from different points of view have

been developed. In this paper we present our experience from

teaching one such “hardware” course to students oriented
towards software.

A. Background

Three hardware courses are obligatory at the Institute of

Informatics. These courses are named “Computer

Architecture” in the first study year, “Microprocessors and

Microcontrollers” and “Modern Computer Systems” in the

third. This paper focuses on the course “Microprocessors and

Microcontrollers”, its objections through the years, and

changes made to the course in the direction to improve course

syllabus and course bad reputation.

The course’s main objective is for the students to obtain a

clear understanding of issues such as low-level hardware

interfacing, handling of interrupts, communication between

processor, memory, bus and peripheral devices trough
learning the basics of processors and its instruction set, as

well as embedded systems through learning microcontrollers.

The course teaching is organized in three parts: theoretical

lectures with 2 classes per week, theoretical exercises with 1

class per week and practical exercises with 2 classes per week

in laboratory. Lectures and theoretical exercises are organized

in larger groups, while practical exercises are carried out in

computer laboratories in groups of up to 20 students, with

each student working on its own workstation. Prerequisites

for enrolling in the course are previously completed courses

in Computer Architecture and Operating Systems.
During the semester, the course is divided in two parts.

The first part covers the internal architecture and instruction

set of x86 microprocessors, the interrupt handling system,

BIOS and system routines. The second part focuses on

various types of microcontrollers, analyzing their

organization, instruction set and capabilities compared to x86

microprocessors, as well as peripheral systems, embedded

systems etc.

Lectures and theoretical exercises for the first part of the

course are based on [1] and various source code libraries. In

previous years, programming was done using Microsoft

Macro Assembler (MASM) version 6.11, with Programmers

Work Bench (PWB) as an integrated development
environment [2]. The material for the second part of the

course depends on the microcontroller that was studied.

Grading in the course is divided into four categories -

student activity, projects and either two midterms or one

exam. Student activity is followed during the entire length of

the course in the form of obligatory laboratory exercises,

which are intended to be solved during classes. One project is

handed out for programming in x86 assembly language. The

projects consist of more complex problems which requires

from the students additional research in the areas not covered

in the course classroom. Finally, midterms, or later exams, are
conducted for testing both theoretical and practical

knowledge.

B. Course Objectives and Reputation

The course had a “bad” reputation of being abstract, boring

and very hard to comprehend. Some of the issues were

subjective and student-specific, while many others were

completely in place. Most common objections to the course

can be divided into three areas shown in the next sections.

1) Inappropriate programming and simulation
environment.

Students had problems installing and using PWB, which

caused aversion to the presented material and exercises.

2) Disjointed material between lectures, theoretical and
practical exercises.

Students could not transfer knowledge gained from either

lectures or theoretical exercises to practical exercises. This

made them think they were studying two or three courses in

one.

3) No “real world” application.

Without having direct hardware interaction, students

learning becomes abstract, which leads to their displeasure

and to the main question: Why we are learning this, and how

and where shall I use it?

II. CHANGES IN THE COURSE

We analyzed the course during the period of several years,

and noticed that there were many bad implications from the

190

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

The 8th International Conference for Informatics and Information Technology (CIIT 2011)

course objectives previously mentioned. There were many

students, who were national software contestants and winners,

as well as CodeFu [7] Java contest contestants and winners,

which had problems with passing the exams or the project, or

were getting lower grades. Some of them were enrolled in the

course more than once.

From this analysis, we decided to structure the course to

resemble other “software” oriented courses. An approach like

this enabled an easier starting point for our students since they

were already familiar with high level programming languages

like C++.

A. Changes in the laboratory exercises form

Most changes in the course originated from laboratory
exercises. Totally new redesigned laboratory exercises were

created and they were covering topics taught in the theoretical

classes. Their structure was also modified in the form of

tutorials. First they briefly cover the material given during

theoretical lectures, including code samples how previously

taught principles can be implemented. Afterwards, relatively

simple assignments are given, requiring students to apply that

knowledge for certain tasks.

The laboratory exercises difficulty increases during the

semester.

B. Changes in the simulator for 8086 assembler

Initially we switched from using PWB for x86 assembler

to modern visual simulators like emu8086 [3], where students
can watch parameter values, i.e. registers, memory locations,

as well as executing programs step by step in real time. They

can use their computer science knowledge of debugging for

easy troubleshooting. For the second part of the course,

microcontrollers, we decided to switch from the previously

used Intel 8051 architecture and PIC 8259A interrupt

controller to some other implementation.

C. New Microcontroller platform – PIC 16F887

As a new platform we selected the microcontroller

PIC16F887 [5], used on the EasyPIC6 Development System

(Fig. 1) made by MikroElektronika [4].

 Figure 1: EasyPIC6 Development System.

We decided to use the PIC platform on the basis of the

following premises:

1) Large number of implementations, including free and

commercial.

2) The availability of the embedded software providing a

direct connection with PC and the availability of Flash

memory. This allows easy programming and re-programming

of the memory as well as software adjustment and debugging.

3) A variety of controllers embedded in the

microcontroller, which allows creating a lot of real world

examples.
4) Free circulation of the IDE which allows reading,

loading, adjustment and performance of software in a real-

time mode and in a simulation mode.

5) Free circulation of a limited, but fully function version

of the MikroC compiler for binaries up to 2KB.

6) Accompanying literature about the microcontroller and

its programming [6].

7) The availability of many complete project examples for

this microcontroller.

