

CONSTRAINED CLUSTERING OF GENE EXPRESSION
PROFILES

Ivica Slavkov¹, Sašo Džeroski², Jan Struyf³, Suzana Loškovska¹
1. Faculty of Electrical Engineering, University of “Ss. Cyril and Methodius”, Skopje, Macedonia
2. Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
3. Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium

ABSTRACT

In this paper a querying environment for analysis of
patient clinical data is presented. The data consists of
two parts: patients’ pathological data and data about
corresponding gene expression levels. The querying
environment includes a generic algorithm for
constructing decision trees, as well as algorithms for
discretizing gene expression levels and for searching
frequent patterns (itemsets). The algorithms are
accessed by means of a query language. The language
can be used to simulate various data mining algorithms,
such as the one developed by Morishita et al. for Itemset
Constrained Clustering.

1 INTRODUCTION

In recent years a lot of data recording gene expression
levels (microarray data) has been generated at a very high
throughput. One of the challenges faced by molecular
biologists is to discover knowledge from this data. This
includes diagnosis of disease, classifying disease and
gaining information that can suggest possible treatments.
Various data mining techniques have been developed for
finding useful gene expression profiles (discovering bi-sets,
formal concept mining [5]) and for discovering relations
between the patients pathological information and
microarray data. Of particular interest to this paper is the
technique of itemset constrained clustering of gene
expression levels based on patients’ pathological features.

2 ITEMSET CONSTRAINED CLUSTERING

A classical approach towards relating the two parts of data
(pathological and gene expression) would be a two step
clustering-classification process (Figure 1). First, the
clustering is performed according to the similarity of gene
expression profiles and then a classifier is constructed for
each cluster. The classifier is actually one of the
pathological features (attributes), i.e., it predicts a tuple to
be in the cluster if it includes the particular feature, and
usually does not have 100% accuracy. Itemset constrained
clustering [3] takes this one step further by allowing n-
itemsets of the pathological data to act as classifiers, but
only if they have 100% accuracy. It allows only clusters
which can be expressed by item sets. The IC-clustering
algorithm itself, is an association rule mining and clustering
algorithm at the same time. The index which is maximized

in this algorithm is interclass variance, which is defined as
follows:

Let n be D (the number of tuples) and ()Ix be ID (the

number of tuples including itemset I) for a given database
{ }ntttD ,...,, 21= . Let []∑∈

=
Dt ii ats , and

[]∑∈
=

IDt ii atIy)(, then the interclass variance is

defined as:

() () ()()∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

m

i

m

i

iiiii

n
s

Ixn
IysIxn

n
s

Ix
IyIxID

1 1

22

)(
)(

)(
)(,var

Figure 1: A comparison between the clustering-
classification and itemset-constrained clustering approach.

In short, the IC-clustering algorithm can be described as
follows.

IC-clustering algorithm:

 Input: minimum cluster size (C), maximum
number of tuples in which an item I is
contained (S)

 1. Search for a feature itemset that splits the
tuples into two clusters

 2. Compute the interclass variance between the
clusters

 Output: List of the top N itemsets sorted by
interclass variance

3 QUERY LANGUAGE

The purpose of developing the query language was to allow
a simple and easy-to-use approach towards mining gene
expression data. On one hand it allows mining for local
patterns (i.e., finding frequent itemsets) and also for the
creation of global models of the data like predictive
clustering trees [1]. It also has various discretization
techniques for microarray data implemented (Mid Range,
X%Max, Max-X%Max), as described in [6]. For each
query the rule is that it always has as input a data table
specified, and as a result it also returns a table, but analysed
or processed in some way. Also, the idea was to relate the
query language to inductive databases [2] by allowing
compositionality of the queries: the output of one query can
be used as an input to another.

3.1 Query Language Syntax

The rules for generating the query language predicates are
given in BNF1 form. They can be divided in a number of
groups according to their function.
The first group would be the one that allows basic content
selection. It consists of the following three clauses:

<create-clause>

Used for creating new tables from rows and columns
previously selected or processed in some way. It has the
following notation:

<create-clause>::= create <table-name> using <extend-
clause>|<select feature-clause>

example: create “newPatients” using select from
“patients” where “tumor==yes”

<extend-clause>

Useful for extending existing tables by adding new
attributes (columns) which are somehow acquired.

