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Abstract: This paper presents the time complexity analysis of the Binary Tree Roll algorithm. The time complexity is analyzed 
theoretically and the results are then confi rmed empirically. The theoretical analysis consists of fi nding recurrence relations for the 
time complexity, and solving them using various methods. The empirical analysis consists of exhaustively testing all trees with given 
numbers of nodes  and counting the minimum and maximum steps necessary to complete the roll algorithm. The time complexity 
is shown, both theoretically and empirically, to be linear in the best case and quadratic in the worst case, whereas its average case is 
shown to be dominantly linear for trees with a relatively small number of nodes and dominantly quadratic otherwise. 
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INTRODUCTION

Binary Tree Roll is an operation by which all of the nodes of a binary tree are rearranged in such a way, 
so that two of the depth-fi rst traversals of the newly obtained binary tree yield the same results as other two 
traversals of the original binary tree. Th e graphical representation of the newly obtained binary tree is that it 
appears to be rolled at a 90 degree angle (either counterclockwise or clockwise, depending on the direction 
of the applied roll operation) relative to the original binary tree; hence the name “Binary Tree Roll”.

Th is operation was introduced and defi ned in [1]. Th ere are two variants of the Binary Tree Roll Operation: 
a counterclockwise (CCW) and a clockwise (CW) roll. Th e counterclockwise roll of a binary tree, abbreviated 
as CCW(), is defi ned as follows. Given two binary trees T1 and T2, as well as their respective preorder(), 
inorder() and postorder() traversal functions, operation CCW() is defi ned as in Defi nition 1:

CCW(T1) = T2 ⇔ (preorder(T1) = inorder(T2) ∧ inorder(T1) = postorder(T2)) (1)
In other words, upon CCW(), the preorder traversal of the original tree is identical to the inorder traversal 

of the tree obtained by the counterclockwise roll, and the inorder traversal of the original tree is identical to 
the postorder traversal of the tree obtained by the counterclockwise roll. 
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Likewise, the clockwise roll of a binary tree, abbreviated as CW(), is defi ned as in Defi nition 2:

CW(T1) = T2 ⇔ (inorder(T1) = preorder(T2) ∧ postorder(T1) = inorder(T2)) (2)
Similarly, upon CW(), the inorder traversal of the original tree is identical to the preorder traversal of the 

tree obtained by the clockwise roll, and the postorder traversal of the original tree is identical to the inorder 
traversal of the tree obtained by the clockwise roll.

A graphical explanation was given in [1], showing how the resulting binary tree is obtained visually, so as 
to comply with defi nition (1) or (2), depending on the direction of the roll. Th e downshift visual operation, 
illustrated in Figure 1, was also  presented. It was shown that CCW() and CW() are inverses of each other, 
and algorithms for CCW() and CW() were given, which didn’t require obtaining the traversals of the input 
tree in order to generate the rolled tree.

Figure 1. Graphical explanation of the CCW() algorithm, and an example of a downshift [1]

Structurally, the algorithm presented in [1] contains a trivial case, two basic cases, and a third, more 
complex one. Th e pseudocode for both the CCW() and CW() variations of the algorithm are shown in 
Figure 2.

Th e algorithm takes two input parameters, which represent two binary tree nodes: the root of the tree 
to be processed, and its predecessor. Th e predecessor’s initial value is always NULL, since the 
root of the input tree never has a predecessor node. However, the value of the predecessor param-
eter changes as further recursive calls to the algorithm are being invoked from inside the function itself. 
Moreover, the values of both the root and the predecessor nodes are guaranteed to change within 
subsequent recursive function calls, since the entire structure of the binary tree is rearranged after the roll 
operation executes fully.

