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ABSTRACT 

In this paper a querying environment for analysis of 
patient clinical data is presented. The data consists of 
two parts: patients’ pathological data and data about 
corresponding gene expression levels.  The querying 
environment includes a generic algorithm for 
constructing decision trees, as well as algorithms for 
discretizing gene expression levels and for searching 
frequent patterns (itemsets). The algorithms are 
accessed by means of a query language. The language 
can be used to simulate various data mining algorithms, 
such as the one developed by Morishita et al. for Itemset 
Constrained Clustering. 

 
1  INTRODUCTION 
 

In recent years a lot of data recording gene expression 
levels (microarray data) has been generated at a very high 
throughput. One of the challenges faced by molecular 
biologists is to discover knowledge from this data. This 
includes diagnosis of disease, classifying disease and 
gaining information that can suggest possible treatments. 
Various data mining techniques have been developed for 
finding useful gene expression profiles (discovering bi-sets, 
formal concept mining [5]) and for discovering relations 
between the patients pathological information and 
microarray data. Of particular interest to this paper is the 
technique of itemset constrained clustering of gene 
expression levels based on patients’ pathological features. 
 
2  ITEMSET CONSTRAINED CLUSTERING  
 

A classical approach towards relating the two parts of data 
(pathological and gene expression) would be a two step 
clustering-classification process (Figure 1). First, the 
clustering is performed according to the similarity of gene 
expression profiles and then a classifier is constructed for 
each cluster. The classifier is actually one of the 
pathological features (attributes), i.e., it predicts a tuple to 
be in the cluster if it includes the particular feature, and 
usually does not have 100% accuracy. Itemset constrained 
clustering [3] takes this one step further by allowing n-
itemsets of the pathological data to act as classifiers, but 
only if they have 100% accuracy. It allows only clusters 
which can be expressed by item sets. The IC-clustering 
algorithm itself, is an association rule mining and clustering 
algorithm at the same time. The index which is maximized 

in this algorithm is interclass variance, which is defined as 
follows: 
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Figure 1: A comparison between the clustering-
classification and itemset-constrained clustering approach. 
 
In short, the IC-clustering algorithm can be described as 
follows. 



 

 
IC-clustering algorithm: 
 

 Input: minimum cluster size (C), maximum 
number of tuples in which an item I is 
contained (S) 

 1. Search for a feature itemset that splits the 
tuples into two clusters 

 2. Compute the interclass variance between the 
clusters 

 Output: List of the top N itemsets sorted by 
interclass variance 

 
 
3  QUERY LANGUAGE 
 
The purpose of developing the query language was to allow 
a simple and easy-to-use approach towards mining gene 
expression data. On one hand it allows mining for local 
patterns (i.e., finding frequent itemsets) and also for the 
creation of global models of the data like predictive 
clustering trees [1]. It also has various discretization 
techniques for microarray data implemented (Mid Range, 
X%Max, Max-X%Max), as described in [6]. For each 
query the rule is that it always has as input a data table 
specified, and as a result it also returns a table, but analysed 
or processed in some way. Also, the idea was to relate the 
query language to inductive databases [2] by allowing 
compositionality of the queries: the output of one query can 
be used as an input to another. 
 
3.1  Query Language Syntax 
 
The rules for generating the query language predicates are 
given in BNF1 form. They can be divided in a number of 
groups according to their function. 
The first group would be the one that allows basic content 
selection. It consists of the  following three clauses: 
 
<create-clause>  

 
Used for creating new tables from rows and columns 
previously selected or processed in some way. It has the 
following notation: 

 
<create-clause>::= create <table-name> using <extend-
clause>|<select feature-clause> 
 
example: create “newPatients” using select from 
“patients” where “tumor==yes” 

 
<extend-clause> 
 
Useful for extending existing tables by adding new 
attributes (columns) which are somehow acquired. 
                                                 
1 Backus Naur Form. 

 
<extend-clause>::= extend <table-name> with <table-
name> 

 
example: extend “pathological” with “genes” 

 
<select feature-clause> 
 
Selecting a specific part of the data is often required. With 
this clause, a selection can be made by specifying a set of 
names of attributes, by certain attribute values or by 
simply selecting which rows and columns are needed. 
 
