
M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 203–212, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Performance Analysis of GRID Middleware Using
Process Mining∗

Anastas Misev1 and Emanouil Atanassov2

1 University Sts Cyril and Methodius, Faculty of Natural Sciences & Mathematics Institute of
Informatics, Skopje, Macedonia

2 Bulgarian Academy of Sciences, Institute for Parallel Processing, Sofia, Bulgaria
anastas@ii.edu.mk, emanouil@parallel.bas.bg

Abstract. Performance analysis of the GRID middleware used in a production
setting can give valuable information to both GRID users and developers. A
new approach to this issue is to use the process mining techniques. Analyzing
logs of the middleware activities, performed on the SEE-GRID pilot production
Grid infrastructure, objective qualitative and quantitative information on what
actually happens can be obtained. Using the appropriate tools like ProM to
apply the process mining algorithms, many interesting findings and conclusions
can be drawn. In this paper we describe our approach and show some of our
conclusions.

Keywords: Grid, middleware, performances, process mining.

1 Introduction

Performance analysis of the GRID middleware can give valuable information to both
GRID users and developers. Users gain by better understanding the workflow that is
followed during job’s lifecycle and the possible obstacles. Since the Grid middleware
usually presents alternative ways to accomplish the same final result, the relevant
performance information enables the users to optimize their choices and improve their
throughput.

Developers can benefit by locating the bottlenecks and other problematic points
during the job lifecycle and try to modify the middleware appropriately. They can
also compare various implementations.

The performance of the GRID middleware can be analyzed from various aspects.
As seen in [1], [2], analysis can be performed on the MDS, OGSA-DAI etc. All of
this focuses mostly on the developers views of the middleware.

In this work, we analyze the performance from the logging and bookkeeping data
obtained from the Logging and Bookkeeping (L&B) Service. In this way, we try to
quantify the perception of reliability that the users get when they look at the final
outcome (success/failure) of their jobs.

∗ This paper is based on the work done at the Institute for Parallel Processing at the Bulgarian

Academy of Sciences, during the one month stay, supported by the FP6 project: Bulgarian
IST Centre of Competence in 21 Century (BIS-21++), Contract no.: INCO-CT-2005-016639.

204 A. Misev and E. Atanassov

2 Description of the Logging and Bookkeeping Service and
Database

The Logging and Bookkeeping (L&B) service [3] tracks jobs managed by the gLite
WMS (workload management system) or the Resource Broker (RB). It gathers events
from various WMS/RB components in a reliable way and processes them in order to
give a higher level view, the status of job. Virtually all the important data are fed to
L&B internally from various gLite middleware components, transparently from user’s
point of view.

Three main features of the system are events delivery, notifications and security,
and access control. For a deeper understanding of them, refer to [3], [4].

All the data that the service receives is stored in a relational database. The diagram
of the database is shown in the Fig. 1.

Fig. 1. Database structure of the L&B database

The unique user id, along with the cert data from the X509 certificate is stored in
the Users table. Each job is assigned a unique identifier that is used as a foreign key
in the related tables and is stored in the Jobs table. For each job, several events are
created in the Events table. Each event has the job id, the sequence number, event
code and a time stamp. Two more tables relate to the Events table: Short_fields and
Long_fields. Both of them store pairs of (name, value) data, related to the event by
the job id and event sequence number. The Short_fields contains shorter values,
strings of up to 255 characters. For the longer values (entire JDL for a particular
job, CE name, name of the queue, names of the files accompanying the job etc),
which can be up to 16 millions of characters, the database uses the Long_fields
table, with the same reference to the Events table (job id and event sequence
number). When the job’s lifetime ends, a record is added to the States table,
referencing the job’s final sequence number and large string field containing
detailed description of the job lifetime.

