
TIME COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 6(2016) 2:53-62

TIME COMPLEXITY ANALYSIS OF THE BINARY TREE
ROLL ALGORITHM

Adrijan Božinovski1, George Tanev1, Biljana Stojčevska1, Veno Pačovski1,
Nevena Ackovska2

1School of Computer Science and Information Technology, University American College Skopje,
Macedonia

2Faculty of Computer Science and Engineering, University “Sv. Kiril i Metodij”, Skopje, Macedonia
bozinovski@uacs.edu.mk, george.tanev@uacs.edu.mk, stojcevska@uacs.edu.mk, pachovski@uacs.edu.

mk, nevena.ackovska@fi nki.ukim.mk

Contribution to the state of the art

DOI: 10.7251/JIT1602053B UDC: 519.857:004.021

Abstract: This paper presents the time complexity analysis of the Binary Tree Roll algorithm. The time complexity is analyzed
theoretically and the results are then confi rmed empirically. The theoretical analysis consists of fi nding recurrence relations for the
time complexity, and solving them using various methods. The empirical analysis consists of exhaustively testing all trees with given
numbers of nodes and counting the minimum and maximum steps necessary to complete the roll algorithm. The time complexity
is shown, both theoretically and empirically, to be linear in the best case and quadratic in the worst case, whereas its average case is
shown to be dominantly linear for trees with a relatively small number of nodes and dominantly quadratic otherwise.

Keywords: Binary Tree Roll Algorithm, time complexity, theoretical analysis, empirical analysis.

INTRODUCTION

Binary Tree Roll is an operation by which all of the nodes of a binary tree are rearranged in such a way,
so that two of the depth-fi rst traversals of the newly obtained binary tree yield the same results as other two
traversals of the original binary tree. Th e graphical representation of the newly obtained binary tree is that it
appears to be rolled at a 90 degree angle (either counterclockwise or clockwise, depending on the direction
of the applied roll operation) relative to the original binary tree; hence the name “Binary Tree Roll”.

Th is operation was introduced and defi ned in [1]. Th ere are two variants of the Binary Tree Roll Operation:
a counterclockwise (CCW) and a clockwise (CW) roll. Th e counterclockwise roll of a binary tree, abbreviated
as CCW(), is defi ned as follows. Given two binary trees T1 and T2, as well as their respective preorder(),
inorder() and postorder() traversal functions, operation CCW() is defi ned as in Defi nition 1:

CCW(T1) = T2 ⇔ (preorder(T1) = inorder(T2) ∧ inorder(T1) = postorder(T2)) (1)
In other words, upon CCW(), the preorder traversal of the original tree is identical to the inorder traversal

of the tree obtained by the counterclockwise roll, and the inorder traversal of the original tree is identical to
the postorder traversal of the tree obtained by the counterclockwise roll.

December 2016 Journal of Information Technology and Applications 53

JITA 6(2016) 2:53-62 ADRIJAN BOŽINOVSKI, ET AL.:

Likewise, the clockwise roll of a binary tree, abbreviated as CW(), is defi ned as in Defi nition 2:

CW(T1) = T2 ⇔ (inorder(T1) = preorder(T2) ∧ postorder(T1) = inorder(T2)) (2)
Similarly, upon CW(), the inorder traversal of the original tree is identical to the preorder traversal of the

tree obtained by the clockwise roll, and the postorder traversal of the original tree is identical to the inorder
traversal of the tree obtained by the clockwise roll.

A graphical explanation was given in [1], showing how the resulting binary tree is obtained visually, so as
to comply with defi nition (1) or (2), depending on the direction of the roll. Th e downshift visual operation,
illustrated in Figure 1, was also presented. It was shown that CCW() and CW() are inverses of each other,
and algorithms for CCW() and CW() were given, which didn’t require obtaining the traversals of the input
tree in order to generate the rolled tree.

Figure 1. Graphical explanation of the CCW() algorithm, and an example of a downshift [1]

Structurally, the algorithm presented in [1] contains a trivial case, two basic cases, and a third, more
complex one. Th e pseudocode for both the CCW() and CW() variations of the algorithm are shown in
Figure 2.