<select-clause>::= select from <table-name> where ( 
<attnames="names"> | <att-names=att-values> | 
<rows&columns> ) 
 
example: select from “genes” where “attnames=={gene1, 
gene5, gene9 }” 
 
The clauses through which basic data mining tasks can be 
achieved are: 

 
<discretize-clause> 
 
Gene expression level data often needs to be discretized  
before various data mining techniques for pattern 
discovery can be used. Many discretization techniques 
have been proposed [6] and several are implemented in our 
query language. 
 
<discretize-clause>::= discretize ( * | < att- names > | 
<rows&columns>) in <table-name> [using <method 
name>] 
 
example: discretize * in “geneNumeric” 
 
<frequent items-clause> 
 
Discovering frequent itemsets (patterns) from Boolean 
data is very useful for extracting information, especially 
for discovering genes that are co-regulated. The following 
clause uses ACminer [7] to extract these frequent itemsets 
with specified support. 
 
<frequent items-clause>::= frequent itemsets in (<table-
name>) with support <real> 
 
example: frequent itemsets in “pathological” with 
support 0.65 
 
<external-clause> 
 
For greater flexibility in using the query language, the 
external clause can be used. The idea is to allow an 
interface with external programs which can be used to 
further process the data or represent it in some other way. 



 

 
<external-clause>::= call external <program name & 
location> [using <parameters>] 
 
example: call external  “c:\program\program.exe” using  “ 
-i “file” “  
 
<convert-clause> 
 
This clause provides some basic conversion utilities. 
Usually data represented in binary form is not suitable as 
input to the different miners, so it must be transformed to 
the required format. 
 
<convert-clause>::= convert ( bin | miner | freqitems ) 
<table-name> to (miner|bin|features) 
 
example: convert bin “patientsBin” to miner 
 
<predict-clause>  
 
This is the last clause, and it is used for interfacing with the 
Clus system (Section 3.2). Clus is used for constructing 
predictive clustering trees [1], with support for certain 
constraints, which are specified in the <parameters> part of 
the predict clause. 
 
<predict-clause>::=predict from <table-name> using 
<parameters> 
 
example: predict from “patients” using clusterN=50 
 
3.2 Brief Description of Clus 
 
Clus is a generic system for constructing decision trees. It 
can be used to create classification trees for predicting 
symbolic attributes and regression trees for predicting 
numerical values. In some cases it is useful to predict 
several attributes at the same time, so multi-objective 
decision trees can also be constructed. Clus can generate 
so-called Predictive Clustering Trees (PCTs) [1], using a 
beam search algorithm. PCTs are decision trees that are 
used for hierarchical clustering purposes. Clus also allows 
for generating trees with user-constraints, which can be 
supplied to Clus by means of our query language.  
 
 
4  SIMULATING IC-CLUSTERING 
 
The IC-clustering algorithm can be easily simulated 
without its dedicated implementation with the help of the 
query language described above. It is an association rule 
mining and clustering algorithm, so it can be simulated by 
the following steps: 
 

 Find frequent itemsets using the patients 
pathological data 

 Create a modified patient record using the 
previously generated frequent itemsets 

 Create PCT stubs using the beam search 
algorithm of Clus 

 
The first step is finding frequent itemsets in the patient 
records Boolean data, with the user  specified support. The 
ability to specify the support of the frequent itemsets 
simulates the parameter C (minimum cluster size) in the 
IC-clustering algorithm. The second step of creating the 
so-called modified patient records is actually using the 
frequent itemsets as patient features, i.e., we add a Boolean 
attribute for each of the item sets, which takes the value 
true if and only if the record contains the item set. To this 
modified patient record we “append” the gene expression 
level data. By using Clus we generate PCT stubs, i.e., 
decision trees with only one test node. The test is selected 
from the modified pathological data and imposes a binary 
split (clustering) on the samples. The interclass variance is 
calculated for each stub and if the corresponding clustering 
is suitable it is put in the current search beam of width N. 
 
