
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

A SOFTWARE ENGINEERING PERSPECTIVE FOR HIGHER QUALITY

DISTRIBUTED DEVELOPMENT

Bojana Koteska Anastas Mishev

Faculty of Computer Science and Engineering

University Ss. Cyril and Methodius

Faculty of Computer Science and Engineering

University Ss. Cyril and Methodius

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

The goal of this paper is to investigate the deficiencies of a

distributed development process, especially a grid

middleware software development and to propose some

useful software engineering practices that will improve its

quality. Considering that the distributed development

approach is very useful for developing complex grid systems

and scientific software, reducing the errors in the

development process and improving its quality is a

challenging problem for software engineers. Concerning to

show the possible deficiencies which usually result in delay

of the entire project or in the unsuccessful integration of the

processes we consider the European Middleware Initiative

(EMI) as our case study. Also, we found some specific

problems that occur during the development of the two

versions of the EMI products. That helped us to discover the

reasons for those problems and to suggest some formal and

standardized software engineering practices that will enhance

the distributed and the grid middleware development process.

Keywords Grid Middleware, Distributed Development,

Software Engineering, Higher Quality Applications.

I. INTRODUCTION

Most of the problems in different scientific areas are usually

solved by partitioning the problem into smaller parts and by

using grid computing and distributed development approach.

The trend of using such a development approach grows

parallel with the need to achieve a successful collaboration

and coordination of the activities in an environment that

allows high scalability and access to heterogeneous resources.

 The distributed development becomes a more common

approach because it provides a modern development

environment and it enables coordination and collaboration

between the participants in a project located at different

places. Some of its biggest advantages are: a large and

qualified resource pool, mixing of ideas and different cultures

between the developers, reduced development costs, etc. [2]

 Since the grid technology and grid computing which is an

advance in distributed computing provide an effective

infrastructure for sharing computing and data in a dynamic

way its popularity has been growing rapidly [3]. The grid

middleware is a mediation layer between the network and the

applications in the grid infrastructure. It also manages the

information exchange, security, and access. The development

of the grid middleware software should also consider the

complexity of the developing and managing grids [4].

 To sum up, the development of the distributed software

requires establishing a rich interaction and efficient

communication which is an additional challenge for software

engineers [1].

 In [5], the authors proposed a research agenda for

distributed software development, but it affects only several

areas such as testing, software development tools, application

knowledge management and process and metrics issues.

Some strategies for the successful distributed development of

physics grids are presented in [6]. In [7], the authors suggest

new development paradigms for distributed systems which

lead to the creation of new middleware platforms.

 Our paper is focused on finding the appropriate software

engineering practices for improving the quality of distributed

software development, especially grid middleware

development. Considering that the grid middleware software

is a core for making successful collaborating in a distributed

development environment, the development process should

be organized and performed using some standards and formal

principles.

 Concerning to find the grid middleware quality issues in

a real project scenario, we considered the EMI (European

Middleware Initiative) as our case study. We found the

problems that appeared in the two EMI released versions and

that helped us to propose some methods and practices to solve

them. The issues found in the distributed environments and

the grids are also important for the grid middleware

development because it follows the paradigm of the

distributed development.

 The paper is organized as follows: The second Section

describes the specific characteristics of the distributed

development and the grid which are helpful for discovering

the possible development issues. These issues are presented in

the third Section. The fourth Section refers to the grid

middleware development problems that decrease the quality

of the grid. The results from our case study (EMI project) are

shown in the fifth Section. The software engineering practices

for improving the grid middleware development are presented

in the Section 6 and the conclusion and future work are given

in the last Section.

II. SPECIFICATIONS OF DISTRIBUTED DEVELOPMENT AND

GRID

The distributed software development process is different

from the traditional centralized software development. The

main difference between these two development approaches

is the spatial organization of the development resources,

including computers, people, network resources, etc.