Th e algorithm takes two input parameters, which represent two binary tree nodes: the root of the tree
to be processed, and its predecessor. Th e predecessor’s initial value is always NULL, since the
root of the input tree never has a predecessor node. However, the value of the predecessor param-
eter changes as further recursive calls to the algorithm are being invoked from inside the function itself.
Moreover, the values of both the root and the predecessor nodes are guaranteed to change within
subsequent recursive function calls, since the entire structure of the binary tree is rearranged after the roll
operation executes fully.

Th e motivation for this paper was the fact that the binary tree roll algorithm, in either its CCW() or
CW() variant, has not been analyzed for time complexity so far. Th at is the goal of this paper and it will
be done as follows, focusing on the CCW() variant. First, a theoretical analysis of the time complexity will
be given, treating all cases of the algorithm execution. Recurrence relations for the time complexity will be
stated and proved using mathematical tools. Afterwards, it will be shown how those results are tested em-
pirically, addressing the analytical results for the time complexities of the worst case, best case and average
case of the algorithm. Finally, the paper will end with a conclusion about the material presented herein.

54 Journal of Information Technology and Applications www.jita-au.com

TIME COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 6(2016) 2:53-62

Time Complexity – Analytical Approach
Depending on the topology of the tree being pro-

cessed by the roll algorithm, any one of the three cas-
es is equally likely to be invoked (the ones initiated
with lines 5, 13 and 25 in Figure 2, respectively).
Th erefore, the time complexity equation can be writ-
ten as in Equation 3:

(3)

Figure 2. The algorithms for a) CCW() and b) CW()[1]

December 2016 Journal of Information Technology and Applications 55

JITA 6(2016) 2:53-62 ADRIJAN BOŽINOVSKI, ET AL.:

where T0(n), TI(n), TII(n), and TIII(n) denote the
trivial, fi rst, second, and third case of the algorithm,
respectively. Th e trivial case (line 3 in Figure 2) is
always executed in constant time and produces no
further recursive calls, yielding T0 = Θ(1). Th e three
non-trivial cases will be analyzed with the assump-
tion that the trivial case is fulfi lled. Furthermore, the
number of nodes of the tree will be denoted by n,
the line numbers will refer to the algorithm in Figure
2, and the recurrences obtained will be followed by
the results obtained by solving those recurrences us-
ing the backward substitution method [4], or by the
substitution method based on mathematical induc-
tion [3].

Th e analysis will be done upon the CCW() ver-
sion of the algorithm, i.e. it will concern Figure 2a.
As stated in [1], the CW() algorithm is an inverse of
CCW(); substituting “left” for “right” and vice versa,
as well as CCW() for CW() (for the recursive calls),
will transform the CCW() algorithm into the CW()
algorithm, so the following analysis can thus be used
for the CW() variant as well.

First case - lines 5-10
Th is case is invoked when the root has no right

sub-tree (line 5). Th e following lines of code take
the root’s left sub-tree and make it its right sub-tree.
Th en, a recursive call is made on the new right sub-
tree. Figure 3 presents this case visually.

Th is case will yield a constant number of opera-
tions (two), as well as a recursive call invoked upon a
tree containing n – 1 nodes (i.e. the root’s only sub-
tree). Th us, the time complexity recurrence for the
fi rst case can be written as in Equation 4:

TI(n) = 2c + T(n – 1) (4)
where the T(n – 1) recursive call implies that any
one of the cases of the algorithm may be invoked,
depending on the topology of the remainder of the

tree. Solving the recurrence results in a tightly linear
complexity as stated in Equation 5.

TI(n) = Θ(n) (5)
Second case - lines 11-24
Th is case is activated when the root of the tree has

a right sub-tree, which does not have a right sub-tree
of its own (line 13). Th ere will be 6 or 7 operations
needed to roll the root, its right child node, and their
respective left sub-trees counterclockwise (6 if the
root of the initial tree is rolled using this case, 7 if any
sub-tree is rolled using this case), and two additional
recursive calls on the two formerly left and ultimately
right sub-trees. Th e number of constant operations
can be denoted as Kc (where K is either 6 or 7) and
will be included in the time complexity equation for
the second case, shown visually in Figure 4.