 Performance Analysis of GRID Middleware Using Process Mining 205

3 The Rationale for L and B Based Performance Analysis

Various approaches have been proposed to tackle the performance analysis of the
distributed systems. The work done by Margalef et al [5], proposes 3 different
approaches: static, run-time and dynamic. In that context, L&B based analysis is a
static, post-mortem analysis. As such, it has many advantages, but also some
disadvantages. Main advantages are that it will not introduce any overhead to the
production system, since the analysis is done off-line. Analyzing trace files can
require lots of time, but since time is not an issue in off-line analysis, more
comprehensive and in-depth analysis can be performed, helping even non-expert users
to make fine tuning of their applications.

Main disadvantage of this approach is that such analysis require high level of
details in the log files, which will require lots of resources (both processing and
storage) for their manipulation. Also, since the analysis is static and post-mortem, it
cannot cope with some dynamic application behavior that will occur during each
execution.

Process mining has not yet been used as a tool to make performance analysis of
GRID middleware. Other applications of the technique have proven very useful
[7], [11].

4 Short Overview of Process Mining

Process mining techniques allow for extracting information from event logs [6],
[8], [9]. It targets the automatic discovery of information from an event log. This
information can be used to deploy new systems that support the execution of business
processes or as a feedback tool that helps in auditing, analyzing and improving
already enacted business processes. The main benefit of process mining techniques is
that information is objectively compiled. In other words, process mining techniques
are helpful because they gather information about what is actually happening
according to an event log of an organization, and not what people think that is
happening in this organization.

The type of data in an event log determines which perspectives of process mining
can be discovered and specifies the type of questions that can be answered using the
mining process:

1. The control flow perspective can be mined if the logs contain tasks executed
by a process. The key elements in this perspective are processes and cases
(process instances). This represents the “How?” questions.

2. If the log provides information about the persons/systems that executed the
tasks, the organizational perspective can be discovered, giving answers to the
“Who?” questions.

3. When the log contains more details about the tasks, like the values of data
fields that the execution of a task modifies, the case perspective (i.e. the
perspective linking data to cases) can be discovered. This relates to the
“What?” questions.

206 A. Misev and E. Atanassov

We have chosen the ProM framework [10], [11] for several reasons: it is open-
source, Java based, and it has big variety of available plug-ins. It is extensible with
new plug-ins, if required.

The included plug-ins can be used either on logs only, called discovery plug-ins, or
on logs and process models, called conformance and extension plug-ins. The
discovery plug-ins can be used to discover the process elements only from the log
files. They can then depict the process into various formats (Petri nets for example).
The conformance plug-ins relies both on log data and a process model. They can be
used to test the conformance of the data in the log to the proposed process model. The
extension plug-ins also requires both logs and process model, but they discover the
information that will enable to enhance the process model.

The ProM framework uses its own format to store the log data and additional
attributes. The format is called MXML and is based on XML. Along with the ProM,
there is an open source tool called ProMImport [12] that enables conversion from
various well known log formats into MXML.

5 Application of Process Mining on the L and B Log Data

For the purpose of our analysis, we use the job identifiers as process instances (or
cases) and events as audit trail entries. We also use the status field of the job (from the
Events table) as the model element (or state in which on job can be in) and the
combination of program and host name as originator (the entity performing the
process element). For the future research, we will add more attributes to the analysis
(CE name, detailed status of the job, queue and VO name, etc.)

After we have imported the log data into the MXML format and loaded the log into
the framework, we can proceed with log filtering. Log filtering enables us to select
only the data that is relevant to the analysis. For example, we can define that only logs
for jobs starting with REGJOB event will be used. Also, we can select that we will
analyze only complete instances, so we can define another filter that will include only
jobs with particular event as last event (DONE, CLEAR, CANCEL…).

It is possible to perform more advanced filtering using the advanced filtering tab.
For example, we can filter out only events done by specific originators, which will
help us to reduce the data for some of the analysis. This is important in our case since
some of the events are reported by multiple originators to the service. Also, we can
use remapping filter to remap sub-jobs to a parent job.