1 Backus Naur Form.

<extend-clause>::= extend <table-name> with <table-
name>

example: extend “pathological” with “genes”

<select feature-clause>

Selecting a specific part of the data is often required. With
this clause, a selection can be made by specifying a set of
names of attributes, by certain attribute values or by
simply selecting which rows and columns are needed.

<select-clause>::= select from <table-name> where (
<attnames="names"> | <att-names=att-values> |
<rows&columns>)

example: select from “genes” where “attnames=={gene1,
gene5, gene9 }”

The clauses through which basic data mining tasks can be
achieved are:

<discretize-clause>

Gene expression level data often needs to be discretized
before various data mining techniques for pattern
discovery can be used. Many discretization techniques
have been proposed [6] and several are implemented in our
query language.

<discretize-clause>::= discretize (* | < att- names > |
<rows&columns>) in <table-name> [using <method
name>]

example: discretize * in “geneNumeric”

<frequent items-clause>

Discovering frequent itemsets (patterns) from Boolean
data is very useful for extracting information, especially
for discovering genes that are co-regulated. The following
clause uses ACminer [7] to extract these frequent itemsets
with specified support.

<frequent items-clause>::= frequent itemsets in (<table-
name>) with support <real>

example: frequent itemsets in “pathological” with
support 0.65

<external-clause>

For greater flexibility in using the query language, the
external clause can be used. The idea is to allow an
interface with external programs which can be used to
further process the data or represent it in some other way.

<external-clause>::= call external <program name &
location> [using <parameters>]

example: call external “c:\program\program.exe” using “
-i “file” “

<convert-clause>

This clause provides some basic conversion utilities.
Usually data represented in binary form is not suitable as
input to the different miners, so it must be transformed to
the required format.

<convert-clause>::= convert (bin | miner | freqitems)
<table-name> to (miner|bin|features)

example: convert bin “patientsBin” to miner

<predict-clause>

This is the last clause, and it is used for interfacing with the
Clus system (Section 3.2). Clus is used for constructing
predictive clustering trees [1], with support for certain
constraints, which are specified in the <parameters> part of
the predict clause.

<predict-clause>::=predict from <table-name> using
<parameters>

example: predict from “patients” using clusterN=50

3.2 Brief Description of Clus

Clus is a generic system for constructing decision trees. It
can be used to create classification trees for predicting
symbolic attributes and regression trees for predicting
numerical values. In some cases it is useful to predict
several attributes at the same time, so multi-objective
decision trees can also be constructed. Clus can generate
so-called Predictive Clustering Trees (PCTs) [1], using a
beam search algorithm. PCTs are decision trees that are
used for hierarchical clustering purposes. Clus also allows
for generating trees with user-constraints, which can be
supplied to Clus by means of our query language.

4 SIMULATING IC-CLUSTERING

The IC-clustering algorithm can be easily simulated
without its dedicated implementation with the help of the
query language described above. It is an association rule
mining and clustering algorithm, so it can be simulated by
the following steps:

 Find frequent itemsets using the patients
pathological data

 Create a modified patient record using the
previously generated frequent itemsets

 Create PCT stubs using the beam search
algorithm of Clus

The first step is finding frequent itemsets in the patient
records Boolean data, with the user specified support. The
ability to specify the support of the frequent itemsets
simulates the parameter C (minimum cluster size) in the
IC-clustering algorithm. The second step of creating the
so-called modified patient records is actually using the
frequent itemsets as patient features, i.e., we add a Boolean
attribute for each of the item sets, which takes the value
true if and only if the record contains the item set. To this
modified patient record we “append” the gene expression
level data. By using Clus we generate PCT stubs, i.e.,
decision trees with only one test node. The test is selected
from the modified pathological data and imposes a binary
split (clustering) on the samples. The interclass variance is
calculated for each stub and if the corresponding clustering
is suitable it is put in the current search beam of width N.

5 RESULTS

The first scenario for analysing gene expression data with
the query language that we considered was the previously
described simulation of IC-clustering. The queries which
are used to perform this simulation are:

 create “freqpatients” using frequent items
in (convert bin “patients” to miner) with
support 0.1

 create “features” using (convert freqitems
“freqpatients” (convert bin “patients” to
miner) to freqfeatures)

 extend “features” using “expression”
 predict “features” with clusterN=100

targetAtt=535-2527

The first query creates a table that is generated using the
frequent itemset clause. The support is set to 0.1 to match
the one that is used in [3]. Then with a few conversions the
frequent itemsets are used to modify the patients’
pathological data and create the “features” table. In the
third query the gene expression levels are merged with the
modified patients’ pathological data. In the end the PCTs
are created using Clus.
The dataset that was used is the same as in [3]. It contains
patient records of 213 patients. The gene expression level
data considers 1993 genes. The data has been previously
preprocessed and missing values were substituted
(predicted) in some way. The patients’ pathological data
contains the features: age >/< 65, sex M/F, tumor/except
tumor, chirossis/ no chirossis, abnormal / normal liver,
abnormal/normal liver function.
The results that were acquired are presented in the
following table:

Rank Constraint Cluster

size
Interclas
s
variance

1 {tumor} 107 3126.9
2 {except tumor,

normal liver
function}

88 2534.7

3 {except tumor,
HBV-}

88 2397.3

4 {tumor, man} 86 2181.5
5 {except tumor,

HBV-, normal liver
function}

74 2098.9

6 {except tumor, man} 83 2037.87

7 {except tumor, no
cirrhosis}

68 1979.74

… … … …
17 {tumor, not over 65

years old}
55 1587.7

The results in this table are identical to those in [3]2.
The second scenario concerns prediction of patients
diagnosis from gene expression levels. The microarray data
was first discretized using the Max-X%Max method, for a
threshold of X=50% which encodes the over expressed
genes with 1 and the others with 0. Then frequent itemsets
were found with a support greater than 30%. Similarly as in
the previous scenario they were used as features and a
modified gene expression dataset was created. They were
combined with the patient pathological data. Prediction was
made with Clus concerning which set of genes are over
expressed in patients that have a tumor.
The queries that were used are:

 create “freqGenes” using (frequent itemsets
in (discretize * in “genes” using “Max-XMax
X=50%”) with support 0.3)

 create “featuresGenes” using (convert
freqitems “freqGenes” (convert bin
“patients” to miner) to freqfeatures)

 extend “featuresGenes” using “patient”
 predict “featuresGenes” with clusterN=100

targetAtt=1
The results are presented in the table:

Rank OverExpressed

Gene
Cluster
Size

Error of
prediction

1 {GS11588,
GS2496}

78 0.286

2 {GS2496} 79 0.291

2 Unfortunately, the table in [3] contains two errors
concerning the size of the clusters (Jun Sese, personal
communication).

3 {GS1659} 77 0.309
4 {GS1859} 71 0.319
5 {GS72419} 76 0.342
6 {GS12398} 73 0.347
… … … …

6 CONCLUSION AND FURTHER WORK

The purpose of the query language that was developed was
to create an environment that supports basic data mining
tasks, and also a compositionality of queries thus relating
the language to the concept of inductive databases. With
the previously described scenarios we aimed to
demonstrate that the query language facilitates gene
expression analysis and also allows for the simulation of
some data mining algorithms.
Our further work would be first to validate the usefulness
of the query language by testing it with other patient
record/gene expression datasets and by using it in new
scenarios. Also introducing new query constructs in the
language is considered, like feature selection, mining for
bi-sets and others.

References

[1] H. Blockeel, L. De Raedt, and J. Ramon. Top-down

induction of clustering trees. In Proceedings of the
15th International Conference on Machine Learning,
pages 55–63, 1998.

[2] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery. Communications of the
ACM, 39(11):58–64, 1996.

[3] Sese Jun, Yukinori Kurokawa, Kikuya Kato, Morito
Monden and Shinichi Morishita. Constrained Clusters
of Gene Expression Profiles with Pathological
Features. Bioinformatics vol. 20 issue 17 Oxford
University Press 2004.

[4] Ruggero G. Pensa and Jean-François Boulicaut.
Boolean Property Encoding for Local Set Pattern
Discovery: An Application to Gene Expression Data
Analysis. International Seminar, Dagstuhl Castle,
Germany, April 12-16, 2004, Revised Selected Papers
p.115-134.

[5] Jérémy Besson, Céline Robardet, Jean-François
Boulicaut and Sophie Rome. Constraint-based concept
mining and its application to microarray data analysis.
Intelligent Data Analysis 9(1): 59-82 (2005).

[6] Ruggero G. Pensa, Claire Leschi, Jérémy Besson and
Jean-François Boulicaut. Assessment of discretization
techniques for relevant pattern discovery from gene
expression data. In proceedings of BIOKDD 2004: 24-
30.

[7] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and
Lotfi Lakhal. Discovering Frequent Closed Itemsets for
Association Rules. Proceeding of the 7th International
Conference on Database Theory 1999 p.398-416.