Figure 4. The second basic case in the CCW() algorithm [1]

Th ere are two recursive calls, so it is necessary to
determine the extreme scenarios upon which they
can potentially be invoked. In the worst-case scenar-
io, all of the remaining nodes will be in one of the
sub-trees, whereas the other one will remain empty.
Th is scenario can be described as in Equation 6:

TII0
(n) = Kc + T(n – 2) + T(0) (6)

where the T(n – 2) denotes that the two nodes already
rolled with the constant number of lines (lines 15 to
20 or 21) will not be worked with again. Solving this
recurrence gives a result of a tight linear complexity,
as shown in Equation 7:

TII0
(n) = Θ(n) (7)
Th e best-case scenario is when both of the sub-

trees have an equal number of the remaining n – 2
nodes. Th is can be represented as in Equation 8:

Figure 3. The fi rst basic case in the CCW() algorithm [1]

56 Journal of Information Technology and Applications www.jita-au.com

TIME COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 6(2016) 2:53-62

(8)

Solving this recurrence again yields a solution of
tight linear complexity. Th is is shown in Equation 9:

TIIΩ(n) = Θ(n) (9)
Since both extreme scenarios of the second case

have linear time complexities, it follows that the sec-
ond case of the binary tree roll algorithm has tightly
linear time complexity (Equation 10):

TII(n) = Θ(n) (10)
Th ird case - lines 25-38
Th is case gets invoked when the root has a right

sub-tree, which has a right sub-tree of its own. As
stated in [1], this case deals with the downshift of
stems of right child nodes and transforming them
into stems of left child nodes. Th e algorithm fi rst cre-
ates a recursive call upon the right sub-tree of the
root and it continues to do so until a basic case is
reached (i.e. until a sub-tree with at most one right
child node is reached, following the stem of right
child nodes from the root towards its rightmost child
node). When such a case is handled by the algorithm,
the remainder of the third case relocates the former
root of the tree to be the “leftmost” child node in
the newly rolled tree, and the procedure is then re-
cursively invoked again on the former root (and its
entire left sub-tree), now placed as the leftmost node
in the sub-tree handled by the third case. Figure 5
shows the third case visually.

Figure 5. The third and most complex case in the CCW()
algorithm [1]

How many times the loop in case 3 (lines 29
and 30) will be executed depends on the number of
nodes in the stem of right child nodes of the root of
the tree on which the CCW() algorithm is invoked,
if the third case of the algorithm applies to it. After
downshifting, this stem will become a stem of left

child nodes, and the root node will need to be linked
as the left child node of the leftmost node in this
stem. Since the rightmost node in the original tree
will become the root of the new tree after CCW() is
performed on it, fi nding the leftmost node will need
to be done from the new root towards the left, which
is the reason for the loop in lines 29 and 30 of the
algorithm.

To help quantify this and precisely determine the
time complexity of the third case of the algorithm,
additional variables can be introduced. Th ese are pre-
sented visually in Figure 6.

Figure 6. The third case of the CCW() algorithm: a) the head
recursion (ellipse) of the third case deals with the stem of right

child nodes () and transforms it into a stem of left child nodes via
downshift; b) the root () is linked as the leftmost in the stem of

left child nodes and the tail recursion (ellipse) of the third case is
invoked upon it; c) since the former root does not have a right

child node of its own, the tail recursion will invoke the fi rst case,
and the left sub-tree of the former root () will become its right

sub-tree

As shown in Figure 6, rb represents the number
of nodes in the stem of right child nodes of the root
of the tree (including it), whereas lo is the number
of nodes in the left sub-tree of the root. Having this
in mind, the time complexity recurrence of the third
case can be written as in Equation 11:

TIII(n) = T(n – 1 – lo) + 2c + 2c(rb – 2)+ Pc + T(1 + lo) (11)
where Constraints 12 and 13 apply:3 ≤ rb ≤ n (12)0 ≤ lo ≤ n – rb (13)

Th e fi ve terms of the Equation 9 and the con-
straints in Equations 10 and 11 are explained as fol-
lows:

December 2016 Journal of Information Technology and Applications 57

JITA 6(2016) 2:53-62 ADRIJAN BOŽINOVSKI, ET AL.:

• T(n – 1 – lo) is the head recursion of the third
case (line 27). It will be invoked upon all of the
nodes in the tree (n), except the root and its left
sub-tree (lo), as shown in Figure 6a;• 2c is the constant time needed to invoke the two
lines of code 28 and 29;