5.1 Log Summary

We have started the mining process of the L&B logs with simple log summary plug
in. It gives an overview of the number of jobs (process instances) and events (audit
trail entries). For each of the model element, a frequency is calculated and shown.
Also, the model elements that are first in the audit trails (Starting log events) and last
(Ending log events) are shown with the frequency of their occurrence. Finally, each of
the originators is shown, along with the frequency of occurrences in the audit trails.

From here we can get basic notion about the data we are mining. For example, we
can instantly see how many of the process instances finished successfully by looking

 Performance Analysis of GRID Middleware Using Process Mining 207

at the Ending log evens. We can also see the workload performed by various
originators (program-service and host name combination).

5.2 Heuristic Miner

Another appropriate plug-in for analyzing data that is less structured or has instances
that follow several different paths of execution is the Heuristic Miner. Using the tool,
a heuristic network can be produced depicting the control flow in the given process
model. A simplified example is shown in Fig. 2. The numbers in the boxes represent
the number of occurrences of the specific event and the numbers on the links
represent the frequency and the absolute number of occurrences of a specific
transition.

Fig. 2. Heuristic network

Using this network, we can easily recognize the frequencies of various transitions
in the job’s lifespan. The network can also be converted to a Petri net, as one of the
most common formalism used to represent workflows.

5.3 Petri Net Performance Analysis

Once having a Petri net from the log, we can perform additional analysis. Especially
useful is the Petri net performance analysis. As a result of this analysis, an interactive
diagram is produced, helping in identifying the bottlenecks in the process model.

Different color coding of the places (circles) of the Petri net marks the different
time needed in each one of them, as shown in Fig. 5. (Blue means low waiting time,
yellow middle and purple high). Also, by selecting two transitions in the net, the tools
shows the statistics (min, max and average time needed from one to the other).

5.4 Performance Sequence Diagram

Performance sequence diagram plug-in can be especially of help if you want to know
what behavior in your processes is common, what behaviors are rare and what
behavior may result in extreme situations (e.g. instances with extremely high
throughput times).

An example of the output is given in the Fig. 4. We have used this output to
identify the most common sequences of events that occur during job’s lifetime, along

208 A. Misev and E. Atanassov

with their basic statistics. The diagram can be a full diagram, showing all the
instances into time, or pattern diagram, grouping (by variable parameters) similar
sequences into patterns. It also has a rich set of filtering options allowing us to select
sets of process instances, or even individual ones. This plug-in, if used by end-users
can help them visually identify the problems with their job submissions.

Fig. 3. LTL plug-in

5.5 Conformance Analysis

Conformance analysis plug-in requires both log data and a process model (Petri net
for example). It replays the entire log and checks the conformance of each job with
the model. It offers two perspectives: Log and model. The log perspective illustrates
each separate job and indicates the ones that do not conform to the model. Model
perspective shows the Petri net and indicates the non conformant points. It can also
show the number of times an activity should occur (regarding the model) but actually
didn’t and vice versa.

5.6 LTL Plug-In

The Linear Temporal Logic (LTL) plug-in check validity of LTL formulas on the
analyzed log. It has a rich set of options and predefined formulas. As a result it
divides the set of process instances into ones that satisfy and others that not satisfy the
formula. The example shown in Fig. 3 show the conformance of the processes to the
formula “eventually activity RUNNING then DONE then CLEAR”.

6 Some Important Findings about Middleware Performance
Derived from the Process Mining

We have performed the analysis on different subsets of the L&B data. At the
beginning, mostly for performance reasons, we have analyzed jobs from several users,

 Performance Analysis of GRID Middleware Using Process Mining 209

user by user. Subsequently, we have made a filtered data set from the whole database.
We must note that some of the plug-ins requires much more time when working with
large datasets, especially the ones that perform log replay. Most of the results that
follow are from the overall analysis.