Besides the good organization of resources, the

distributed development requires a coordinated process of

interaction between the members in the project. Also, the

247

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

purpose of the project, the size of the development team and

software processes should be taken into account [8].

The distribution of the software can be performed in

several ways. It is determined by the geographic location and

project control. More in detail, the software project can be

distributed in the same country where the headquarters is

located or abroad. The project control can be organized in

two ways: the company can buy external software or it can

offer its own resources [9].

For the sake of implementation of the distributed

development process efficiently, it is necessary to establish an

effective communication, collaboration and control.

Communication is defined as a process of exchanging

information between the participants in the software project;

collaboration is an organization of activities and tasks to

achieve a single goal and control is a process of adhering to

the quality standards, policies, formal principles, etc. [1].

The grid concept is a special kind of the distributed

development concept. Some of the main grid characteristics

[10] are presented in Table 1.

Table 1: Main grid characteristics.

Characteristic Description

Large Scale The grid must be able to deal with

millions of resources.

Geographical

distribution

The grid must provide a good concept for

distribution of the resources at different

locations.

Heterogeneity Different kinds of software (files,

programs, data, etc.) and hardware

resources (computers, networks,

scientific instruments, etc.) must be

supported.

Resource sharing Different organizations must allow access

to their resources in the grid.

Multiple

administrations

Each of the organizations must define

specific access privileges to their own

resources.

Resource

coordination

To provide aggregated computing

capabilities, there must be a coordination

of the resources in the grid.

Transparent

access

The accessing control should cause the

whole grid to be seen as a single virtual

computer.

Dependable

access

The grid users must receive a high level

of performance under the established

QoS (Quality of Service) requirements.

Consistent

access

To provide scalability and hiding of the

resources heterogeneity, the grid must be

built using standard protocols and

services.

Pervasive access The grid must provide maximum

performance from the resources available

to it.

III. GRID AND DISTRIBUTED DEVELOPMENT ISSUES

One of the biggest problems related to the grid concept is the

coordination of resources which are usually heterogeneous

and geographically distributed. Moreover, the resources can

belong to different enterprises that have no knowledge of

each other. The grid resources can be managed in different

administrative domains that have dissimilar access and

specific security policies. Also, the differences in the

development environments such as processor architectures

and operating systems exist [11].

 Issues in the distributed development could be divided

into several categories [9] [1] [8] [12]:

 Table 2: Issues in distributed development.

Issues Description

Cultural issues Differences exist in the national (spoken

language, values, practices),

professional, organizational, technical,

and team culture. These issues are the

reason for a difficult communication

between the participants in the project.

Communication

Issues

The changes in a complex distributed

infrastructure and different time zones

often lead to decreasing the quality of

the communication over the network.

Organizational

issues

Geographically dispersed developers

must be integrated efficiently into the

project. It means that the organization of

the development process and the

management activities must be

performed on time.

Knowledge

management

issues

Sharing the knowledge and experiences

between the participants in projects is

important for a successful development

because it reduces the costs and the

redundant work (Web based software

such as Wikis are useful for work

progress tracking and publishing).

Development

process

management

issues

The requirements and specifications

changing, the bad organization, and the

informal communication between the

members have a negative impact on the

development process and productivity.

The control of the overall system

becomes more complex and it means

that there must be a good management

process.

Technical issues There can be a lack of tasks

synchronization due to the dispersed

locations. The transmission of data could

be critical because of the slow and

unreliable network connections.

Risk management

issues

The risk management of the distributed

development process is more difficult

because defects appear more frequently.

Thus, additional effort for the risk

management and control is required.

Bug and change Bug and change tracking process is a

248

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

tracking issues difficult process because of the

distributed environment. It means that

the need of a quality tracking system is

essential.

End to end

ownership issues

It can be unclear whose the

responsibility is when any of the entities

in the grid fails. This can happen

because sometimes people from different

organizations are responsible for the

development of the same entity. The

entity should be modified and tested

again.

