
67

PREDICTION AND SPECULATION - TECHNIQUES IN ILP

P. Mitrevski, M. Gusev*, A. Misev*
Faculty of Technical Sciences, St. Kliment Ohridski University

I. L. Ribar bb, PO Box 99,7000 Bitola, Macedonia
pece. mitrevski@uklo. edu. mk

‘Faculty of Natural Sciences, St. Cyril and Methodius University
Arhimedova bb, PO Box 162, 1000 Skopje, Macedonia

{ marj an, infolab } @ p d . ukim. edu . mk

Abstract: In this article we review the concepts of branch, value and meniory prediction used in
conjunction with control and Liata speculative execution in superscalm processors. Since the
amount of available instruction level parallelism within a basic block is relatively small, control
speculation techniques increase the number of candidate instructions for execution. Moreover, the
integration of value and memory prediction in superscalar processors introduces a new kind of
speculative execution. Data Jpeculation techniques allow the processor to execute instructions
beyond the limit of true data RAW depemkncies. We identifi data speculation as a natural
extension of control speculation and capture their similarities and diflerences. We also raise a
new question: is the analytical mockelling approach really infeasible?

Keywords: superscalar processor, control and dzta speculation, branch prediction, value
prediction, and memory prediction

1. Introduction

Dependence in program executions as a general term is a relationship between items in two
instructions that dictates the execution order. Items in the instructions can be data operands, result
or instruction address i.e. order in its execution, as defined in [7]. Two types of dependencies can
be determined. The first group form control and resource dependencies as a relationship when the
program execution order is affected because of the state of the processor and the type of the
instruction. Control dependence is a relationship between two instructions according to conditions
that dictates their execution order, i.e. when the execution of one instruction controls whether the
second instruction should be executed or not. Resource dependence is a relationship between two
instructions according to conditions that enables resources for their executions, i.e. when the
execution of one instruction occupy the resources required for the execution of the second
instruction. The second group contains data dependencies. Data dependence is the relationship
between data items in two different instructions, which dictates their program execution order.
There are different taxonomies such as [8] that determine name, control and data dependencies, and
several others, but all of them are subset of the taxonomy in [7].
There are several techniques to eliminate the effect of dependencies or to reduce their
consequences. For example, data forwarding and implementation of shelving reduce the effect of
RAW dependencies and register renaming eliminates the false or name (WAR and WAW)
dependencies. However, the potential of new processors with hundreds of processing units requires
more parallelism then the one obtained by these techniques. One alternative is introducing of
various speculation techniques based on prediction. The other alternative is introducing more
advanced elimination techniques.

.

22”d Int. Conf. Information Technology Interfaces IT/ 2000, June 13-1 6, 2000, Pula, Croatia

68

2. Taxonomy of prediction techniques

Many superscalar processors speculatively execute control-dependent instructions before resolving
the branch outcome. They rely upon branch prediction techniques in order to tolerate the effect of
control dependencies. Data dependencies can be eliminated at run-time by predicting the outcome
values of instructions (value prediction) and by executing the true data RAW dependent
instructions. The execution becomes speculative when it is not assured that true data RAW
dependent instructions were fed with correct input values. Since the correctness of execution must
be maintained, speculatively executed instructions retire only if the prediction was proven to be
correct - otherwise, they are discarded.
Some authors [1,6,11 , 13,161 consider value prediction as generaliizarion whenever a result value is
expected as outcome of instructions that introduce true data (RAM? dependencies. However it is
natural to divide this class to two classes upon the instruction type Therefore we identlfjl value
prediction as prediction of the outcome of arithmetic instruction and memory prediction as
prediction of the outcome of memory access instructions.
All these prediction techniques used in conjunction with specularive execution in superscalar
processors are our main concern in this paper. There are several taxonomies of speculative
execution techniques, such as Lipasti and Shen (111 and others. However we introduce new
taxonomy for prediction based on: instruction type and determination of addresses and values, as
presented in Fig.l.Branch prediction and control speculation can be realised by predicting the
direction (takednot-taken) or the target (address or instruction). Value prediction is used whenever
an arithmetic instruction is going to be skipped although its execution is delayed because of true
data (RAW) dependencies. Memory prediction concerns memory data and address dependencies.
Whenever memory access instruction is scheduled, there are two steps of execution. The first step
considers address generation. It can use true data (RAW) dependent operands and therefore the
execution is delayed. One possible way to introduce speculation is to predict the outcome of the
address generation step i.e. to predict the address. In speculation we can go even fbrther to predict
the data value of the memory load instruction.