• 2c(rb – 2) is the time needed to invoke the loop in
lines 30 and 29 again (the loop condition test).
Th e two lines of code in the loop will be invoked
for all nodes in the stem of right child nodes
(turned into a stem of left child nodes after the
downshift, i.e., after the head recursion has com-
pleted) except for two: the root (the head recur-
sion, i.e., downshift, is invoked for the right child
node of the root, meaning that the root does not
become downshifted until all other nodes in the
stem of right child nodes get downshifted) and
the last node in the stem of right child nodes (be-
cause when the head recursion reaches the node
which is a parent to the last node in the stem of
right child nodes, the second basic case of the
CCW() will be invoked and not the third case,
thus initiating the end of the downshift process).
Th at is why this term is 2c(rb – 2).

Th e third case of the algorithm will be invoked
only if the stem of right child nodes contains 3 or
more nodes (which can be inferred by consecutive-
ly following the tests in lines 3, 5, 13 and 25); if it
contains only 3 nodes, that is the best-case scenario,
whereas if it contains all n nodes of the tree (i.e., the
tree is right-degenerated), that is the worst-case sce-
nario; hence Constraint 12;
• P is a constant which is either 5 or 6, depend-

ing on whether the third case of the algorithm is
invoked upon the root of the tree (i.e., the node
having no predecessor) or any other child node
of the tree respectively―this signifi es inclusion of
lines 31 to 35 and 36, respectively;

• T(1 + lo) represents the tail recursion, which is
invoked on the former root of the tree (eventually
placed as the leftmost node in the stem of down-
shifted left child nodes) and the nodes in its left
sub-tree (lo), as shown in Figure 6b. In the best-
case scenario, this left sub-tree will be empty, and
in the worst-case scenario it will contain all the
nodes of the tree except the ones contained in the
initial stem of right child nodes (which includes

the root of the tree as well, as shown in Figure 6),
from where Constraint 13 is derived.

In order to analyze Equation 11, the extreme
scenarios for Constraints 12 and 13 need to be ad-
dressed. Th e worst-case scenario in Constraint 12 is
when rb = n, i.e., when the stem of right child nodes
contains all of the nodes of the tree (which means
that the tree is right-degenerated). Th is means that
there is no left sub-tree to the root, i.e., lo = 0, which
can be inferred both logically and formally, by sub-
stituting rb = n in Constraint 13. Th us, Equation 11
becomes Equation 14:
TIII0

(n) = T(n – 1) + 2c + 2c(n – 2) + Pc + T(1) (14)
Solving this recurrence yields a tightly quadratic

complexity, as stated in Equation 15:
TIII0

(n) = Θ(n2) (15)
Th e best-case scenario occurs when the third case

of the algorithm is invoked only once for the entire
tree, i.e., when rb = 3 in Constraint 12. Substituting
this in Equation 11 produces Equation 16:
TIIIΩ(n) = T(n – 1 – lo) + 2c + 2c+ Pc + T(1 + lo) (16)

Th ere are two extremes of the best-case scenario
to consider:
• Th e fi rst extreme is when lo = 0 in the constraint

in Equation 11, which means that there is no left
sub-tree to the root. Th en, the head recursion
would handle all of the nodes of the tree except
the root (which are not in the left sub-tree of the
root and do not form a stem of right child nodes),
whereas the tail recursion would handle only
the root; this can be inferred by substituting the
aforementioned value for lo in Equation 16 and
thus obtaining Equation 17:

TIIIΩ1(n) = T(n – 1) + 2c + 2c + Pc + T(1) (17)
Solving the recurrence in Equation 17 results in a
tightly linear complexity (since T(1) = Θ(1), i.e. it
is a constant), as stated in Equation 18:

TIIIΩ1(n) = Θ(n) (18)
• Th e second extreme is when lo = n – 3 in Con-

straint 13, which means that the left sub-tree of
the root contains all of the nodes of the tree, ex-

58 Journal of Information Technology and Applications www.jita-au.com

TIME COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 6(2016) 2:53-62

cept the three nodes (including the root) placed in
the stem of right child nodes, which would invoke
the third case of the algorithm. Th us, the head re-
cursion would handle only two nodes (the lower
two nodes of the stem of three right child nodes,
handled by the second case), whereas the tail re-
cursion would handle the remaining n – 2 nodes
of the tree; this can also be inferred by substitut-
ing the aforementioned value for lo in Equation 16
and thus produce the recurrence in Equation 19:

TIIIΩ2(n) = T(2) + 2c + 2c + Pc + T(n – 2) (19)
Solving this recurrence again results in a tightly
linear complexity (since, again, T(2) = Θ(1), i.e.
it is also a constant), as stated in Equation 20:

TIIIΩ2(n) = Θ(n) (20)
Th us, since both extremes of the best-case scenar-

io for the third case have linear time complexities,
the best-case scenario for the third case, as a whole,
has linear time complexity, as stated in Equation 21:
TIIIΩ(n) = Θ(n) (21)

Comparing Equations 15 and 21, it can be seen
that the third case of the algorithm is not robust, i.e.
that its time complexity can range from quadratic in
the worst case to linear in the best case. Assuming
that all of the aforementioned cases of the algorithm
(consisting of their worst- and best-case scenarios,
including the extreme sub-variants) are equally likely
to be invoked, one can undertake a probabilistic ap-
proach to the time complexity analysis. More spe-
cifi cally, the complexities of the following cases need
to be considered: TI(n) (Equation 5), TII0

(n) (Equa-
tion 7), TIIΩ(n) (Equation 9), TIII0

(n) (Equation 15),
TIIIΩ1

(n) (Equation 18) and TIIIΩ2
(n) (Equation 20).

It can be seen that, out of the six possible extreme
cases that can arise during the processing of a ran-
dom binary tree with the CCW() algorithm, only
one is quadratic and all the others are linear. In other
words, it can be assumed that, whenever a random
tree is processed by the CCW() algorithm, fi ve times
out of six the algorithm will have a linear time com-
plexity, and once out of six times it will have a qua-
dratic time complexity.

Of course, this is a simplifi ed model of the time
complexity of the algorithm, and further research

into the topic is needed. Specifi cally, experimental
research needs to be conducted, where the number
of steps to execute the algorithm needs to be counted
for certain topologies of the binary tree structure, in
order to obtain a clear picture into the time complex-
ity of the algorithm.

Time Complexity – Empirical Approach
It is reasonable to expect that not all topologies of

binary trees with certain amounts of nodes will re-
quire the same amounts of time to have the binary
roll operation fully performed on them. Figure 7 pres-
ents all possible topologies of binary trees for n = 3
and n = 4. For every binary tree with n nodes there
are Cn possible binary tree topologies, where Cn is the
n-th Catalan number.

Based on the equations for time complexity, a
logical assumption would be that, for a tree with
n = 3 nodes, one out of C3 = 5 trees would need
quadratic time complexity to have CCW roll per-
formed on it (Figure 7a) ― it would be the one
containing three nodes in the stem of right child
nodes, i.e. the topology of a right-degenerated tree.
Also, for a tree with n = 4 nodes, four out of C4 = 14 trees would need quadratic time complexity to
have CCW roll performed on them (Figure 7b) ―
the ones that have stems of three and more right
child nodes.

Figure 7. Th e topologies of binary trees for a) n = 3 and b) n = 4

In order to be certain about how much time
is needed to perform CCW roll on a tree with n
nodes, an exhaustive analysis needs to be performed.
Th is includes obtaining all topologies of binary trees
with n nodes and performing CCW roll on all of
them, while counting the steps (i.e., time units) un-
til the CCW roll completes. For this, it is necessary
to fi rst generate all topologies of binary trees for a

December 2016 Journal of Information Technology and Applications 59

JITA 6(2016) 2:53-62 ADRIJAN BOŽINOVSKI, ET AL.:

given n and then execute CCW roll on all of them,
while counting the steps during the CCW roll ex-
ecutions. Following the theoretical analysis, it is ex-
pected that there will be a quadratic time complexity
for the worst case and a linear time complexity for
the best case, and it is therefore necessary to collect
information for both. It is also appealing to know
whether the time complexity of the algorithm would
be more dominantly linear or quadratic, i.e., whether
the best case or worst case of the algorithm would be
more likely to be invoked during the execution of the
CCW roll. For this reason, an average time complex-
ity would also be extracted, as an average of the time
complexities for all topologies of binary trees for a
given number of nodes n.

