
Accelerat ing the world's research.

Awakening curiosity-Hardware
education for Computer science
students

Nevena Ackovska, Sashko Ristov

Related papers

The x86 Microprocessors (Second Edit ion)8086 to Pent ium, Mult icores, Atom and the 8051 M…
lyla das

First Pages
SNZ INNOVATIONS

Lyla B. Das, The x86 Microprocessors: 8086 to Pent ium, Mult icores, Atom and the 8051 Microcontrolle…
Lyla B Das

Download a PDF Pack of the best related papers 

https://www.academia.edu/9001265/The_x86_Microprocessors_Second_Edition_8086_to_Pentium_Multicores_Atom_and_the_8051_Microcontroller_Architecture_Programming_and_Interfacing?from=cover_page
https://www.academia.edu/40217081/First_Pages?from=cover_page
https://www.academia.edu/9585477/Lyla_B_Das_The_x86_Microprocessors_8086_to_Pentium_Multicores_Atom_and_the_8051_Microcontroller_Architecture_Programming_and_Interfacing_Second_Edition_Pearson_Education_India_2014_ISBN_978_93_325_3682_1?from=cover_page
https://www.academia.edu/18222998/Awakening_curiosity_Hardware_education_for_Computer_science_students?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page

Awakening curiosity - Hardware education for

Computer science students

Sashko Ristov, Milosh Stolikj, Nevena Ackovska

Ss. Cyril and Methodius University / Faculty of Natural Sciences and Math. - Institute of Informatics, Skopje, Macedonia

e-mail: {sasko, milos, nevena}@ii.edu.mk

Abstract — This paper describes a new systematic approach

and methodology for teaching hardware based courses to

computer science (CS) students. It is a combination of various

approaches with a profound goal to provoke deeper

comprehension in various topics in microprocessors and

microcontrollers details. The computer student programming

skills and knowledge (generally high level programming

languages and algorithms) is used to program and control

processes with microcontrollers. The methodology evolutes

around three steps: using visual simulators, incrementally

weighted exercises, from easiest to hardest, including
supplemental points, and finally working on real hardware

controllers. The proposed teaching approaches were developed

for the course “Microprocessors and Microcontrollers”, but

can be applied to every hardware based course on computer
science students.

I. INTRODUCTION

Computer science and CE courses in general tend to
adopt the usage of e-learning platforms. This approach is
appropriate for all software oriented courses and those ones
that do not need considerable instructor control. All software
courses have huge benefit from the new way of learning and
teaching, but, as it is shown in many cases, it is not the best
solution for courses which are not so native with the
appropriate science. Hardware courses existing in Computer
Science (CS) or Computer Engineering (CE) curriculums fall
in that category. To this end, computer architecture and
organization is an important area in undergraduate CS
curricula and it is acknowledged as a substantial part of the
body of knowledge in [1].

However, computer science has been bloated by new
subject areas. That new burden of knowledge stimulates a
reorientation favoring courses about higher abstraction
notions (e.g. web-oriented programming), while courses
about low-level details (e.g. computer architecture) are
abandoned or severely minimized. The problem that
inherently appears is that high-level programming does not
provide a clear understanding of what a computer really does
when executing a program. So, students do not want to know
how the computer works, but only that they can execute their
software solutions on it. Even more, reorientation from

computing to software programming inevitably provokes
students to feel that hardware oriented courses are simply a
burden that they have to put up with in order to gain their
grade and pass the exam.

Teaching students how hardware devices work and how
they can be employed in their designs is often a very difficult
process. For the educator, hardware based courses are a
challenge and seeking new teaching methodologies is a
continuing process. There are many different methodologies
and approaches in teaching computer science students about
hardware from different points of view. For instance, [2]
presents an approach for getting the students hands-on
experience on the software (operating system) and hardware
interaction. In [3] the focus is on embedded software and
systems as part of teaching and learning. Also, [4] presents
the experiences while using the simulation in an introductory
microcontroller class. In [6] we observe common methods of
class room teaching and experimental teaching, with the
emphasis on cultivating the problem-analysis and the
problem solving abilities of the students on computer
hardware curriculums.