Th e motivation for this paper was the fact that the binary tree roll algorithm, in either its CCW() or 
CW() variant, has not been analyzed for time complexity so far. Th at is the goal of this paper and it will 
be done as follows, focusing on the CCW() variant. First, a theoretical analysis of the time complexity will 
be given, treating all cases of the algorithm execution. Recurrence relations for the time complexity will be 
stated and proved using mathematical tools. Afterwards, it will be shown how those results are tested em-
pirically, addressing the analytical results for the time complexities of the worst case, best case and average 
case of the algorithm. Finally, the paper will end with a conclusion about the material presented herein. 
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Time Complexity – Analytical Approach
Depending on the topology of the tree being pro-

cessed by the roll algorithm, any one of the three cas-
es is equally likely to be invoked (the ones initiated 
with lines 5, 13 and 25 in Figure 2, respectively). 
Th erefore, the time complexity equation can be writ-
ten as in Equation 3:

(3)

Figure 2. The algorithms for a) CCW() and b) CW()[1]
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where T0(n), TI(n), TII(n), and TIII(n) denote the 
trivial, fi rst, second, and third case of the algorithm, 
respectively. Th e trivial case (line 3 in Figure 2) is 
always executed in constant time and produces no 
further recursive calls, yielding T0 = Θ(1). Th e three 
non-trivial cases will be analyzed with the assump-
tion that the trivial case is fulfi lled. Furthermore, the 
number of nodes of the tree will be denoted by n, 
the line numbers will refer to the algorithm in Figure 
2, and the recurrences obtained will be followed by 
the results obtained by solving those recurrences us-
ing the backward substitution method [4], or by the 
substitution method based on mathematical induc-
tion [3].

Th e analysis will be done upon the CCW() ver-
sion of the algorithm, i.e. it will concern Figure 2a. 
As stated in [1], the CW() algorithm is an inverse of 
CCW(); substituting “left” for “right” and vice versa, 
as well as CCW() for CW() (for the recursive calls), 
will transform the CCW() algorithm into the CW() 
algorithm, so the following analysis can thus be used 
for the CW() variant as well. 

First case - lines 5-10
Th is case is invoked when the root has no right 

sub-tree (line 5). Th e following lines of code take 
the root’s left sub-tree and make it its right sub-tree. 
Th en, a recursive call is made on the new right sub-
tree. Figure 3 presents this case visually.

Th is case will yield a constant number of opera-
tions (two), as well as a recursive call invoked upon a 
tree containing n – 1 nodes (i.e. the root’s only sub-
tree). Th us, the time complexity recurrence for the 
fi rst case can be written as in Equation 4:

TI(n) = 2c + T(n – 1) (4)
where the T(n – 1) recursive call implies that any 
one of the cases of the algorithm may be invoked, 
depending on the topology of the remainder of the 

tree. Solving the recurrence results in a tightly linear 
complexity as stated in Equation 5.

TI(n) = Θ(n) (5)
Second case - lines 11-24
Th is case is activated when the root of the tree has 

a right sub-tree, which does not have a right sub-tree 
of its own (line 13). Th ere will be 6 or 7 operations 
needed to roll the root, its right child node, and their 
respective left sub-trees counterclockwise (6 if the 
root of the initial tree is rolled using this case, 7 if any 
sub-tree is rolled using this case), and two additional 
recursive calls on the two formerly left and ultimately 
right sub-trees. Th e number of constant operations 
can be denoted as Kc (where K is either 6 or 7) and 
will be included in the time complexity equation for 
the second case, shown visually in Figure 4.

Figure 4. The second basic case in the CCW() algorithm [1]

Th ere are two recursive calls, so it is necessary to 
determine the extreme scenarios upon which they 
can potentially be invoked. In the worst-case scenar-
io, all of the remaining nodes will be in one of the 
sub-trees, whereas the other one will remain empty. 
Th is scenario can be described as in Equation 6:

TII0
(n) = Kc + T(n – 2) + T(0) (6)

where the T(n – 2) denotes that the two nodes already 
rolled with the constant number of lines (lines 15 to 
20 or 21) will not be worked with again. Solving this 
recurrence gives a result of a tight linear complexity, 
as shown in Equation 7:

TII0
(n) = Θ(n) (7)
Th e best-case scenario is when both of the sub-

trees have an equal number of the remaining n – 2  
nodes. Th is can be represented as in Equation 8:

Figure 3. The fi rst basic case in the CCW() algorithm [1]
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(8)

Solving this recurrence again yields a solution of 
tight linear complexity. Th is is shown in Equation 9:

TIIΩ(n) = Θ(n) (9) 
Since both extreme scenarios of the second case 

have linear time complexities, it follows that the sec-
ond case of the binary tree roll algorithm has tightly 
linear time complexity (Equation 10):

TII(n) = Θ(n) (10)
Th ird case - lines 25-38
Th is case gets invoked when the root has a right 

sub-tree, which has a right sub-tree of its own. As 
stated in [1], this case deals with the downshift of 
stems of right child nodes and transforming them 
into stems of left child nodes. Th e algorithm fi rst cre-
ates a recursive call upon the right sub-tree of the 
root and it continues to do so until a basic case is 
reached (i.e. until a sub-tree with at most one right 
child node is reached, following the stem of right 
child nodes from the root towards its rightmost child 
node). When such a case is handled by the algorithm, 
the remainder of the third case relocates the former 
root of the tree to be the “leftmost” child node in 
the newly rolled tree, and the procedure is then re-
cursively invoked again on the former root (and its 
entire left sub-tree), now placed as the leftmost node 
in the sub-tree handled by the third case. Figure 5 
shows the third case visually.

Figure 5. The third and most complex case in the CCW() 
algorithm [1]

How many times the loop in case 3 (lines 29 
and 30) will be executed depends on the number of 
nodes in the stem of right child nodes of the root of 
the tree on which the CCW() algorithm is invoked, 
if the third case of the algorithm applies to it. After 
downshifting, this stem will become a stem of left 

child nodes, and the root node will need to be linked 
as the left child node of the leftmost node in this 
stem. Since the rightmost node in the original tree 
will become the root of the new tree after CCW() is 
performed on it, fi nding the leftmost node will need 
to be done from the new root towards the left, which 
is the reason for the loop in lines 29 and 30 of the 
algorithm. 

To help quantify this and precisely determine the 
time complexity of the third case of the algorithm, 
additional variables can be introduced. Th ese are pre-
sented visually in Figure 6.

Figure 6. The third case of the CCW() algorithm: a) the head 
recursion (ellipse) of the third case deals with the stem of right 

child nodes ( ) and transforms it into a stem of left child nodes via 
downshift; b) the root ( ) is linked as the leftmost in the stem of 

left child nodes and the tail recursion (ellipse) of the third case is 
invoked upon it; c) since the former root does not have a right 

child node of its own, the tail recursion will invoke the fi rst case, 
and the left sub-tree of the former root ( ) will become its right 

sub-tree

As shown in Figure 6, rb represents the number 
of nodes in the stem of right child nodes of the root 
of the tree (including it), whereas lo is the number 
of nodes in the left sub-tree of the root. Having this 
in mind, the time complexity recurrence of the third 
case can be written as in Equation 11:

TIII(n) = T(n – 1 – lo) + 2c + 2c(rb – 2)+ Pc + T(1 + lo) (11)
where Constraints 12 and 13 apply:3 ≤ rb ≤ n (12)0 ≤ lo ≤ n – rb (13)

Th e fi ve terms of the Equation 9 and the con-
straints in Equations 10 and 11 are explained as fol-
lows:
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• T(n – 1 – lo) is the head recursion of the third 
case (line 27). It will be invoked upon all of the 
nodes in the tree (n), except the root and its left 
sub-tree (lo), as shown in Figure 6a;• 2c is the constant time needed to invoke the two 
lines of code 28 and 29;

• 2c(rb – 2) is the time needed to invoke the loop in 
lines 30 and 29 again (the loop condition test). 
Th e two lines of code in the loop will be invoked 
for all nodes in the stem of right child nodes 
(turned into a stem of left child nodes after the 
downshift, i.e., after the head recursion has com-
pleted) except for two: the root (the head recur-
sion, i.e., downshift, is invoked for the right child 
node of the root, meaning that the root does not 
become downshifted until all other nodes in the 
stem of right child nodes get downshifted) and 
the last node in the stem of right child nodes (be-
cause when the head recursion reaches the node 
which is a parent to the last node in the stem of 
right child nodes, the second basic case of the 
CCW() will be invoked and not the third case, 
thus initiating the end of the downshift process). 
Th at is why this term is 2c(rb – 2).

