
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 18, No. 2, April 2005, 237-252

Simulators for Courses in Advance Computer Architecture

Anastas Mišev, Marjan Gušev

Abstract:
The usage of simulator in teaching computer architecture courses has proven to be

the most acceptable way, especially when the simulators offer rich graphical and visual
representation of the architecture. In this paper we present several simulators used to
teach ILP (Instruction Level of Parallelism) courses. The simulators cover wide area
of concepts such as internal logic organization, datapath, control, memory behavior,
register renaming, branch prediction, and overall out of order execution. Special ded-
icated simulators cover details in internal organization like Tomasulo approach and
scoreboard for organization of reservation stations. This innovative approach in labo-
ratory exercises is used for advanced ILP course.

Keywords: computer architecture education, instruction level parallelism, simulators,
superscalar microprocessors, Tomasulo algorithm, Scoreboard algorithm

1 Introduction

A course in advanced Instruction Level Parallelism (ILP) covers both basic hard-
ware options for ILP extraction: VLIW and Superscalar architectures. While the
former one uses the compiler to extract the ILP, the later is based on hardware
scheduling. The generic topics covered include (1) basics of ILP, (2) out-of-order
execution, (3) speculative execution, (4) algorithms for ILP extraction, (5) super-
scalar and VLIW techniques [1, 2, 3, 4].

Since VLIW and its advanced successor EPIC (Explicit Parallel Instruction
Computer) rely on software, the best way to teach them is to introduce an ac-
tual compiler for the architecture. We are in the process of realizing it for the
first time using an Itanium based system. On the other hand, the superscalar exe-
cution focuses on the hardware elements that support out-of-order execution and

Manuscript received February 2, 2004
The author are with Faculty of Natural Sciences and Mathematics, Arhimedova

5, 1000 Skopje, University of Ss. Cyril and Methodius, Skopje, Macedonia, E-
mail:[anastas,marjan]@ii.edu.mk

237

238 A. Misev at all

speculative execution using branch prediction. Using architecture visualization
tools [5, 6] enables the students to comprehend the data and control flow, which
again eventually should facilitate them to produce more efficient code. The website
http://twins.ii.edu.mk hosts details of implementation and lab exercises for these
simulators. In this paper we present SuperSim simulator that is powerful tool for
visual simulation of internal organization of dynamic out-of-order ILP processor.
Another simulator is used for simulating the Tomasulo approach for organization
of register renaming techniques with reservation stations. The last simulator shows
implementation of Scoreboard approach for reservation stations. At the end, we
give an overview of the results achieved by the students in the last two generations
that we use the simulators.

2 Description of SuperSim simulator

ILP concepts and topics were covered in the Microprocessors course in previous
years. In this course the students had only chance to work with the simulator with-
out any homework assignments or projects.

Starting from 2002/2003 a new ILP course is set in the Computer Science stud-
ies. In the ILP course curricula the students are assigned with two projects. The
second project covers several aspects of the dynamic superscalar execution. It was
performed using our own superscalar simulation platform SuperSim [5, 6]. The
main features of the SuperSim Simulator are:

- Running user code, written in its own pseudo assembler

- Syntax checking of the user code with error indication

- Extensive configuration

- Simulating a big range of processors, varying from simple RISC to advanced
PostRISC, 1.

- Step by step execution

- Visual representation of each stage of the pipeline

- Fast, non visual mode for better performance

- Vast logging capabilities for performance analysis

- Detailed statistics

The internal architecture of simulated processors (1) consists of instruction
cache, instruction issue window, ROB (reorder buffer), register file and rename
buffer, reservation stations, execution units and data cache.

Simulators for Courses in Advance Computer Architecture 239

Fig. 1. Architecture of the simulated processors

3 User Interface of SuperSim simulator

The simulator has a very friendly user interface. It consists of several separate win-
dows, including code editor, runtime, configuration, statistics and other windows.

