
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

MICROCONTROLLER BASED AMBINENT LED LIGHTING

Vladislav Bidikov Nevena Ackovska

Faculty of Computer Science and Engineering Faculty of Computer Science and Engineering

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Efficient room lighting was always a real challenge especially

in these modern times where energy efficient solutions are

always more than welcome. On the other hand LED

technology was always on the most economical and efficient

way of providing lighting. The main problem we always face

with LED is that in order to properly generate the right

ambient colour we need the right combination on the R/G/B

based LED system. Usually, given such a task, a preferable

choice is a microcontroller. However, programming such a

system is always a challenge. In this paper we will show how

a modern Atmel microcontroller combines with the

opensource Arduino platform. We will present how using

little supporting electronics a PWM based RGB LED light

system can be built.

KEYWORDS:

Microprocessor, Arduino, Atmel, PWM, LED, Ambient light.

I. INTRODUCTION

When we started our analysis on the task at hand we had to

define some basic concepts in order to make the project more

sustainable. Generally these concepts where based in two

different categories: hardware and software.

On the hardware side we would like the platform to be

minimalist, mainly based on the least needed number of

components. Additionally, the idea was to build the system

from components which are easily available and known to

students in order to be possible to further develop the system.

On the software side we decided to try to use most

common used programming languages and also if possible

have some code reusage. Most microcontroller platforms are

base on C or alike languages, so this was not a project

stopper.

When looking into the different options one platform made

it really easy to adopt the above principles both on the

hardware and software side. It’s called Arduino project and

basically it’s an Atmel AtMEGA microprocessor put on a

minimalist development board which can easily be

programmed via USB with C programming language.

This allowed for the project to be easy to develop and

expand and also allowed future student cooperation on

extending the project or using its knowledge for more

complicated projects. One of the biggest advantages was the

fact that the development board allowed almost no additional

electronic for driving the RGB LED strip, since it is already

PWM ready.

II. THE ARDUINO PLATFORM

1. HARDWARE: An Arduino board consists of an 8-bit

Atmel AVR microcontroller with complementary components

to facilitate programming and incorporation into other

circuits. An important aspect of the Arduino is the standard

way that connectors are exposed, allowing the CPU board to

be connected to a variety of interchangeable add-on modules

known as shields. Official Arduinos have used the megaAVR

series of chips, specifically the ATmega8, ATmega168,

ATmega328, ATmega1280, and ATmega2560. A handful of

other processors have been used by Arduino compatibles.

Most boards include a 5 volt linear regulator and a 16 MHz

crystal oscillator (or ceramic resonator in some variants),

although some designs such as the LilyPad run at 8 MHz and

dispense with the onboard voltage regulator due to specific

form-factor restrictions. An Arduino's microcontroller is also

pre-programmed with a boot loader that simplifies uploading

of programs to the on-chip flash memory, compared with

other devices that typically need an external programmer.

At a conceptual level, when using the Arduino software stack,

all boards are programmed over an RS-232 serial connection,

but the way this is implemented varies by hardware version.

Serial Arduino boards contain a simple inverter circuit to

convert between RS-232-level and TTL-level signals. Current

Arduino boards are programmed via USB, implemented using

USB-to-serial adapter chips such as the FTDI FT232. Some

variants, such as the Arduino Mini and the unofficial

Boarduino, use a detachable USB-to-serial adapter board or

cable, Bluetooth or other methods. (When used with

traditional microcontroller tools instead of the Arduino IDE,

standard AVR ISP programming is used.)

The Arduino board exposes most of the microcontroller's I/O

pins for use by other circuits. The Diecimila, now superseded

by the Duemilanove, for example, provides 14 digital I/O

pins, six of which can produce pulse-width modulated signals,

and six analog inputs. These pins are on the top of the board,

via female 0.1 inch headers. Several plug-in application

shields are also commercially available.

The Arduino Nano, and Arduino-compatible Bare Bones

Board and Boarduino boards provide male header pins on the

underside of the board to be plugged into solderless

breadboards.

2. SOFTWARE: The Arduino IDE is a cross-platform

application written in Java, and is derived from the IDE for

the Processing programming language and the Wiring project.

It is designed to introduce programming to artists and other

newcomers unfamiliar with software development. It includes

a code editor with features such as syntax highlighting, brace

matching, and automatic indentation, and is also capable of

compiling and uploading programs to the board with a single

click. There is typically no need to edit makefiles or run

programs on a command-line interface. Although building on

command-line is possible if required with some third-party

tools such as Ino. The Arduino IDE comes with a C/C++

library called "Wiring" (from the project of the same name),

 !

The 9th Conference for Informatics and Information Technology (CIIT 2012)

which makes many common input/output operations much

easier. Arduino programs are written in C/C++, although

users only need define two functions to make a runnable

program:

 * setup() – a function run once at the start of a program that

can initialize settings

 * loop() – a function called repeatedly until the board

powers off

An example of the Arduino IDE is shown on Fig.1

Figure 1: The Arduino IDE

For this project out of the many different versions we decided

to use the Arduino MEGA1280 version which has the

required number of PWM outputs as well as the required I/O

lanes for the other elements.