Th e third case of the algorithm will be invoked 
only if the stem of right child nodes contains 3 or 
more nodes (which can be inferred by consecutive-
ly following the tests in lines 3, 5, 13 and 25); if it 
contains only 3 nodes, that is the best-case scenario, 
whereas if it contains all n nodes of the tree (i.e., the 
tree is right-degenerated), that is the worst-case sce-
nario; hence Constraint 12;
• P is a constant which is either 5 or 6, depend-

ing on whether the third case of the algorithm is 
invoked upon the root of the tree (i.e., the node 
having no predecessor) or any other child node 
of the tree respectively―this signifi es inclusion of 
lines 31 to 35 and 36, respectively;

• T(1 + lo) represents the tail recursion, which is 
invoked on the former root of the tree (eventually 
placed as the leftmost node in the stem of down-
shifted left child nodes) and the nodes in its left 
sub-tree (lo), as shown in Figure 6b. In the best-
case scenario, this left sub-tree will be empty, and 
in the worst-case scenario it will contain all the 
nodes of the tree except the ones contained in the 
initial stem of right child nodes (which includes 

the root of the tree as well, as shown in Figure 6), 
from where Constraint 13 is derived.

In order to analyze Equation 11, the extreme 
scenarios for Constraints 12 and 13 need to be ad-
dressed. Th e worst-case scenario in Constraint 12 is 
when rb = n, i.e., when the stem of right child nodes 
contains all of the nodes of the tree (which means 
that the tree is right-degenerated). Th is means that 
there is no left sub-tree to the root, i.e., lo = 0, which 
can be inferred both logically and formally, by sub-
stituting rb = n in Constraint 13. Th us, Equation 11 
becomes Equation 14:
TIII0

(n) = T(n – 1) + 2c + 2c(n – 2) + Pc + T(1)   (14)
Solving this recurrence yields a tightly quadratic 

complexity, as stated in Equation 15:
TIII0

(n) = Θ(n2) (15)
Th e best-case scenario occurs when the third case 

of the algorithm is invoked only once for the entire 
tree, i.e., when rb = 3 in Constraint 12. Substituting 
this in Equation 11 produces Equation 16:
TIIIΩ(n) = T(n – 1 – lo) + 2c + 2c+ Pc + T(1 + lo) (16)

Th ere are two extremes of the best-case scenario 
to consider:
• Th e fi rst extreme is when lo = 0 in the constraint 

in Equation 11, which means that there is no left 
sub-tree to the root. Th en, the head recursion 
would handle all of the nodes of the tree except 
the root (which are not in the left sub-tree of the 
root and do not form a stem of right child nodes), 
whereas the tail recursion would handle only 
the root; this can be inferred by substituting the 
aforementioned value for lo in Equation 16 and 
thus obtaining Equation 17:

TIIIΩ1(n) = T(n – 1) + 2c + 2c + Pc + T(1) (17)
Solving the recurrence in Equation 17 results in a 
tightly linear complexity (since T(1) = Θ(1), i.e. it 
is a constant), as stated in Equation 18:

TIIIΩ1(n) = Θ(n) (18)
• Th e second extreme is when lo = n – 3 in Con-

straint 13, which means that the left sub-tree of 
the root contains all of the nodes of the tree, ex-
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cept the three nodes (including the root) placed in 
the stem of right child nodes, which would invoke 
the third case of the algorithm. Th us, the head re-
cursion would handle only two nodes (the lower 
two nodes of the stem of three right child nodes, 
handled by the second case), whereas the tail re-
cursion would handle the remaining n – 2 nodes 
of the tree; this can also be inferred by substitut-
ing the aforementioned value for lo in Equation 16 
and thus produce the recurrence in Equation 19:

TIIIΩ2(n) = T(2) + 2c + 2c + Pc + T(n – 2) (19)
Solving this recurrence again results in a tightly 
linear complexity (since, again, T(2) = Θ(1), i.e. 
it is also a constant), as stated in Equation 20:

TIIIΩ2(n) = Θ(n) (20)
Th us, since both extremes of the best-case scenar-

io for the third case have linear time complexities, 
the best-case scenario for the third case, as a whole, 
has linear time complexity, as stated in Equation 21:
TIIIΩ(n) = Θ(n) (21)

Comparing Equations 15 and 21, it can be seen 
that the third case of the algorithm is not robust, i.e. 
that its time complexity can range from quadratic in 
the worst case to linear in the best case. Assuming 
that all of the aforementioned cases of the algorithm 
(consisting of their worst- and best-case scenarios, 
including the extreme sub-variants) are equally likely 
to be invoked, one can undertake a probabilistic ap-
proach to the time complexity analysis. More spe-
cifi cally, the complexities of the following cases need 
to be considered: TI(n) (Equation 5), TII0

(n) (Equa-
tion 7), TIIΩ(n) (Equation 9), TIII0

(n)  (Equation 15), 
TIIIΩ1

(n) (Equation 18) and TIIIΩ2
(n) (Equation 20). 

It can be seen that, out of the six possible extreme 
cases that can arise during the processing of a ran-
dom binary tree with the CCW() algorithm, only 
one is quadratic and all the others are linear. In other 
words, it can be assumed that, whenever a random 
tree is processed by the CCW() algorithm, fi ve times 
out of six the algorithm will have a linear time com-
plexity, and once out of six times it will have a qua-
dratic time complexity. 

Of course, this is a simplifi ed model of the time 
complexity of the algorithm, and further research 

into the topic is needed. Specifi cally, experimental 
research needs to be conducted, where the number 
of steps to execute the algorithm needs to be counted 
for certain topologies of the binary tree structure, in 
order to obtain a clear picture into the time complex-
ity of the algorithm.

Time Complexity – Empirical Approach
It is reasonable to expect that not all topologies of 

binary trees with certain amounts of nodes will re-
quire the same amounts of time to have the binary 
roll operation fully performed on them. Figure 7 pres-
ents all possible topologies of binary trees for n = 3  
and n = 4. For every binary tree with n nodes there 
are Cn possible binary tree topologies, where Cn is the 
n-th Catalan number.

Based on the equations for time complexity, a 
logical assumption would be that, for a tree with 
n = 3 nodes, one out of C3 = 5 trees would need 
quadratic time complexity to have CCW roll per-
formed on it (Figure 7a) ― it would be the one 
containing three nodes in the stem of right child 
nodes, i.e. the topology of a right-degenerated tree. 
Also, for a tree with n = 4 nodes, four out of C4 = 14 trees would need quadratic time complexity to 
have CCW roll performed on them (Figure 7b) ― 
the ones that have stems of three and more right 
child nodes.

Figure 7. Th e topologies of binary trees for a) n = 3  and b) n = 4  

In order to be certain about how much time 
is needed to perform CCW roll on a tree with n  
nodes, an exhaustive analysis needs to be performed. 
Th is includes obtaining all topologies of binary trees 
with n nodes and performing CCW roll on all of 
them, while counting the steps (i.e., time units) un-
til the CCW roll completes. For this, it is necessary 
to fi rst generate all topologies of binary trees for a 
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given n and then execute CCW roll on all of them, 
while counting the steps during the CCW roll ex-
ecutions. Following the theoretical analysis, it is ex-
pected that there will be a quadratic time complexity 
for the worst case and a linear time complexity for 
the best case, and it is therefore necessary to collect 
information for both. It is also appealing to know 
whether the time complexity of the algorithm would 
be more dominantly linear or quadratic, i.e., whether 
the best case or worst case of the algorithm would be 
more likely to be invoked during the execution of the 
CCW roll. For this reason, an average time complex-
ity would also be extracted, as an average of the time 
complexities for all topologies of binary trees for a 
given number of nodes n.