The code editor window (2) enables the user to write its own custom code,
using the pseudo assembler. The code can be saved into a file or loaded from
one. Options available on this window include syntax checking with indication of
possible errors and standard file management. Code can have inline comments,
separated with ‘//’ from the instructions. Especially important is the configuration
option, which defines the simulated execution environment.

The configuration window (Fig III) consists of several major parts, each repre-
sented with a special tab. The configuration enables choosing the number and the
type of the execution units. The maximum number of execution units is 6, and the
minimum is 1. Supported units are

1 multi cycle unit, for execution of multi cycle integer operations, like division
or multiplication

Up to 3 single cycle integer units, for execution of simple integer arithmetic

240 A. Misev at all

Fig. 2. Code editor window

1 load/store unit for address calculation of the memory transfer instructions and
1 branch unit for calculation of the branch target addresses.
Only the multi cycle unit is mandatory, while the others can be added or re-

moved. If a special unit is not used, for example the load/store unit, the multi cycle
unit performs the operations. The issue rate can also be configured on this tab,
varying from 1 up to the total number of units used.

The second tab of the configuration window covers the use of shelving. When
shelving is used, the user can select between central or dedicated reservation sta-
tions. For each station used, the number of entries can also be configured.

The next tab is used for configuring the register renaming options of the sim-
ulator. If renaming is used, the number of rename buffers can be selected. Addi-
tionally, the access method for the renamed registers can be chosen from indexed
or associative.

The ”Out of order” tab, enables the using of the out of order issue and dispatch.
On the same tab, the user can adjust the number of entries in the Reorder Buffer

Simulators for Courses in Advance Computer Architecture 241

Fig. 3. Configuration window

(ROB).

The final configuration tab covers the branch processing used in the simulation.
It can be blocking or speculative. When using speculative branch prediction, three
modes are available: fixed, static and dynamic. The dynamic branch processing
can be configured to use BTAC, BHT or both. It can also use global 2-bit history,
for better prediction.

Other available options are turning on and off the visual simulation, which can
increase performance and tuning on and off the logging option. When visualization
is disabled, the number of clock cycles simulated per second improves by 7-10
times.

The selected configuration can be saved into a file for later reuse, or loaded
from one.

242 A. Misev at all

4 Runtime SuperSim Simulator Environment

The runtime environment greatly depends on selected configuration. When all the
options are enabled, it looks like 3. The top part consists of some command but-
tons, among which are:

“Close” for closing the runtime window
“Run” for running the simulation continuously
“Step” for executing cycle by cycle
“Pause” for pausing the simulation when ran in continuous mode
Depending on the configurations some or all of the buttons in the upper right

part will be enabled:
“Show ROB” displays the ROB,
“Show RF” displays the registry and rename registry file,
“Show BT” displays the branch prediction tables window,
“Show DC” displays the data cache,
The rest of the window is divided into separate parts for each stage of the

pipeline. Mandatory stages are Fetch, Issue, Execute and Write-back, while the
other two, Dispatch and Complete are shown only if shelving and out-of-order exe-
cution are used, respectively. For each stage, a container represents the appropriate
tables and/or buffers that hold the current instructions. In the upper left part, two
separate containers represent the pending load and store queues.

Fig. 4. The runtime interface of the simulator

Simulators for Courses in Advance Computer Architecture 243

The ROB window is used for monitoring the work of the reorder buffer. It has
an entry for each instruction that has been issued and has not completed yet. Since
the ROB is designed as a circular buffer, at also shows the head and the tail pointer
in the buffer. Instructions are represented in different colors, depending on the stage
of the pipeline they are in.

The registry file window shows the state of both the architectural and the re-
name registers. On the left of the window, architectural registers are shown. For
each rename register, there are three parameters shown: the number of the archi-
tectural register that is mapped to this rename register, the value (if calculated yet)
and the latest bit.

The branch tables’ window is used for monitoring the state of the branch pre-
diction tables. Depending on the configuration, one or two tables are shown. They
are the BHT and/or the BTAC.

The data cache window shows a map of the data memory, with each entry
representing a 4-byte word.