A. Common hardware courses

We, at the Institute of Informatics, offer three related
courses that cover issues of computer architecture and
organization. These courses are named “Computer
Architecture”, “Microprocessors and Microcontrollers” and
“Modern Computer Systems”. In this paper, our interest is
the course Microprocessors and Microcontrollers. Its main
objective is for the students to obtain a clear understanding
of issues such as low-level hardware interfacing, handling of
interrupts, communication between processor, memory, bus
and peripheral devices trough learning the basics of
processors and its instruction set, as well as embedded
systems through learning microcontrollers. Hands-on
experience is considered very important. This paper presents
our improvements to the course curricula and summarizes
the new teaching methodology.

In the following section, we describe the course syllabus
and difficulties that students have in understanding low-level
computing issues. In the third section we describe our
rearranged systematic approach to teaching scope and

1275

MIPRO 2011, May 23-27, 2011, Opatija, Croatia

https://www.researchgate.net/publication/234786549_Introducing_embedded_software_and_systems_education_and_advanced_learning_technology_in_an_engineering_curriculum?el=1_x_8&enrichId=rgreq-87ad60c3-6811-4e48-9eb9-7faa2e13d4b1&enrichSource=Y292ZXJQYWdlOzIyMTQxMjc2MDtBUzoxMDEzOTU4NDM3ODQ3MzRAMTQwMTE4NjA2MzI3OA==
https://www.researchgate.net/publication/3679054_Teaching_embedded_computer_systems_with_a_Windows-based_simulator?el=1_x_8&enrichId=rgreq-87ad60c3-6811-4e48-9eb9-7faa2e13d4b1&enrichSource=Y292ZXJQYWdlOzIyMTQxMjc2MDtBUzoxMDEzOTU4NDM3ODQ3MzRAMTQwMTE4NjA2MzI3OA==
https://www.researchgate.net/publication/224585842_Computer_hardware_curriculums_curriculum_contents_and_teaching_methods?el=1_x_8&enrichId=rgreq-87ad60c3-6811-4e48-9eb9-7faa2e13d4b1&enrichSource=Y292ZXJQYWdlOzIyMTQxMjc2MDtBUzoxMDEzOTU4NDM3ODQ3MzRAMTQwMTE4NjA2MzI3OA==

methodology for making microcontrollers and their functions
and usage to computer science students. In the forth section
we present the results and improvements obtained by
integrating the changes in the course curricula. At the end we
present the future expectations and the conclusions about this
methodology applied into our course.

II. BACKGROUND

A. About the course

The course “Microprocessors and Microcontrollers” is an
obligatory course, primarily intended for computer science
students in their third or fourth year of studies. Prerequisites
for enrolling in the course are previously completed courses
in Computer Architecture and Operating Systems.

The course classroom teaching is organized in three
parts: theoretical lectures with 2 classes per week, theoretical
exercises with 1 class per week and practical exercises with 2
classes per week in laboratory. Lectures and theoretical
exercises are organized in larger groups, while practical
exercises are carried out in computer laboratories in groups
of up to 20 students, with each student working on its own
station.

The teaching material is divided in two parts. The first
part covers the internal architecture and instruction set of x86
microprocessors, the interrupt handling system, BIOS and
system routines. The second one focuses on various types of
microcontrollers, analyzing their organization, instruction set
and capabilities compared to x86 microprocessors, as well as
peripheral systems, embedded systems etc.

Lectures and theoretical exercises for the first part of the
course are based on [7] and various source code libraries. In
previous years, programming was done using Microsoft
Macro Assembler (MASM) version 6.11, with Programmers
Work Bench (PWB) as an integrated development
environment [8]. The material for the second part of the
course depends on the microcontroller that was studied.

Grading in the course is divided into four categories -
student activity, projects and either two midterms or one
exam. Student activity is followed during the entire length of
the course in the form of obligatory laboratory exercises,
which are intended to be solved during classes. Two projects
are handed out, one for programming in x86 assembly
language, and the other one for programming a
microcontroller. These are more complex problems, often
requiring additional research and learning area not covered in
the course. Finally, midterms, or later exams, are conducted
for testing both theoretical and practical knowledge.

B. What and why is it hard to learn?

The course had a “bad” reputation of being abstract,
boring and very hard to comprehend. Some of the issues
were subjective and student-specific, while many others
were completely in place. Most common objections to the
course were:

• Inappropriate programming and simulation
environment. Students had problems installing and
using PWB, which caused aversion to the presented
material and exercises.

• Disjointed material between lectures, theoretical and
practical exercises. Students could not transfer
knowledge gained from either lectures or theoretical
exercises to practical exercises. This made them
think they were studying two or three courses in one.