In specific, the PIC 16F887 microcontroller has RISC

architecture and only 35 instructions. It can operate on
frequencies up to 20 MHz, using an internal or external

oscillator. Connection to peripherals is made through 35

programmable input/output pins. Three types of memory are

available – 8KB ROM memory, 256 bytes EEPROM memory

and 368 bytes RAM memory. In combination with the

EasyPIC6 Development System the powerful In-circuit

Debugger enables real time execution and debugging of code

directly on the microcontroller, with options for step by step

execution, monitoring of memory, registers etc.

The company MikroElektronika offers variety of hardware

(from PIC series), as well as a lot of software support. This

enabled us to include a lot of sensors, actuators, as well as
small control systems as part of exercises and exams.

D. Changes in the laboratory exercises content (First Part)

For the first part of the course, we created totally new

content of the lab exercises. We omitted the old “hardware”

oriented exercises which taught the students working with

graphics, operating systems, files etc, but introduced more

software-like exercises such as arrays and matrices, strings,

procedures, macros etc. The exercises were organized as

follows:

1) Introduction with environment and simulators

Students were introduced to the programming

environment, the Microprocessor Simulator Emu8086, used

in virtual machine environment. The students learned how

traffic lights on simple crossroads can be programmed with

few lines of code. After that, they proposed how traffic lights
can become more intelligent.

2) Introduction with assembler for 8086

Students were introduced with the basics of 8086 processor

design, different types of registers and basic instructions like

MOV, ADD, SUB, CMP, and LOOP.

191

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

The 8th International Conference for Informatics and Information Technology (CIIT 2011)

3) Comparison with high level languages

Students learned different ways of addressing and

accessing the memory. Also, they learned how to program

high level commands like IF-THEN, IF-THEN-ELSE,

WHILE, FOR, and REPEAT UNTIL.

4) Introduction with arrays and matrix

Students learned how to define arrays and matrices in the
linear segments and store them in memory, as well as access

their elements with different sizes.

5) Working with strings

Students learned memory representation of strings, as well

as the instructions for string management.

6) Procedures, Macros and Interrupts

Students learned advanced methods of programming with

procedures and macros, as well as programming interrupts,

especially INT21.

E. Changes in the laboratory exercises content (Second
Part)

For the second part of the course, we also created totally

new content of the lab exercises, according the new

microcontroller and its capabilities with the development

tools. The exercises were organized as follows:

1) PIC16F887 Working Environment

Students were introduced with the working environment of

the microcontroller, the programming language microC, as

well as executing basic programs such as led blinking in the
simulator.

2) Counters and Timers in PIC16F887

Students were introduced to counters and timers of the

working environment, their usage and programming,

upgrading the previous exercise.

3) Serial Communication in PIC16F887

Students were introduced to the EUSART module for

serial communication. They programmed the controller to

read and write data with the computer serial port, sending

bytes, strings, or integers.

4) LCD, KeyPad and EEPROM in PIC16F887

Students were introduced to an additional hardware

component – LCD display. They also learned to use

additional memory in order to handle memory deficiency.

5) Advanced and real problems

At last, students solved some real issues using all

previously learned hardware components into one exercise.

F. Changes in the obligatory projects

Also, changes were made in the practical projects. In

previous years, many of the students did not even start the

projects and did not complete them at all. To improve this, we

split the material for the projects into two parts, according to

midterms. For instance, students which passed the first

midterm are assigned a project from the material from the

second midterm, and opposite, those who did not pass the

first midterm, must learn the first midterm material.

Therefore, they are assigned a project from the first midterm.

Projects from the first midterm are connected with the

previous obligatory course – Computer Architecture. Some

examples projects are: number system conversions into a

given file, implementing calculator, CRC code, etc.

Projects from the second midterm are of similar weight,
but intended for the PIC microcontroller framework. Some

examples of such projects are: working with serial port,

implementation of timer and counter, working and

manipulating with arrays, implementing alarm system, etc.

All these projects are suppose to be programmed into

previously learned simulators on hand-on labs.

G. Introducing an optional practical project

At the beginning, we offered 10 optional practical projects

from the real world, such as popular games or controlling

some well known processes. All these projects must been

mandatory performed on the hardware components, which

weren’t previously studied.

III. RESULTS

The results from the course changes can be observed

from several aspects. One very obvious is the improvement in

grade distribution. The number of passed students from the

midterms and the first exam increased to 28%, and the

average grade was 0.24 greater than previous year. The

number of the students which submitted the projects on time

increased 7%, as well as almost 60% performed better result

in the laboratory exercises, compared to the previous year.

IV. CONCLUSION

From the results shown, we believe that changing the

syllabus; we challenged the students to learn hardware, using

their software based skills. They solved the basic hardware
limitations of the memory usage.

We believe that these changes will be incorporating not

only in to hardware courses, but also to all other courses

where these changes and improvements are applicable.

REFERENCES

[1] Randall Hyde, “The Art of Assembly Language”, ISBN 1-886411-97-2

[2] Microsoft Macro Assembler, http://www.masm32.com/history.htm;

Retrieved on 02.02.2011

[3] Emu 8086, http://www.emu8086.com; Retrieved on 02.02.2011

[4] Mikroelektronika, http://www.mikroe.com; Retrieved on 02.02.2011

[5] Microchip PIC16F887, http://www.microchip.com/wwwproducts/

Devices.aspx?dDocName=en026561; Retrieved on 02.02.2011

[6] microC PRO for PIC, http://www.mikroe.com/eng/products/view/7/

mikroc-pro-for-pic/, Retrieved on 02.02.2011

[7] CodeFu coding competition. http://codefu.mk/ [02/15/2011]

192

8th Conference on Informatics and Information Technology with International Participation (CIIT 2011)