The statistics window, gives a detailed statistics of the simulated code and con-
figuration. The figures include the total number of executed instruction of each
type, branch statistics and prediction accuracy measures, the flow of the instruc-
tion through each stage and both memory and register data dependencies. Some
advanced measures are also included, like the average number of cycles required
for flushing the processor and average number of register wasted when a miss-
prediction occurred.

The instruction set of the simulator represents a subset of the standard modern
instruction sets, and contains the instructions shown in 4.

The simulator simulates a processor performing 32-bit integer operations. The
floating-point part is not considered in this project. Most of the current PostRISC
features can be simulated using the SuperSim, including out-of-order issue, register
renaming, shelving, branch prediction etc.

Supported memory addressing modes are displacement and indexed based.
While the same mnemonic is used for both modes, instruction processing is dif-
ferent depending on the mode. The memory is divided into instruction cache and
1024 locations of 32-bit words data cache. The memory is aligned on a word (4
bytes) boundary and all memory access instructions refer to a word address.

The maximum number of execution units is six. Instructions that take multi-
ple clock cycles to execute, i.e. the ’mul’ instruction, are executed in the multi-
cycle, which is obligatory. Optionally there can be up to three single-cycle execu-
tion units for instructions like ’add’, or ’sub’ that take one clock cycle to execute,
one load/store unit for handling memory access, and one branch unit dedicated for
branch processing. When there is no available corresponding execution unit, the
instructions are executed in the multi-cycle unit, which provides the functionality

244 A. Misev at all

Instruction Semantics Comment
ADD R1, R2, R3 Regs[1] = Regs[2] + Regs[3]
SUB R1, R2, R3 Regs[1] = Regs[2] - Regs[3]
AND R1, R2, R3 Regs[1] = Regs[2] & Regs[3]
OR R1, R2, R3 Regs[1] = Regs[2] � Regs[3]
NOT R1, R2, RX Regs[1] = ! Regs[2] The third operand

can be
SHL R1, R2, R3 Regs[1] = Regs[2] SHL Regs[3] either register,
SHR R1, R2, R3 Regs[1] = Regs[2] SHR Regs[3] or a constant
MOD R1, R2, R3 Regs[1] = Regs[2] Modulo

Regs[3]
DIV R1, R2, R3 Regs[1] = Regs[2] / Regs[3]
MUL R1, R2, R3 Regs[1] = Regs[2] * Regs[3]
LOAD R1, R2,
200

Regs[1] = Mem[Regs[2] + 200] Reads a word
from memory

STORE R1, R2,
150

Mem[Regs[2] + 150] = Regs[1] Writes a word in
memory

BEQ R1, R2, 200 if (Regs[1]=Regs[2]) IP = IP+200
BNE R1, R2, R3 if (Regs[1]!=Regs[2]) IP =

IP+Regs[3]
The third operand
can be

BGT R1, R2, 200 if (Regs[1]¿Regs[2]) IP = IP+200 either register,
BLT R1, R2, R3 if (Regs[1]¡Regs[2]) IP =

IP+Regs[3]
or a constant

BGE R1, R2, 13 if (Regs[1]¿=Regs[2]) IP = IP+13
BLE R1, R2, R3 if (Regs[1]¡=Regs[2]) IP =

IP+Regs[3]
Table 1. : Instruction set

of all execution units. The number of execution units determines the dispatch rate
so there are no restrictions about the instructions being dispatched. Issue rate can
be set up to the dispatch rate.

The use of RS is optional. When selected, there is a choice between central or
dedicated RS. Dedicated RS are placed in front of every execution unit, so the issue
stage directs every instruction to the corresponding RS. In the case of central RS
there must be additional logic to determine the execution unit where the instruction
is dispatched. Additional requirement in the case of central RS is the number of
output and input ports, which have to be larger unlike the case of dedicated RS.

Register renaming is implemented by separate register rename file (also known
as rename buffer). The access to the rename buffer can be associative or indexed.

Simulators for Courses in Advance Computer Architecture 245

When using associative access, there may be multiple instances of renames of one
architectural register with separate notion of the last rename. In contrast only one
rename per architectural register may exist with indexed access.