• No “real world” application. Without having direct
hardware interaction, students learning becomes
abstract, which leads to their displeasure and to the
main question: Why we are learning this, and how
and where shall I use it?

III. SYSTEMATIC APPROACH

As undergraduate educators, one of the most important
considerations is to present the subjects of the course in a
way that it will provoke student’s interest and initiate self-
driven actions. These objectives become even more evident
and challenging in courses such as the “Microprocessors and
Microcontrollers” for CS students.

A. Analyzes

We analyzed the hardware courses during the period of
several years, and noticed that a lot of excellent software
contestant students had huge problems in hardware courses.
There were many students, who were national software
contestants and winners, as well as CodeFu Java contest
winners, that had problems with passing the hardware based
courses, or were getting only lower grades.

Our idea was to construct a “hardware” course that is
more similar to “software” one. An approach like this
enabled an easier starting point for our students since they
were already familiar with high level programming
languages like C++.

B. What did we change in the course?

Most changes in the course originated from laboratory
exercises. Lab exercises handouts were in the form of
tutorials. First they briefly cover the material given during
theoretical lectures, including code samples how previously
taught principles can be implemented. Afterwards, relatively
simple assignments are given, requiring students to apply
that knowledge for certain tasks. This part of the exercises
was graded and had influence towards the final outcome of
the course.

C. Make the course more visual and closer to software

Initially we switched from using PWB for x86 assembler
to modern visual simulators like emu8086 [9], where
students can watch parameter values, i.e. registers, memory
locations, as well as executing programs step by step in real
time. They can use their CS knowledge of debugging for
easy troubleshooting. Modifications in the handout material

1276

were oriented towards matching the theoretical lectures. We
also left the old “hardware” oriented exercises which taught
the students working with graphics, operating systems, files
etc, but introduced more software exercises such as arrays
and matrix, strings, procedures, macros.

For the second part of the course we decided to switch
from the previously used Intel 8051 architecture and PIC
8259A interrupt controller to some other implementation.

As a new platform we selected the microcontroller
PIC16F887 [10], used on the EasyPIC6 Development
System (Fig. 1) made by MikroElektronika [11].

D. The PIC 16F887 Microcontroller

There is a variety of available microcontrollers today,
like the 80XX family, Arudino, PIC etc. We decided to use
the PIC platform on the basis of the following premises:

• Large number of implementations, including free
and commercial.

• The availability of the embedded software providing
a direct connection with PC and the availability of
Flash memory. This allows easy programming and
re-programming of the memory as well as software
adjustment and debugging.

• A variety of controllers embedded in the
microcontroller, which allows creating a lot of real
world examples.

• Free circulation of the IDE which allows reading,
loading, adjustment and performance of software in
a real-time mode and in a simulation mode.

• Free circulation of a limited, but fully function
version of the MikroC compiler for binaries up to
2KB.

• Accompanying literature about the microcontroller
and its programming [5].

• The availability of a lot of complete project
examples with the microcontroller.

In specific, the PIC 16F887 microcontroller has RISC
architecture and only 35 instructions. It can operate on
frequencies up to 20 MHz, using an internal or external
oscillator. Connection to peripherals is made through 35
programmable input/output pins. Three types of memory are
available – 8KB ROM memory, 256 bytes EEPROM
memory and 368 bytes RAM memory. In combination with
the EasyPIC6 Development System the powerful In-circuit
Debugger enables real time execution and debugging of code
directly on the microcontroller, with options for step by step
execution, monitoring of memory, registers etc.

The company MikroElektronika offers variety of
hardware (from PIC series), as well as a lot of software
support. This enabled us to include a lot of sensors,
actuators, as well as small control systems as part of
exercises and exams.

E. The transformation

Computer science students know how to solve issues
when writing software, whether it is for the web or desktop
applications. The main scope of our approach is to assure
students that their programming skills can be used for
controlling hardware as well. If they can see results of their
work immediately, we presume that they will be satisfied
and will begin to appreciate the course itself.

The first practical exercises were made in that direction.
For instance, students were shown how traffic lights on
crossroads can be programmed. Then, with more intelligent
algorithms and sensors, they proposed how traffic lights can
become more intelligent, for handling congestions,
controlling accidents etc.

For the second part of the course we relied on the microC
programming language for programming the PIC16F887
microcontroller. Combined with the excellent high level
application program interfaces in the MikroElektronika
microC PRO compiler [12], students could use many
additional hardware components such as alphanumeric LCD
displays, ports for serial communication, EEPROM memory,
with only a few lines of code.