 The resource heterogeneity and dynamism can result in

faults and failures. Transporting the large amount of data

across the grid network is risky and it requires additional

effort for establishing a high-bandwidth connection for long

periods [11].

 Taking into account these requirements, it can be

concluded that the grid infrastructure and the distributed

development environment are different from the traditional

software development environments. Concerning to provide

more efficient and more quality development process,

additional activities must be performed.

If most of these issues are solved, the grid infrastructure

will provide collaborative engineering, distributed computing,

high-throughput and data exploration [13].

IV. GRID MIDDLEWARE DEVELOPMENT

A. Characteristics

Middleware is software that provides a homogenized

infrastructure and uniform access to all resources in the

heterogeneous and geographically distributed grid

environment [7].

Having in mind the complexity of the overall organization

and the diversity of the entities involved in the development

process, the need for management of the development

activities and resources is essential. Thus, the main idea

behind the development of grid middleware software is to

enable consistent and effective computing environment.

The tasks of the grid middleware can be divided into five

categories: job execution tasks, security, information and file

transfer tasks, information tasks and file management [4]. The

grid middleware is part of the typical grid architecture. The

grid layered architecture is consisted of four layers: a fabric

layer (computers, storage devices, networks, etc.); a core

middleware layer (co-allocation of resources, remote process

management, security and QoS); a user-level middleware

layer (high-level abstraction provided by development

environments and programming tools, scheduling tasks); an

application level (applications and portals) [14].

B. Development problems

The development of the grid middleware software is a

challenging problem for the software engineers because the

software should be shared, reused, and extended by others in

the future [4].

Primarily, the problems in the grid middleware

development process are oriented to deployability and core

functionality. These problems can result in job failures also in

controlled and middle grid environments [16].

An additional challenge for the grid middleware

developers is the system scalability and the quality

requirements [17]. Problems can arise as a result of non

implementation of quality standards, especially when the grid

is intended for public use.

Other problems when developing the grid middleware are

the ability to check the validity of the source code and the

possibility to deal with faults and errors [18]. Checking the

source code validity requires good process of testing, but it is

not easy to be done because the grid middleware must be

developed to support heterogeneous and complex

environments.

Providing system interoperability and service autonomy

can cause a number of unexpected errors because it depends

on factors such as: enabling different deployment scenarios

within the existing grid infrastructure, possibility to use the

services as stand alone entities in different context, etc. [19].

To sum up, developing the grid middleware software

requires knowledge about: grid infrastructure, services it

provides, used development technologies, standards that must

be taken into consideration when coding, testing, etc.

Additionally, the developers must take care of the available

resources and performance of the system.

V. EUROPEAN MIDDLEWARE INITIATIVE (EMI): A CASE

STUDY OF DEVELOPMENT ISSUES

A. The EMI project

The European Middleware Initiative (EMI) is one of the

leading software platforms for a distributed scientific

computing which supports different middleware experts,

engineers, and developers to work together to produce an

interoperable middleware solution. The EMI project arose as

a result of the close collaboration between the three major

middleware providers (ARC, gLite and UNICORE) and other

software providers like dCache. There are total 24 partners

from 18 different countries. The duration of the project is

three years. Its main idea is to deliver a set of middleware

components for deployment in the EGI (European Grid

Infrastructure) and the other distributed infrastructures. There

are three major releases (Kebnekaise, Matterhorn, and Monte

Bianco) which are delivered once a year and provide services

to satisfy the needs of different scientific communities such

as: Computational Physics and Chemistry, Astronomy, Earth

Sciences, Geography, Life Sciences, Geophysics,

Astrophysics, Material Sciences, Multimedia, etc. [20] [21]

[22].

B. Quality issues

The major releases of the EMI project offer a balance

between conflicting requirements and innovations. Every

release and updates include new services and functionalities

which are based on the new user requirements or the existing

functionalities and services are being improved. There is

249

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

always a trade between new research and system stability [20]

[21].