5  RESULTS 
 
The first scenario for analysing gene expression data with 
the query language that we considered was the previously 
described simulation of  IC-clustering. The queries which 
are used to perform this simulation are: 
 

 create “freqpatients” using frequent items 
in (convert bin “patients” to miner) with 
support 0.1 

 create “features” using (convert freqitems 
“freqpatients” (convert bin “patients” to 
miner) to freqfeatures) 

 extend “features” using “expression” 
 predict “features” with clusterN=100 

targetAtt=535-2527 
 
The first query creates a table that is generated using the 
frequent itemset clause. The support is set to 0.1 to match 
the one that is used in [3]. Then with a few conversions the 
frequent itemsets are used to modify the patients’ 
pathological data and create the “features” table. In the 
third query the gene expression levels are merged with the 
modified patients’ pathological data. In the end the PCTs 
are created using Clus. 
The dataset that was used is the same as in [3]. It contains 
patient records of 213 patients. The gene expression level 
data considers 1993 genes. The data has been previously 
preprocessed and missing values were substituted 
(predicted) in some way. The patients’ pathological data 
contains the features: age >/< 65, sex M/F, tumor/except 
tumor, chirossis/ no chirossis, abnormal / normal liver, 
abnormal/normal liver function.  
The results that were acquired are presented in the 
following table: 



 

 
 
Rank Constraint Cluster 

size 
Interclas
s 
variance 

1 {tumor} 107 3126.9 
2 {except tumor, 

normal liver 
function} 

88 2534.7 

3 {except tumor, 
HBV-} 

88 2397.3 

4 {tumor, man} 86 2181.5 
5 {except tumor, 

HBV-, normal liver 
function} 

74 2098.9 

6 {except tumor, man} 83 2037.87 

7 {except tumor, no 
cirrhosis} 

68 1979.74 

… … … … 
17 {tumor, not over 65 

years old} 
55 1587.7 

 
The results in this table are identical to those in [3]2. 
The second scenario concerns prediction of patients 
diagnosis from gene expression levels. The microarray data 
was first discretized using the Max-X%Max method, for a 
threshold of X=50% which encodes the over expressed 
genes with 1 and the others with 0. Then frequent itemsets 
were found with a support greater than 30%. Similarly as in 
the previous scenario they were used as features and a 
modified gene expression dataset was created. They were 
combined with the patient pathological data. Prediction was 
made with Clus concerning which set of genes are over 
expressed in patients that have a tumor. 
The queries that were used are: 

 create “freqGenes” using (frequent itemsets 
in (discretize * in “genes” using “Max-XMax 
X=50%”) with support 0.3) 

 create “featuresGenes” using (convert 
freqitems “freqGenes” (convert bin 
“patients” to miner) to freqfeatures) 

 extend “featuresGenes” using “patient” 
 predict “featuresGenes” with clusterN=100 

targetAtt=1 
The results are presented in the table: 
 
Rank OverExpressed 

Gene 
Cluster 
Size 

Error of 
prediction 

1 {GS11588, 
GS2496} 

78 0.286 

2 {GS2496} 79 0.291 

                                                 
2 Unfortunately, the table in [3] contains two errors 
concerning the size of the clusters (Jun Sese, personal 
communication). 

3 {GS1659} 77 0.309 
4 {GS1859} 71 0.319 
5 {GS72419} 76 0.342 
6 {GS12398} 73 0.347 
… … … … 
 
6 CONCLUSION AND FURTHER WORK 
 
The purpose of the query language that was developed was 
to create an environment that supports basic data mining 
tasks, and also a compositionality of queries thus relating 
the language to the concept of inductive databases. With 
the previously described scenarios we aimed to 
demonstrate that the query language facilitates gene 
expression analysis and also allows for the simulation of 
some data mining algorithms.  
Our further work would be first to validate the usefulness 
of the query language by testing it with other patient 
record/gene expression datasets and by using it in new 
scenarios. Also introducing new query constructs in the 
language is considered, like feature selection, mining for 
bi-sets and others.  
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