Since we had several boards available for experimenting,
we offered optional projects to students which involved
working with new hardware components which were not
available during classes. Each project was based on a unique
component: Graphic LCD, Touch Panel, Ethernet board,
Digital thermometer, Motion Sensor etc, for which students
had to work out by themselves how to control and use them.
They often had to fight memory and processing limitations
of the microcontroller, compared to the high performance of
the x86 microprocessors.

F. Teaching methodology

To achieve the scope, we propose the following
methodology for teaching microprocessors and
microcontrollers to CS students:

Figure 1. EasyPIC 6 Development System

1277

• Use easy to use visual simulators at the beginning of
course to work on the easy and answered exercises.
CS students do not even think of hardware and how
hardware components work. They have problems in
understanding and visualizing the micro hardware
architecture. Starting directly with hardware
exercises will turn away student attention off the
course.

• Start with incrementally weighted exercises, as well
as opportunities for bonus scores. It enables easier
grouping of students based on knowledge and
interest. Advanced students want to have higher
grades and they must be allowed and encouraged to
work on harder tasks. On the other hand, many
students just want to learn only what they have to to
pass the exam. Bonus scores keep advanced students
challenged and focused through the entire course.

• Incorporate real life problems in excercises using
physical hardware, not just simulators. After students
learn the basic hardware components, as well as their
processing and programming routines, they must
experience hands-on activities.

• Give an option for non-obligatory projects, which
can help students in their grade. The projects were
chosen from the student real life, such as: Reading
temperature or motion sensor and send the
information on server through ethernet, basketball
realtime scoreboard and time display, Calculator,
then well known games like Millioner, Sokoban,
Minesweeper (Fig. 2), Frogger, X/0, Snake, Tetris,
Formula, etc.

As practice shows, they are only selected by the best
students enrolled in the course, and almost certanly produce
impressive results.

IV. RESULTS

The introduction of this course, tools, and platforms has
been underway for several years, but we can already observe

significant positive changes in our students after only one
year.

A. Significant changes: practical projects

For instance, student feedback on the practical projects
(defined as additional) has been extremely positive. More
than 75% of the students submitted their projects on time,
compared to 68% from last year. On top of that, 14% of the
students chose an additional project, compared to last year’s
1%. Most of these students had already passed the exam with
the highest grade and did not need the additional points.
Also, many of the students are not living near the Institute of
Informatics, so they had to travel during the holiday season
just for working on the practical projects (Fig. 3). This could
not be the case the last year, for example. We can only
conclude that students appreciated the integrative nature of
the projects, where computing was interlinked with
traditional engineering.

B. Better results in laboratory exercises

Improvements are evident in the submission of laboratory
exercises as well. We created totally new laboratory
exercises for Intel 8086, as well as for PIC16F887. The
results were striking, especially those on hardware. More
than 75% (average) of students won a bonus points for the
last four laboratory exercises. Last year, only 18.5% of
students won maximum points for the last four exercises.

C. Better final grades

Another improvement is evident in the grades
distribution, from 6 (smallest grade to pass) to 10 (highest
grade).

In the previous year, only 11.5% of the students (15 of
130) passed the course through midterms. This year, the
number of passed student has almost doubled to 22.6% (26
of 115). It is significant to note that four of these students
have been already enrolled in the previous year course.

Figure 2. Practical projects example: Minesweeper

Figure 3. Student project on EasyPIC 6 Development System

1278

Fig. 4 shows the grade distribution in the previous year
and Fig. 5 shows this year grade distribution with
implementation of the new methodology. In the previous
year, more than 2/3 of passed students passed the course with
a minimal grade 6. Also, only 10% of passed students got the
highest grades 9 or 10. This year, only 32% of passed
students passed the course with a minimal grade 6.
Fascinating 30% get the highest grades 9 or 10.

D. Exceptional additional student projects

15 students (14%) applied for and completed additional
practical projects, although we defined only 10 additional
projects in the beginning. Students faced a lot of
microcontrollers constraints (deficiency of RAM and ROM
memory, pins and Cyrillic font), but effectively solved the
problems using their software skills and algorithms. We are
surprised by the promptness of students’ solutions
submission.