In order to obtain all topologies of binary trees 
with a given number of nodes, the Catalan Cipher 
Vector approach is used in this paper. A Catalan Ci-
pher Vector [2] is a vector which uniquely determines 
a binary tree’s topology. For a tree with n nodes, there 
will be Cn topologies of binary trees and thus Cn Cata-
lan Cipher Vectors. Table 1 shows all the ranks, their 
corresponding Catalan Cipher Vectors, and the ap-
propriate binary trees, for n = 4 nodes.

Since the initial Catalan Cipher Vector for a tree 
with n nodes is always [0 1 2 ... n – 1] [2], it is possible 
to generate the corresponding binary tree for it, and 
count the number of steps it would take to complete 
the CCW() on it. Th en, the subsequent Catalan Ci-
pher Vector can be obtained, the corresponding binary 
tree can be generated from it, have CCW() executed 
on it and count the number of steps needed and so 
on, until all Cn binary tree topologies are processed this 
way. Th roughout the process, the maximum and the 
minimum number of steps needed are tracked, as well 
as the total number of steps for all the Cn topologies of 
the binary trees with n nodes. Th ese can be plotted on 
a graph for diff erent subsequent values of n, in order 
to provide a graphical representation of the best case, 
worst case and average case of the time complexity of 
the CCW() algorithm, respectively.

Th e results for such an analysis have been per-
formed and the results are given in Table 2.

Table 1. Ranks and enumerations of the binary trees with n = 4 
nodes using the Catalan Cipher Vector approach

Rank Catalan Cipher Vector Binary Tree

0 [0 1 2 3]

1 [0 1 2 4]

2 [0 1 2 5]

3 [0 1 2 6]

4 [0 1 3 4]

5 [0 1 3 5]

6 [0 1 3 6]

7 [0 1 4 5]

8 [0 1 4 6]

9 [0 2 3 4]

10 [0 2 3 5]

11 [0 2 3 6]

12 [0 2 4 5]

13 [0 2 4 6]
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Table 2. Numbers of steps necessary to perform CCW() on all 
topologies of binary trees with given numbers of nodes

n C(n) Min Max Avg Total

2 2 9 11 10 20

3 5 13 29 18 88

4 14 17 49 26 360

5 42 21 71 34 1.430

6 132 25 95 43 5.610

7 429 29 121 51 21.890

8 1.430 33 149 60 85.228

9 4.862 37 179 68 331.630

10 16.796 41 211 77 1.290.640

11 58.786 45 245 85 5.025.880

12 208.012 49 281 94 19.586.720

13 742.900 53 319 103 76.399.836

14 2.674.440 57 359 112 298.274.350

15 9.694.845 61 401 120 1.165.544.550

16 35.357.670 65 445 129 4.558.478.100

17 129.644.790 69 491 138 17.843.217.150

18 477.638.700 73 539 146 69.899.012.040

19 1.767.263.190 77 589 155 274.028.145.600

20 6.564.120.420 81 641 164 1.075.046.854.800

Th e results are interpreted as follows. In the fi rst 
data row, for a tree with n = 2 nodes (fi rst column), 
there are C(n) = 2 (second column) total topologies of 
binary trees. Executing CCW() on all of them yields a 
Total (sixth, i.e. last column) of 20 time units, leading 
to an Avg (average – fi fth column) of 10 time units per 
binary tree topology. Of all topologies, the Min (mini-
mum – third column) number of time units necessary 

to complete CCW() on a binary tree topology with 2 
nodes is 9, and the Max (maximum – fourth column) 
number of such time units is 11. Th is interpretation 
follows all rows of the table, up to and including bi-
nary tree topologies for n = 20 nodes.

Plotting the obtained data results in a chart like 
in Figure 8.