In order to obtain all topologies of binary trees
with a given number of nodes, the Catalan Cipher
Vector approach is used in this paper. A Catalan Ci-
pher Vector [2] is a vector which uniquely determines
a binary tree’s topology. For a tree with n nodes, there
will be Cn topologies of binary trees and thus Cn Cata-
lan Cipher Vectors. Table 1 shows all the ranks, their
corresponding Catalan Cipher Vectors, and the ap-
propriate binary trees, for n = 4 nodes.

Since the initial Catalan Cipher Vector for a tree
with n nodes is always [0 1 2 ... n – 1] [2], it is possible
to generate the corresponding binary tree for it, and
count the number of steps it would take to complete
the CCW() on it. Th en, the subsequent Catalan Ci-
pher Vector can be obtained, the corresponding binary
tree can be generated from it, have CCW() executed
on it and count the number of steps needed and so
on, until all Cn binary tree topologies are processed this
way. Th roughout the process, the maximum and the
minimum number of steps needed are tracked, as well
as the total number of steps for all the Cn topologies of
the binary trees with n nodes. Th ese can be plotted on
a graph for diff erent subsequent values of n, in order
to provide a graphical representation of the best case,
worst case and average case of the time complexity of
the CCW() algorithm, respectively.

Th e results for such an analysis have been per-
formed and the results are given in Table 2.

Table 1. Ranks and enumerations of the binary trees with n = 4
nodes using the Catalan Cipher Vector approach

Rank Catalan Cipher Vector Binary Tree

0 [0 1 2 3]

1 [0 1 2 4]

2 [0 1 2 5]

3 [0 1 2 6]

4 [0 1 3 4]

5 [0 1 3 5]

6 [0 1 3 6]

7 [0 1 4 5]

8 [0 1 4 6]

9 [0 2 3 4]

10 [0 2 3 5]

11 [0 2 3 6]

12 [0 2 4 5]

13 [0 2 4 6]

60 Journal of Information Technology and Applications www.jita-au.com

TIME COMPLEXITY ANALYSIS OF THE BINARY TREE ROLL ALGORITHM JITA 6(2016) 2:53-62

Table 2. Numbers of steps necessary to perform CCW() on all
topologies of binary trees with given numbers of nodes

n C(n) Min Max Avg Total

2 2 9 11 10 20

3 5 13 29 18 88

4 14 17 49 26 360

5 42 21 71 34 1.430

6 132 25 95 43 5.610

7 429 29 121 51 21.890

8 1.430 33 149 60 85.228

9 4.862 37 179 68 331.630

10 16.796 41 211 77 1.290.640

11 58.786 45 245 85 5.025.880

12 208.012 49 281 94 19.586.720

13 742.900 53 319 103 76.399.836

14 2.674.440 57 359 112 298.274.350

15 9.694.845 61 401 120 1.165.544.550

16 35.357.670 65 445 129 4.558.478.100

17 129.644.790 69 491 138 17.843.217.150

18 477.638.700 73 539 146 69.899.012.040

19 1.767.263.190 77 589 155 274.028.145.600

20 6.564.120.420 81 641 164 1.075.046.854.800

Th e results are interpreted as follows. In the fi rst
data row, for a tree with n = 2 nodes (fi rst column),
there are C(n) = 2 (second column) total topologies of
binary trees. Executing CCW() on all of them yields a
Total (sixth, i.e. last column) of 20 time units, leading
to an Avg (average – fi fth column) of 10 time units per
binary tree topology. Of all topologies, the Min (mini-
mum – third column) number of time units necessary

to complete CCW() on a binary tree topology with 2
nodes is 9, and the Max (maximum – fourth column)
number of such time units is 11. Th is interpretation
follows all rows of the table, up to and including bi-
nary tree topologies for n = 20 nodes.

Plotting the obtained data results in a chart like
in Figure 8.

Th e results concur with the theoretical analysis:
the algorithm has a quadratic time complexity in the
worst case and a linear time complexity in the best
case, whereas the average case has a near-linear com-
plexity. It is possible to interpolate precise equations
from the data for the worst and best case, and these
are Tmax(n) = n2 + 13n – 19 and Tmin(n) = 4n + 1,
respectively.