The best 7 projects were presented on the CIIT
conference [13], 5 of which were presented on hardware
session and others 2 (the best ones) on the student session.
The company that donated the equipment was pleasantly

surprised of the projects difficulty and the students’
effectiveness to achieve a solution, as well as solutions
themselves, so they awarded 4 best projects, instead of
planned 1. All additional projects were evaluated with more
than 10 points, and the best projects were evaluated with 30
points. Fig. 6 shows the grade distribution of all projects
(obligatory and additional).

V. FUTURE DEVELOPMENT

The course in its current form is still young and subject to
changes. Improvements in the curricula are always welcome
and broadly accepted.

The growing student interest in the course led to the
development of a specialized laboratory for Microchips at
the Institute of Informatics. The laboratory is open to all
students interested in researching and experiments with
microprocessors and microcontrollers, or other embedded
system. It is intended to complement the existing Robotics
and Intelligent systems laboratory, supplied with several
manipulative, walking and mobile robots. The goal is to
increase not only CS student interest about microcontrollers
and microcomputers, but also the other students for which
this course is optional.

Other issue we must improve is the percentage of
(non)passed students. The percent of unsolved projects was
basically the same in the past two years (more than 30%),
which automatically means that those students didn’t pass
the course.

VI. CONCLUSION

The changes implemented in the course
“Microprocessors and Microcontrollers” managed to awake
the students’ curiosity about hardware and mapped their
software knowledge into hardware oriented problems. This
took a lot of effort, both from the instructors and from the
students.

There are significant improvements in the grade

Figure 4. Grade distribution: Previous year

Figure 5. Grade distribution: With new methodology

Figure 6. Project grade distribution:

1279

distribution, as well as in the students’ interests in working
on hardware equipment. This resulted in significant number
of completed hardware projects, although they were not
obligatory in order to pass the course.

The growing student interest in the course led to the
development of a specialized laboratory for Microcontrollers
at the Institute. The laboratory is open to all students
interested in researching and experiments with
microprocessors and microcontrollers, or other embedded
system. It is intended to complement the existing Robotics
laboratory, supplied with several manipulative, walking and
mobile robots. The goal is to increase not only CS student
interest about microcontrollers, but also the other students
which this course is optional.

VII. ACKNOWLEDGMENTS

The authors would like to thank the company Loging
Electronics for their generous donation of the equipment that
was used in the laboratory exercises and additional student
projects.

REFERENCES

[1] The joint task force for computing curricula of The Association for

Computing Machinery, association for computing machinery and
IEEE computer society and IEEE/ACM (2001). Computing Curricula

2005. The Overview Report. 2005.

[2] Dimitris Kehagias, Michael Grivas: “Software-oriented approaches

for teaching computer architecture to computer science students”.
Journal of Communication and Computer, 2009, ISSN 1548-7709,

USA

[3] Sztipanovits J., Biswas G., Frampton K., Gokhale A., Howard L.,

Karsai G., Koo T.J., Koutsoukos X., Schmiat C. “Introducing
embedded software and systems education and advanced learning

technology in an engineering curriculum”. ACM Transactions on
Embedded Computing Systems, 2005, 4(3): 549-568.

[4] Carl E. Wick “Teaching Embedded Computer Systems with a

Windows-Based Simulator”, 1996, IEEE Catalog Number:
96CH35946, ISBN Number 0-7803-3720-4

[5] Milan Verle “PIC Microcontrollers - Programming in C”.

MikroElektronika; 1st edition (2009), ISBN-13: 978-86-84417-17-8

[6] Li Da, “Computer Hardware Curriculums, Curriculum Contents and
Teaching Methods”. Proceedings of 2009 4th International

Conference on Computer Science & Education.

[7] Randall Hyde, “The Art of Assembly Language”, ISBN 1-886411-97-
2

[8] Microsoft Macro Assembler, http://www.masm32.com/history.htm;

Retrieved on 02.02.2011

[9] Emu 8086, http://www.emu8086.com; Retrieved on 02.02.2011

[10] Microchip PIC16F887,

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=
en026561; Retrieved on 02.02.2011

[11] Mikroelektronika, http://www.mikroe.com; Retrieved on 02.02.2011

[12] microC PRO for PIC,

http://www.mikroe.com/eng/products/view/7/mikroc-pro-for-pic/,
Retrieved on 02.02.2011

[13] The Eighth Conference for Informatics and Information Technology

with International Participation CIIT2011, http://www.ii.edu.mk/ciit/

1280