Th e results concur with the theoretical analysis: 
the algorithm has a quadratic time complexity in the 
worst case and a linear time complexity in the best 
case, whereas the average case has a near-linear com-
plexity. It is possible to interpolate precise equations 
from the data for the worst and best case, and these 
are Tmax(n) = n2 + 13n – 19 and Tmin(n) = 4n + 1, 
respectively.

For the average case, the most accurate interpola-
tion is a quadratic one, since the plot indicates such 
a complexity, which is also confi rmed using the least 
square error method. Th e equation thus obtained 
is Tavg(n) = 0.0129n2 + 8.3308n + 0.8554. Th is 
shows that the quadratic term of the function will be 
shadowed by the linear term for smaller values of n, 
but that it would eventually become dominant when 
n grows beyond a certain threshold. Th e threshold 
would be the value of n for which the quadratic term 
becomes larger than the linear term, or the value of 
n for which 0.0129n2 > 8.3308n. Th is is true for 

, since n is an integer. 
In other words, for trees up to 645 nodes there is a 
higher probability that the CCW() will perform a 
binary tree roll in linear time, whereas for trees with 
646 and more nodes there is a higher probability that 
the CCW() will perform binary tree roll in quadratic 
time.

Figure 8. A plot of the results given in Table 2
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CONCLUSION

Th is paper presented an analysis of the time com-
plexity of the binary tree roll algorithm, specifi cally 
its counterclockwise (CCW()) variant, with the note 
that the analysis for its clockwise (CW()) variant 
is analogous. For the time complexity analysis, the 
trivial and the three non-trivial cases of the algorithm 
were presented and recurrence relations for them were 
derived and solved. Th e results from the theoretical 
analysis were checked empirically, by performing ex-
haustive testing on all trees with given numbers of 
nodes n, counting all the steps while performing the 
algorithm. Th e theoretical results, that the time com-
plexity of the CCW() algorithm is linear in the best 
case and quadratic in the worst case, were confi rmed 
by the empirical results. Furthermore, the average 
case analysis showed that the CCW() algorithm is 
dominantly linear for trees with n ≤ 645, whereas 
for trees with higher numbers of nodes the quadratic 
time complexity becomes more dominant.

BIOGRAPHY
Adrijan Božinovski works as an Associate Professor at the 

School of Computer Science and Information Technology at 
University American College Skopje, where he is currently the 
Dean. He obtained his BSc from University “St. Cyril and Met-
hodius” in Skopje, Macedonia, and his MSc and PhD from 
University of Zagreb, Croatia.

George Tanev is an MSc graduate student of the School of 
Computer Science and Information Technology at University 
American College Skopje, Macedonia, where he acquired his 
BSc in Computer Science. Also works as a software developer 
in Skopje, Macedonia.

Biljana Stojčevska works as an Associate Professor at the 
UACS School of Computer Science and Information Techno-
logy. She received her BSc, MSc and PhD degrees in Computer 
Science at the Institute of Informatics, Faculty of Natural Sci-
ences and Mathematics, at “Sts. Cyril and Methodius Univer-
sity” in Skopje, Macedonia.

Veno Pachovski (1965) graduated, completed MSc and got 
his PhD from Faculty of Natural Sciences and Mathematics, 
University “Sts. Cyril And Methodius”, Skopje, Macedonia. 

Since 2009, he teaches a variety of courses at the University 
American College – Skopje, mainly within the School of Com-
puter Sciences and Information technology (SCSIT).

Nevena Ackovska is Associate Professor at the Faculty of 
Computer Science and Engineering at “St. Cyril and Methodi-
us” University in Skopje, Macedonia. She holds B.Sc. in Com-
puter Engineering, Informatics and Automation from Electrical 
Engineering Faculty (2000), M.Sc. in Bioinformatics (2003) 
and a Ph.D. in Bioinformatics (2008) from Faculty of Natural 
Sciences and Mathematics at “St. Cyril and Methodius Univer-
sity” in Skopje, Macedonia.

62        Journal of Information Technology and Applications        www.jita-au.com