Out of order execution refers to whether instructions are issued out of order or
dispatched out of order. When shelving is enabled instruction issuing is in order,
while instruction dispatch is out of order. This design option is realized since the
issue stage does not check for dependencies so there cannot be pipeline blockages
due to dependency. If shelving is disabled, the only possibility is out of order
instruction issue.

If branch processing is speculative, predictions about branch instructions can
be: fixed ”always not taken”, static displacement based, or dynamic with optional
use of BTAC, BHT or 2 bit global history register. In the latest case BTAC is used
only for recent taken branches and the use of either BTAC or BHT is obligatory if
dynamic prediction is selected. Additionally, when BHT is used, global BHT can
be activated and the initial state can be set.

The SuperSim simulator is developed using Borland Delphi and targets 32-
bit Windows platforms. It has full object oriented design, with each phase in the
pipeline represented by its own object. Each object has a public interface for real-
ization of communications between the stages in the pipeline. The object architec-
ture makes upgrading easy and intuitive.

The performance in the sense of simulated clock cycles per second varies de-
pending on whether the visualization is on or off. When off, it simulates around 100
clock cycles per second, measured on PIII working on 650MHz. If visualization is
on, this number is 7-10 times smaller.

5 Lab practising with SuperSim simulator

The simulator was used as a main tool for realization of the laboratory exercises.
After getting to know the tool, each student had to develop and analyze a specific
sample program.

The programs simulated included searching, sorting, prime number search,
SCD, matrix operations, linked list operation, conversions etc. The analysis con-
cerned the performance impact of the key ILP factors like the number of execution
units, number of register available for renaming, type of the reservation stations,
ROB entries, loop unrolling and branch prediction techniques. The deliverables
were the program itself and a paper explaining the results of the analysis.

For example, a student had to write a simple binary search program and analyze
the influence of the number of the execution units, number of registers available for
renaming and type and size of the reservation stations.

246 A. Misev at all

ADD R1, R0, 1
ADD R2, R0, 2
ADD R3, R0, 3
ADD R4, R0, 4
ADD R5, R0, 5
ADD R6, R0, 6
ADD R7, R0, 7
ADD R8, R0, 8
ADD R9, R0, 9
ADD R10, R0, 10
STORE R1, R0, 8
STORE R2, R0, 9
STORE R3, R0, 10
STORE R4, R0, 11
STORE R5, R0, 12
STORE R6, R0, 13

STORE R7, R0, 14
STORE R8, R0, 15
STORE R9, R0, 16
STORE R10, R0, 17
ADD R1, R0, 10
ADD R2, R0, 7
ADD R3, R0, 0
ADD R4, R1, -1
ADD R5, R3, R4
DIV R5, R5, 2
LOAD R6, R5, 8
BGT R2, R6, 3
ADD R4, R5, 0
BLT R2, R6, 2
ADD R3, R5, 0
BEQ R6, R2, 2
BNE R6, R2, -8

Table 2. Sample program

The pseudo assembler code of the sample program is given in 1.Some of the
student’s conclusions are presented in 2 and 3.

Exec. Units Issue rate Access Ren Regs Cycles
2 2 associative 1 70
2 2 associative 2 53
2 2 associative 3 49
2 2 associative 4 47
2 2 associative 5 47
2 2 associative 6 47
2 2 associative 32 47
2 2 indexed 32 49

Table 3. : Impact of the register renaming

6 Simulator of Tomasulo Algorithm

Another very useful tool used in the teaching of the course is a simulator of the
Tomasulo algorithm. The simulator features configurable execution core, variable
issue rate and variable latency per instruction class.