The development of the middleware software is not easy

due to the different requirements, technologies and time

limitations. The primary goal of the updates is to reduce the

errors and faults found in the previous software versions. To

deal with them, the development of the EMI middleware

software follows quality standards and software engineering

practices. However, the complexity of the system, resource

and time limitations cause some deficiencies in the

development process. Some of the found deficiencies are

shown in the Table 3.

Table 3: EMI quality issues

Issue Quality problem description

Poor

documentation

No documentation was available for the

installation of the external dependencies

in ETICS or for the installation of the

external dependencies for the deployment

of the EMI components [23].

No definition of

requirements for

some EMI

services

- monitoring interactive jobs

- new features for Unicore Target System

- support for VO (Virtual Organization)

renaming and migration

- forcing users to choose a group during

VO registration

- CEs (Computing Elements) should

support a set of LRMS (Local Resource

Management System)

- Publish mw service version [24]

Late delivery of

documents

EMI-0 Software Release Schedule was

released with 2 months of delay [25]

-Filling User Requirements and

Technical Objectives

-EMI 1 Defining Release Schedule

Late delivery of

software

-Developing features, implementing bug

fixes [25]

Late testing -Testing and certifying developed

components [25]

No test plan for

several EMI

components

A-Rex; ARC Compute Elements; ARC

Data Clientlibs; ARC Infosys; ARC

Security utilities; ARC Container;

DGAS; StoRM [25]

No components

regression test

suite

ARC components do not provide a

regression test suite. Only libarcdata

provides some regression testing using

CPPUnit [26]

No complete

validation of A-

REX EMI

service

-No complete validation of the activity

description

-No schema validation

-Partial service capabilities validation

[27]

No test plan

complaint with

template

Not all the product teams succeeded in

providing a test plan compliant with the

template defined in the SA Testing

Policy [15].

No unit testing

and code

coverage

Most of the ARC and gLite components

do not provide unit testing. Otherwise,

when unit testing is performed, the code

coverage is not measured [28].

No difference

between

regression, unit

and functional

testing

UNICORE component test suite does not

distinguish between the regression, unit

and functional test [28].

VI. IMPROVING THE QUALITY OF DISTRIBUTED AND GRID

MIDDLEWARE DEVELOPMENT

The research showed that the development process of

distributed software, compared to centralized software,

requires improvement of additional activities such as:

communication, collaboration, planning, organization,

security, testing, etc. Analysing the results from the EMI

project showed that most of the problems during the grid

middleware development arise as a result of the late and bad

organization, no proper testing plans, and insufficient

documentation.

To improve the quality of the distributed development

and the grid, we propose some software engineering practices

that meet the problems described in the previous sections. SE

practices can be split into three categories: organization,

development, and testing.

 The organization part is composed of several activities:

organization of the available resources, making development

plan, and communication and collaboration activities. This is

an important step in the distributed environment primarily

because of the geographically distributed resources and

project size and complexity. One way to improve the

organization of the development process is to increase the

communication and collaboration between the participants.

Videoconferencing and online interactions are suitable for

establishing successful communication and collaboration.

Creation of the activity plan should be based on standards that

are generally accepted and also for those who will be

established internally within the project.

Software development in a distributed environment

requires increased interaction between the developers,

documenting every part of the development process, and

integration of software components. Integration of the parts of

the software is a process that needs proper development of

each of the parts individually. It is necessary to make

templates for the documents, particularly those where changes

of the source code and software requirements are described.

Despite this, the available resources must be used efficiently

and optimally. The resource limits and nonfunctional

requirements must be taken into account.

The grid middleware is the most critical part in the

development section where core services are created to

connect applications and hardware resources. After the

development of each component, there must be adequate

documentation for its installation and use.