III. DESIGN OF THE SYSTEM

The system was designed to be very easily extendable and

also with an idea to be an example for students which would

like to know about its design and functioning concept. For

that purpose all elements where modular. The system is made

from these elements:

1. Arduino MEGA Board – this is the heart of the

system. The board will use the IR receiver to receive

commands from the remote control and then

transform these commands into PWM signals which

will drive the RGB LED strip or multiple RGB LED

strip elements. (shown on Fig. 2)

2. IR receiver – a 38 KHZ IR receiver module which

can receive commands from generic IR remote

controllers commonly found in all modern

appliances (TV, DVD, Surround system etc.) (shown

on Fig. 3)

3. RGB LED driver - since most of the electronics are

already on the Arduino board the RGB LED driver

will actually be a ULN2003 chip which is a

Darlington transistor monolithic kit. (shown on Fig.

4)

4. RGB LED strip – this is the active element of the

system which will generate the planned ambient

lighting. (shown on Fig. 5)

Figure 2: Arduino MEGA board

Figure 3: IR Receiver

88

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Figure 4: ULN 2003 IC

Figure 5: RGB LED strip element

The design on the system was based on these functional

concepts:

1. The system will start do a simple self-test and then

make the LED strip white with intensity of 1/6 of the

output power of the LED strip.

2. After this stage, the system will listen for commands

while maintain the predefined values for the color of

the LED as well as their intensity.

3. When a command is received the system will react

accordingly.

4. In order to see a more natural light the system will to

these operations every 200ms which combined with

the PWM mode on the LED strip it will make the

whole effect natural.

When designing the command reference we decided to have a

few different ways of giving commands especially since we

plan so use a transmitter which will have a substantial number

of keys. Some of these keys we will program them with

predefined colors, while other will allow for change of color

and/or output power with a defined command sequence.

A very small subset of keys we will program with special

macros which will allow using the system under special

circumstances like going to sleep, waking up or emergency

situations.

Also we plan the system to remember the last state it was in

before we press the power off button. Since we expect such a

system to have a power on function when going in power off

mode that system will only shutdown the RGB LED elements

(which are the biggest consumer) and remain active in a

power saving mode awaiting for the power-on command to

arrive. While in this mode all other commands will be

ignored. In case of a system error the system will use the

onboard green LED to signal and give additional feedback

thru a LCD panel which can be connected for diagnosing

purposes.

Special attention in the code will be made for the possibility

to remap the keypads on the IR transmitter since we expect

that the end user will have a slightly different IR transmitter.

However, such a remap operation will be easy since the code

is in C language and it is easy to do the remap process once

we connect a LCD for debugging.

The initial set of commands is given in Table 1.

Table 1: Commands reference of programmed functions…..

Button Function

1 Color 1 (Red)

2 Color 2 (Green)

3 Color 3 (Blue)

4 Color 4 (Yellow)

5 Color 5 (Magenta)

6 Color 6 (Dark Blue)

7 Color 7 (Brown)

8 Color 8 (Orange)

9 Color 9 (Dark Green)

0 Color White

V+ Increase output 5%

V- Decrease output 5%

A Output 25%

B Output 50%

C Output 75%

D Output 100%

MUTE Sleep macro

M Emergency 100% macro

OK Enter RGB color value macro

(followed by 3 digit combinations

for R/G/B values)

IV. BUILDING THE DEVELOPMENT VERSION

Building the development version of the hardware was

basically soldering some short wires to all the modules and

then use the Arduino pads to connect the corresponding

modules. After this short soldering and connection process we

started developing the software. Since the Arduino platform

has many excellent examples the process of the writing of

code was very fast and after the initial writing we had all the

 !

The 9th Conference for Informatics and Information Technology (CIIT 2012)

needed functions in order to start the process of mapping the

buttons with their specified commands. For better future

development all commands where done using sub functions

which will even further make the project modular and easy to

be additionally developed.

The only problem we encountered was a small bug in the IR

transmitter which was sending the same code twice in a row.

After a short debug session it was brought to our attention

that the IR transmitter was faulty so we just replaced it with a

working one but there was a possibility in the code to

compensate for such occurrences if needed.

After we build the specified command set we decided to take

the system for a field test in order to test the commands as

well as see how the system will react under normal usage

from people which are not part of the developer team.

The results where quite interesting, since all of the test

subjects managed to use the system without any noticeable

error. The only time the system failed actually was where

there was a short power spike which made the microcontroller

power cycle.

V. CONCLUSION

The experience we learned from this project is indeed a very

interesting one. We saw how easily we can develop a

complex microcontroller circuit with the minimal set of

additional electronics to support it as well as the possibility to

develop software for it in a very friendly way. The Arduino

IDE gave us almost the same environment as a modern C

programming language editor as well as a full set of

additional microcontroller based diagnostic tools like the

serial console. Also the IDE provided a easy way of

uploading the completed code to the microcontroller by using

a USB interface. On the hardware side we can see how this

project could be further developed in means of adding more

complex features while the possibility to add additional add-

on cards allow to further think into using other technologies

like Ethernet or even wireless 802.11 communication. These

possibilities will allow making such light controller network

aware and even be used with a possibility to have their own

AI. All these tasks can be easily research in the curriculum on

the university since the Arduino platform has the versatility to

perform all these tasks.

REFERENCES

[1] The arduino Project – http://www.arduino.cc

[2] Jonathan Oxer, Hugh Blemings: Practical Arduino: Cool Projects for

Open Source Hardware – ISBN-13: 978-1430224778, 2009

90