Simulators for Courses in Advance Computer Architecture 247

Exec. Units Issue rate Type Entries Cycles
2 2 central 1 97
2 2 central 2 67
2 2 central 3 61
2 2 central 4 60
2 2 central 8 60
2 2 central 20 60
2 2 individual 20 55

Table 4. : Impact of shelving

The program segment to be simulated can be changed by adding and deleting
the last instruction of the segment. For each instruction, the destination and the
source registers can be specified. The supported instructions are ADD, SUB, MUL,
DIV, LOAD and STORE. Each type of instruction can have its own latency, ranging
from 1 to 20. The ADD and SUB instruction are executed in the simple integer
EUs, while MUL and DIV are executed in the multi-cycle EUs. There are also
dedicated units for the execution of the memory transfer. The number of units is
also configurable, and can be set to 2 or 3 units of each class.

The simulator has a very rich visual interface, as shown in 4. It illustrates
the movement of the instructions to the reservation stations, RS entry status and
register occupancy. This simulator is fully Java realized and operates in Internet
environment from anywhere on all possible platforms and operating systems. There
is a very interesting approach for user data entry. Each instruction is added to
program by clicking on several possible options, giving the freedom to choose and
restricted to only possible instruction set.

The simulation can be operated in all at once mode or in a step by step mode.
Usual interface allows a step forward and all changes, data dependencies and data
flow are shown. A very interesting and helpful feature is the step backward, al-
lowing better understanding of the algorithm. This is very unusual feature, but we
found very interesting and helpful in this simulator. We also advise future devel-
opers to implement such a feature since it gives a freedom for research and deep
analysis, without restarting paradigm known in computer systems.

The simulator helped the students to better recognize the process of register
renaming. By executing different examples of code, the students could compare
the effects of the algorithm on the performance.

Prior to introducing the simulator, the students were given homework regarding
the Tomasulo algorithm. Their task was to simulate by hand a short sequence of
instructions, filling the appropriate tables for each step of the execution. They had
to fill the status table of the reservation units and the register status table. Also, they

248 A. Misev at all

Fig. 5. The interface of the Tomasulo algorithm simulator

were posed some questions regarding the status of the Tomasulo tables at a given
cycle of the execution of some short instruction segment.

Using the simulator, the students were assigned with homework to realize step
by step execution of simple programs. They had to realize all data dependencies and
realize how they are resolved in ILP organization with several reservation stations.
It is a very interesting approach to realize deadlocks, and delays due to conflicts.
The most important gain is that instead of the boredom filling of tables, now the
students can focus on tuning the various parameters to get better results.

7 Scoreboard simulator

Yet another simulator has been developed to provide better understanding of the
scoreboard algorithm. The simulator offers a complete environment, including pro-
gram editor, file management, configuration and run-time interface. It is build with
Borland Delphi and works on Windows operating systems environment.

The simulator uses single file to store a complete environment, which includes
the code to be simulated along with the options configured.

To use this program you need to follow these steps:
Load or Create a program segment i.e. instructions.

Simulators for Courses in Advance Computer Architecture 249

Select an appropriate configuration (if not it will use default settings).
Start the simulation, using the control buttons.
The syntax and the instructions that the program can recognize are the follow-

ing:
[Instruction] [Operand1] [Operand2] [Operand3]
Instructions can be: ADD, SUB, MUL, DIV, LOAD, STORE and operands can

be: R0, R1, R2, . . . R31.
Using the configuration window, students can specify the issue rate and the

number of various execution units and their latencies. Also, the simulation speed
can be configured to get a better view of the simulation flow, as shown on Fig VII.

Fig. 6. The interface of the Scoreboard simulator

The runtime window includes the status of the algorithm tables, status of the
execution units and registers. It also offers dynamic statistics related to the IPC,
total cycles executed and the frequency of the data dependencies.

Before the simulator was built, the students were given hand-written homework
about the Scoreboard algorithm. They had to simulate the step-by-step execution of
some short sequence of instruction and for each cycle, fill in the appropriate tables.
The tables included the status of the registers, execution units and instructions.

After the scoreboard simulator was introduced in the teaching process, the stu-
dents had to perform the same analysis using it. They had the chance to see if they

250 A. Misev at all

did the manual simulation well, compare the results and learn from it. Also, they
had the chance to explore the effects of the algorithm on larger examples, ones that
were too much to be done manually. They also had to see for themselves the impact
of the algorithm on the overall processor performance.