There must be a test plan and test reports must be made

after each performed test. Testing the distributed software

requires additional validation activities. It is recommended

tests to be made before the source code is written. In addition,

unit testing must be performed and all requirements should be

satisfied. It is necessary to perform integration testing which

250

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

will verify the validity of the system as a whole. After each

made change of the source code, especially during the

development of scientific software, regression testing must be

applied. Testing of the grid middleware software must be

made often and in accordance with the testing plan within the

project.

Figure 1: Iterative distributed development process.

An iterative development is the best solution for

successful distributed development process. The global steps

of the development process are shown on Fig.1

The quality of the distributed development depends on

factors that directly or indirectly take part in the development

process. Besides the quality standards for software

development, the development experience in this field is

essential.

VII. CONCLUSION

This paper outlines the most specific grid and distributed

development characteristics and some of the problems that

usually arise during the development process. The research is

also oriented to the grid middleware developing deficiencies.

To confirm the grid middleware development issues in

practice, the most common problems in the development of

the two versions of the EMI project are presented. Taking

into account the results from the EMI project, some software

engineering practices to improve the quality of grid

middleware and distributed development are proposed.

It will be useful as future work to find out how and which

of the detected issues will be solved in the third EMI version,

how these solutions can be improved and what the benefits of

those improvements will be.

REFERENCES

[1] F. Lanubile, “Collaboration in Distributed Software Developmen”.

In Software Engineering, Andrea Lucia and Filomena Ferrucci (Eds.).
Lecture Notes In Computer Science, Vol. 5413. Springer-Verlag, Berlin,

Heidelberg pp.174-193, 2009.

[2] R. Kommeren and P. Parviainen, “Philips experiences in global
distributed software development”. Empirical Softw. Engg. 12, pp. 647-660,

December 2007.
[3] A. Kyriakidou-Zacharoudiou, “Distributed development of large-scale

distributed systems: the case of the particle physics grid”. PhD thesis, The

London School of Economics and Political Science (LSE), 2011.
[4] G. Von Laszewski and K. Amin, in Architecture, (Wiley, 2004), pp. 109-

130.

[5] B.Sengupta, S. Chandra, and V. Sinha, “A research agenda for distributed
software development”. In Proceedings of the 28th international conference

on Software engineering (ICSE '06). ACM, New York, NY, USA, 731-740.

[6] A.Kyriakidou and W.Venters, “Distributed large-scale systems
Development: Exploring the collaborative development of the particle

physics Grid”, 5th International conference on e-Social Science, Cologne,
2009.

[7] V. Issarny, M. Caporuscio, and N. Georgantas, “A Perspective on the

Future of Middleware-based Software Engineering”. In 2007 Future of
Software Engineering (FOSE '07). IEEE Computer Society, Washington,

DC, USA, 244-258.

[8] L. Keil and P. Eng,” Experiences in distributed development: a case
study”. In: The InternationalWorkshop on Global Software Development,

Portland, OR USA, pp. 44-47, 2003.

[9] Journal of Computer Science and Engineering,Volume 1, Issue 1, p10-17,
May 2010

[10] M. L. Bote-Lorenzo, Y. A. Imitriadis And E. Gómez-Sánchez, “Grid

Characteristics And Uses: A Grid Definition”, In First European Across
Grids Conference, Santiago de Compostela, Spain, February 13-14, 2004, pp

291-298

[11] C. Dabrowski, “Reliability in grid computing systems”. Concurr.
Comput. : Pract. Exper. 21, vol. 8, 927-959, June 2009.

[12] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. “Does

distributed development affect software quality? An empirical case study of
Windows Vista”. In Proceedings of the 31st International Conference on

Software Engineering(ICSE '09). IEEE Computer Society, Washington, DC,

USA, 518-528, 2009.