For the average case, the most accurate interpola-
tion is a quadratic one, since the plot indicates such
a complexity, which is also confi rmed using the least
square error method. Th e equation thus obtained
is Tavg(n) = 0.0129n2 + 8.3308n + 0.8554. Th is
shows that the quadratic term of the function will be
shadowed by the linear term for smaller values of n,
but that it would eventually become dominant when
n grows beyond a certain threshold. Th e threshold
would be the value of n for which the quadratic term
becomes larger than the linear term, or the value of
n for which 0.0129n2 > 8.3308n. Th is is true for

, since n is an integer.
In other words, for trees up to 645 nodes there is a
higher probability that the CCW() will perform a
binary tree roll in linear time, whereas for trees with
646 and more nodes there is a higher probability that
the CCW() will perform binary tree roll in quadratic
time.

Figure 8. A plot of the results given in Table 2

December 2016 Journal of Information Technology and Applications 61

JITA 6(2016) 2:53-62 ADRIJAN BOŽINOVSKI, ET AL.:

REFERENCES:
[1] Božinovski, A. and Ackovska, N. (2012) The Binary Tree Roll Operation: Defi nition, Explanation and Algorithm, In-

ternational Journal of Computer Applications, 46(8):40-47.
[2] Božinovski, A., Stojčevska, B. and Pačovski, V. (2013) Enumeration, Ranking and Generation of Binary Trees Based on

Level-Order Traversal Using Catalan Cipher Vectors, Journal of Information Technology and Applications, 3(2):78-86.
[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009) Introduction to Algorithms, Third Edition, The MIT

Press.
[4] Puntambekar, A. A. (2010) Design and Analysis of Algorithms, Technical Publications Pune.

Submitted: December 1, 2016.
Accepted: December 12, 2016.

CONCLUSION

Th is paper presented an analysis of the time com-
plexity of the binary tree roll algorithm, specifi cally
its counterclockwise (CCW()) variant, with the note
that the analysis for its clockwise (CW()) variant
is analogous. For the time complexity analysis, the
trivial and the three non-trivial cases of the algorithm
were presented and recurrence relations for them were
derived and solved. Th e results from the theoretical
analysis were checked empirically, by performing ex-
haustive testing on all trees with given numbers of
nodes n, counting all the steps while performing the
algorithm. Th e theoretical results, that the time com-
plexity of the CCW() algorithm is linear in the best
case and quadratic in the worst case, were confi rmed
by the empirical results. Furthermore, the average
case analysis showed that the CCW() algorithm is
dominantly linear for trees with n ≤ 645, whereas
for trees with higher numbers of nodes the quadratic
time complexity becomes more dominant.

BIOGRAPHY
Adrijan Božinovski works as an Associate Professor at the

School of Computer Science and Information Technology at
University American College Skopje, where he is currently the
Dean. He obtained his BSc from University “St. Cyril and Met-
hodius” in Skopje, Macedonia, and his MSc and PhD from
University of Zagreb, Croatia.

George Tanev is an MSc graduate student of the School of
Computer Science and Information Technology at University
American College Skopje, Macedonia, where he acquired his
BSc in Computer Science. Also works as a software developer
in Skopje, Macedonia.

Biljana Stojčevska works as an Associate Professor at the
UACS School of Computer Science and Information Techno-
logy. She received her BSc, MSc and PhD degrees in Computer
Science at the Institute of Informatics, Faculty of Natural Sci-
ences and Mathematics, at “Sts. Cyril and Methodius Univer-
sity” in Skopje, Macedonia.

Veno Pachovski (1965) graduated, completed MSc and got
his PhD from Faculty of Natural Sciences and Mathematics,
University “Sts. Cyril And Methodius”, Skopje, Macedonia.

Since 2009, he teaches a variety of courses at the University
American College – Skopje, mainly within the School of Com-
puter Sciences and Information technology (SCSIT).

Nevena Ackovska is Associate Professor at the Faculty of
Computer Science and Engineering at “St. Cyril and Methodi-
us” University in Skopje, Macedonia. She holds B.Sc. in Com-
puter Engineering, Informatics and Automation from Electrical
Engineering Faculty (2000), M.Sc. in Bioinformatics (2003)
and a Ph.D. in Bioinformatics (2008) from Faculty of Natural
Sciences and Mathematics at “St. Cyril and Methodius Univer-
sity” in Skopje, Macedonia.

62 Journal of Information Technology and Applications www.jita-au.com