6.1 Percentage of Successful Jobs

From the performed analysis, we can conclude that the underlying infrastructure
(SEE-GRID [13]) performs satisfactory. The overall percentage of the successful jobs
is around 70%.

We identified several factors that influence the success rate of jobs. First of all,
there is the human factor. Analysis of logs of jobs submitted by experienced users
show greater percentage of success. If we analyze filtered logs from more experienced
users, we can conclude that up to 80% end either with status DONE, or with status
CLEAR (retrieved output). We have to make deeper analysis which require additional
data attributes added to the logs to be analyzed, like status code, exit code etc. to
better understand the percentage of the finished jobs and what is more important to
discover the reasons why the other jobs failed.

Other factors include:
1. the “quality” of the Grid sites – usually larger sites in terms of number of CPUs

have better support
2. software versions – the installation of a new middleware version or revision

usually causes some hick-ups
3. Lack of resources or inappropriate job scheduling mechanisms – large percentage

of failures are caused by jobs waiting in the queue for too long. The so-called
proxy renewal mechanism did not work reliably until newer versions of the
middleware solved the problem.

6.2 Patterns of Job Control Flow in the Middleware

Using the Performance sequence diagram, we can obtain useful data about the patters
of events that the jobs follow during their lifetime. Analyzing a RB log consisting of

Fig. 4. Patterns of job control flow

210 A. Misev and E. Atanassov

around 18500 jobs, we have identified 85 different patterns of behavior. As shown on
the Fig. 4, most of the jobs that finish successfully follow the first and the third
pattern. They do it in average time of 27 hours and 11 hours respectively, with the
former length is due to user intervention to pick up the results. This can be used as a
good reference for the lengths of the proxy certificates.

Another conclusion that we can make from this results is the relatively large
number of jobs following the fifth pattern (Pattern 4 in Fig. 4). Around 600 jobs have
failed after waiting in the queues for an average of more than 280 hours. Using this
data and examining the specific instances we could identify the reason for such
failures.

Fig. 5. Performance analysis with bottlenecks (details)

6.3 Bottlenecks in the Job Lifetime

Using performance sequence diagram, we have analyzed jobs from single user (for
performance sake). Out of 470 jobs, almost 20% of them have been waiting in the
queues with average time between 57 and 65 hours. All of them finished with
ABORT (mostly due to proxy expired).

Using Petri net performance analysis we could also note that the point with the
biggest waiting time (shown in purple in the Fig. 5).

We can see that the most time jobs spend waiting to start running. Other two
bottlenecks include the running time (which greatly depends on the job itself) and
time before the output is retrieved (shown in yellow), which is a human interaction.

7 Future Works

The work specified in this paper is only the beginning of deeper and wider
performance analysis of the GRID middleware. Several issues that we will tackle
soon include building custom import filter, based on the ProMImport framework to
import the data directly from the L&B database, extend the data that is imported into
the framework with additional elements (CE name, matching process results, some
JDL attributes etc. to enable even more analysis), enable direct connection to the L&B
web service interface, so the users can select particular jobs from within the ProM
framework and get even more data from the service directly and propose a more

 Performance Analysis of GRID Middleware Using Process Mining 211

intuitive interface (possibly web) to the L&B data, to enable users to get better
understanding.

Waiting time in the queues can be quite long. Some solutions to these problems
that we will investigate further are:

− Providing separate queues for various types of jobs could strengthen the user’s
perception of the GRID,

− Providing end-to-end mechanism for jobs prioritization.

8 Conclusion

Using the process mining to analyze GRID middleware is not a new idea, but very
little has been done to actually analyze the platform. Using the L&B database as a
source of logging data was a natural choice. After researching for the appropriate tool,
the ProM tool was chosen, mostly for the features mentioned. The initial results of the
mining process are presented in this paper.

A very important conclusion from the analysis is that the underlying infrastructure
performs satisfactory. With an overall job success rate of around 70% it is quite near
the EGEE [14] average of 79% [15].