8 Achieved Results

51 students enrolled in the advanced ILP course “Advanced Computer Systems” for
first time held at Computer Science Studies. The course was finished successfully
by 76% of the students by the end of the semester. A surprising fact is that the
course average is 87%, which is very high compared to other courses and average
scores. The course statistics are presented in [7] with correlation of homework
assignments and projects.

The students complain to the timing requirements, they had more time to com-
plete the first project then the second and we are going to improve it in future.
Similar advanced ILP course existed in the old Computer Science Studies curricu-
lum in the “Microprocessors and microcomputers” course. It covered ILP concepts
and topics but lacked VLIW organization and compiler techniques. All the stu-
dents had to make only one project given at the end of the course, without time
limit. However, there were no deadlines, so it took the students almost a year to
complete the project, i.e. they finished the project before taking the exam. This was
the reason to set a real deadline for the project.

Average score on learned ILP concepts in previous years was lower then this
year. Previous years we used simulators in courses only during the lectures for
presentation purposes. We realize that improved achievement is due to the exten-
sive use of simulators on lab practicing, homework assignments and projects. Not
only they learned ILP concepts, but however, they get deeply into ILP processor
architecture realizing how to program modern processors and exploit maximum
parallelism and performance.

9 Conclusion

The new ILP course started 2002/2003. We introduced a lot of innovation in this
course concerning grading scale and evaluating students’ activities, homework as-
signments and projects [7]. For first time we setup a special project and homework
assignments about ILP simulators, instead of just visual presentation during lec-
tures.

Students found homework assignments and project realized with ILP simula-
tors a very interesting tool to obtain knowledge and specially to make further re-

Simulators for Courses in Advance Computer Architecture 251

search on ILP processor behavior. It helped them not just learn main concepts and
topics, but deeply get into computer architecture and analyze reasons for deadlocks
and stalls due to data dependencies in conditions of high parallelism on instruction
level. They widely accepted challenges for ILP processor architecture and exploit
maximum performance.

This innovative approach showed not just greater students’ interest, but also
approved with greater students’ achievement and average score. The number of
students that passed the exam at the end of course is also greater then average, or
compared to corresponding number of students for the course with similar topics
in previous Computer Science Studies curricula.

The usage of the simulators continued with the next generation of students. As
an indication, out of 66 students, 61 passed the exam through colloquia, homework
and project assignments, with an average grade of 8,4. The distribution is given in
Fig. VIII.

Fig. 7. The distribution of grades

Compared to the previous experience and to other courses, the results are more
than satisfactory, proving the efficiency of the simulators in the teaching process.

References

[1] J. L. Hennessy and D. A. Patterson , Computer Organization and Design, the hard-
ware/software interface, 2nd ed. San Francisco, California: Morgan Kaufmann Pub-
lishers Inc., 1998.

[2] D. A. Patterson and J. L. Hennessy , Computer Architecture: A Quantitative Approach,
3rd ed. San Francisco, California: Morgan Kaufmann Publishers Inc., 2003.

[3] M. Gusev, Contemporary Computer Systems. Skopje: Medis Informatica, 1998.

[4] ——, ILP Instruction Level of Parallelism. Skopje: Faculty Natural Sciences and
Mathematics, 2001, internal textbook.

252 A. Misev at all

[5] M. Gusev, A. Misev, and G. Popovski, “Simulation of superscalar processor,” in proc.
of ITI’98, Pula, Croatia, 1998, pp. 169–174.

[6] A. Misev and M. Gusev, “Supersim v2.0 ilp processor visual simulator,” in Computa-
tion Intelligence and Information Technologies, Proceedings, R. Stanković, Ed. Niš,
Yugoslavia: Faculty of Electonic engineering, June 20-21, 2001, pp. 161–166.

[7] M. Gusev, “New methodology and evaluation system,” in Proc. TEMPUS CD JEP
16160-2001 project workshops, 2003.