[13] M. Baker, Rajkumar Buyya, and D. Laforenza, “Grids and grid

technologies for wide-area distributed computing”. Softw. Pract. Exper. 32,

15 1437-1466, December 2002.
[14] P. Asadzadeh et al.,”Global Grids and Software Toolkits: A Study of

Four Grid Middleware Technologies”, High performance computing:

paradigm and infrastructure, laurence yang and minyi guo (eds), ISBN: 0-
471-65471-X,2005.

[15] A. Ceccanti, Djra1.7.2 – Software Development Quality Control Report

V1.0 Eu Deliverable: D5.7.2,
24/05/2011, http://cds.cern.ch/record/1277534/files/EMI-DJRA1.7.2-

1277534-Software_Development_Quality_Control_Report_M12-v1.0.pdf
[16] A. Iosup and D. Epema, “Build-and-Test Workloads for Grid
Middleware: Problem, Analysis, and Applications”. In Proceedings of the

Seventh IEEE International Symposium on Cluster Computing and the

Grid (CCGRID '07). IEEE Computer Society, Washington, DC, USA, pp.
205-213

[17] S. Gorlatch and J. Dünnweber, “From Grid Middleware to Grid
Applications: Bridging the Gap with Hocs”. In Future Generation Grids:

Proceedings of the Workshop on Future Generation Grids, November 1-5,

2004, Dagstuhl, Germany. pp. 241-261, Springer, 2004

[18] P. Collet, F. Křikava, J. Montagnat, M. Blay-Fornarino and D. Manset,

“ Issues and scenarios for self-managing grid middleware”. In Proceedings of

the 2nd workshop on Grids meets autonomic computing (GMAC '10). ACM,
New York, NY, USA, pp. 1-10

[19] F. Hemmer et al., “Middleware for the Next Generation Grid

Infrastructure”, In: Proceedings of CHEP 2004, Intelaken, Switzerland
[20] EMI European Middleware Initiative, http://www.eu-emi.eu/

[21] A.Di Meglio (CERN), “European Middleware Initiative (EMI)”,

https://register.nordu.net/speakers/files/AlbertoDiMeglio.pdf
[22] e-Science city, http://www.gridcafe.org/

[23] G. Fiameni, Review of Software Release Plan v1.0, 29/10/2010,

https://twiki.cern.ch/twiki/pub/EMI/SA1QCPM6/EMI-PM6-
Review_Software_Release_Plan_v1.0.pdf

[24] B. Kónya, Technical Development Plan V1.0 Eu Deliverable: D1.3.2,

23/5/2011, https://twiki.cern.ch/twiki/pub/EMI/DeliverableDNA132/EMI-
DNA1.3.2-1277543-Technical_Development_Plan-v1.0.pdf

[25] Software Maintenance Quality Control Report v1.0 Eu Deliverable:

D3.3.2, https://twiki.cern.ch/twiki/pub/EMI/DeliverableDSA132/EMI-
D3.3.2-Software_Maintenance_Quality_Control_Report_v1.0.pdf

[26] A. Ceccanti, Djra1.7.1 - Software Development Quality Control Report

V1.0 Eu Deliverable: D5.7.1, 19/10/2010,
https://twiki.cern.ch/twiki/pub/EMI/DeliverableDJRA171/EMI-DJRA1.7.1-

1277533-Quality_Control_Report-v1.0.pdf

[27] M. Cecchi, Djra1.1.3 - Compute Area Work Plan And Status Report
V1.0 Eu Deliverable: D5.1.3, 24/04/12,

https://twiki.cern.ch/twiki/pub/EMI/DeliverableDJRA113/EMI-DJRA1.1.3-

1277612-Compute_Area_Work_Plan-M24-v1.0.pdf
[28] A. Ceccanti, - Software Development Quality Control Report,

http://cds.cern.ch/record/1277533/files/EMI-DJRA1.7.1-1277533-
Quality_Control_Report-v1.0.pdf

251

The 10th Conference for Informatics and Information Technology (CIIT 2013)