Since users experience affects the percentage of successful jobs, the education of
the users about the underlying technology will increase the overall performance. The
more aware the users are about the possibilities of the infrastructure and in the ways
to evaluate certain sites, the better the success rate will be. In this context, measuring
the success rate of each site can help users choose only the set of sites that promise
higher throughput.

References

1. Zhang, X., Schopf, J.M.: Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service. In: MDS2, Proceedings of the International Workshop on Middleware
Performance (MP 2004), part of the 23rd International Performance Computing and
Communications Conference (IPCCC) (2004)

2. Jackson, M., Antonioletti, M., Chue Hong, N., Hume, A., Krause, A., Sugden, T.,
Westhead, M.: Performance Analysis of the OGSA-DAI Software. In: Proceedings of the
UK e-Science All Hands Meeting, Nottingham, UK (September 2004)

3. EGEE User’s Guide, Service Logging And Bookkeeping (L&B) (2007),
https://edms.cern.ch/document/571273/1

4. Kouril, D., Krenek, A., Matyska, L., Mulac, M., Pospısil, J., Ruda, M., Salvet, Z., Sitera,
J., Skrabal, J., Vocu, M.: Advances in the L&B Grid Job Monitoring Service (2007)
(visited 06.08.2007), http://lindir.ics.muni.cz/dg_public/lb2.pdf

5. Margalef, T., Jorba, J., Morajko, O., Morajko, A., Luque, E.: Different Approaches to
Automatic Performance Analysis of Distributed Applications. In: Getov, V., et al. (eds.)
Performance Analysis and Grid Computing. Springer, Heidelberg (2004)

6. van der Aalst, W.M.P., Weijters, A.J.M.M. (eds.): Process Mining. Special Issue of
Computers in Industry, vol. 53. Elsevier Science Publishers, Amsterdam (2004)

212 A. Misev and E. Atanassov

7. Rozinat, A., de Jong, I.S.M., Gunther, C.W., van der Aalst, W.M.P.: Process Mining of
Test Processes: A Case Study, BETA Working Paper Series, WP 220, Eindhoven
University of Technology, Eindhoven (2007)

8. Alves de Medeiros, A.K., Günther, C.W.: Process Mining: Using CPN Tools to Create
Test Logs for Mining Algorithms. In: Sixth Workshop and Tutorial on Practical Use of
Colored Petri Nets and the CPN Tools, Aarhus, Denmark (October 2005)

9. Process mining (2007), http://www.processmining.org/
10. ProM tool (2007), http://is.tm.tue.nl/~cgunther/dev/prom/
11. Alves de Medeiros, A.K., Weijters, A.J.M.M. (Ton): ProM tutorial, Technische

Universiteit Eindhoven, The Netherlands (November 2006)
12. ProMimport, http://is.tm.tue.nl/~cgunther/dev/promimport/
13. SEE-GRID – South Eastern Europe GRID-enabled eInfrastructure Development (2007),

http://www.see-grid.eu/
14. EGEE – Enabling Grids for E-sciencE (2007), http://www.eu-egee.org/
15. Monitoring and visualization tool for LCG (statistics for February 2008),

http://gridview.cern.ch/GRIDVIEW/job_index.php

	Performance Analysis of GRID Middleware Using Process Mining
	Introduction
	Description of the Logging and Bookkeeping Service and Database
	The Rationale for L and B Based Performance Analysis
	Short Overview of Process Mining
	Application of Process Mining on the L and B Log Data
	Log Summary
	Heuristic Miner
	Petri Net Performance Analysis
	Performance Sequence Diagram
	Conformance Analysis
	LTL Plug-In

	Some Important Findings about Middleware Performance Derived from the Process Mining
	Percentage of Successful Jobs
	Patterns of Job Control Flow in the Middleware
	Bottlenecks in the Job Lifetime

	Future Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