I
I

Figure 1. Taxonomy of prediction techniques

3. Branch prediction and control speculation techniques

The branch performance problem can be divided into two sub problems [ll]. The first is a
prediction of the branch direction that requires binary decision (taka vs. not-taken). The second
sub problem is providing the instructions from the branch target to k available for execution with
minimal delay. The latter requires a nzulti-valued decision, since the -aset can be anywhere in the
pr0g1-a”~ address space.
Many branch prediction schemes have been explored in the literature [9,12,18,19]. They can range
between no prediction, fixed, static displacement based, static with profiling, and various dynamic
schemes, like BHT with n-bit counters, BTAC, BTIC, mixed etc.)-eh and Patt [191 describe and
characterize possible variations of their adaptive branch prediction model according to the manner
in which the fist-level branch history register or second-level pattern history table is kept:

22“d Int. Conf. information Technology Interfaces IT1 2000, June 13-16, 2000, Pula, Croatia ’

69

0

0

0

G (g) - outcomes of different branches update the same global branch history register (table),
S (s) - a set of branch instructions shgre,the same branch history register (table),
P (p) - branch history is kept for each distinct static branch instruction individually (each

This yields nine variations of the adaptive (A) model: GAg, GAS, GAP, SAg, SAS, SAP, PAg, PAS
and PAP. With respect to the cost-effectiveness of different variations, PAS tums to be the most
effective among low-cost schemes, and GAS among high-cost schemes with the best average
prediction accuracy of 97.2 percent. A good survey of branch prediction strategies and
measurements of their accuracy, their comparison can be found in [151.
Are there limits to branch prediction? That is the question Mudge et al. try to answer in [141. They
apply two daerent approaches to measure inherent limits of branch prediction. For simple.
programs, they analyse asymptotic predictability exactly, but in dealing with more complicated
programs, they use well-understood universal compressiodprediction algorithms, such as
Prediction by Partial Matching (PPW, as a measure of inherent predictability. The bases of a
PPM algorithm of order m are a set of (ni+ 1) Markov predictors (a Markov predictor of order j
predicts the next bit based upon the j immediately preceding bits), which, in turn, exhibit strong
similarities with two-level adaptive branch predictors. Since the complexity of PPM is roughly
twice that of a two-level predictor using same history, it may only suggest some improvements to
existing predictors.
Being on the right course, in a recent work Reinman et al. present an architecture that decouples
the branch predictor fiom the instruction fetch unit [16]. They introduce a Fetch Target Queue
(FTQ) that is inserted between the branch predictor and the instruction cache, allowing them to
operate relatively autonomously. If the branch predictor has a multi-level hierarchy or requires
multiple cycles to access, the instruction cache can continue fetching from the FTQ while the
predictor is stalled or in mid-access, or the branch predictor, on the other hand, can work ahead of
the instruction cache when the cache is stalled due to a miss or a 111 instruction buffer.

4. Value prediction and data speculation techniques

Another major hurdle to ILP processing is the presence of data dependencies, which prevent the
execution of instructions in parallel. If an instruction is data dependent on a preceding instruction, it
can be executed only after the preceding instruction's result becomes available. For a long time in
the past, these constraints imposed by true data dependencies were regarded as an absoiute limit on
parallel execution of serial programs. However, Lipasti et al. show that it is possible to overcome
the hurdles imposed by data dependencies with the use of data value preaiction [101, [1 11. They
conclude that although a 32:bit register can contain any one of over four billion values, the task of
data value prediction becomes much easier when each static instruction is considered individually.
This technique is built on the concept of value locality [lo], as the likelihood of a previously seen
value recurring repeatedly within a storage location inside a computer system. Their research
summarizes value locality of memory load instructions and instructions that write to registers. The
former is called load value locality and the other is register value locality. With a history depth of 1.
most of integer benchmark programs exhibit load (register) value locality in 50% (40-50%) range,
while extending the history depth to 16, it can improve to more than 80% (60-70%) range. This
means that a majority of static instructions exhibit very little variations in values that they write
during the course of a program's execution.
Several architectures have been proposed for value prediction [l] including: last value prediction,
stride prediction, context predictors and hybrid approaches. Lipasti and Shen [10,111 describe and
evaluate a Value Prediction Unit (Wv) for predicting the results of instructions at dispatch by
exploiting the aflinity between instruction addresses and the values they produce. There are
similarities between the BTAC (with associated prediction bits) and the VPU. The latter consists of

static branch instruction has its own pattem history table),

22"d Int. Conf. lnfonnation Technology Interfaces /TI 2000, June 13-76, 2000, Pula, Croatia

70

a direct mapped Value Prediction Table (W1) for generating value predictions (history depth-can
be greater than one) and a Classzjication Table (CT) for deciding which predictions are likely to?be
correct (a table of 1- or 2-bit saturating counters which are incremented whenever the predictjjd
value is correct and decremented otherwise). One might think the work of Lipasti et al. is a
generalization of the well-known control speculation techniques. Dynamic branch prediction can
be considered a restricted application of data value prediction i.e. prediction of a single condition bit
based on its past behaviour. Even though, it is not possible to directly apply branch prediction
techniques to data value prediction. Branch prediction deals with 1 -out-of-2 predictions, while
value prediction deals with 1-out-of-2" predictions (Wis the word size of the computer).
The previous scheme actually keeps track of the last value of an instruction. A good heuristic
would be to record the recent results (values) produced by several consecutive instances of an
instruction, and predict the result of the instruction's next instance based on past results [17], that
forms a context predictor. The main part of such a predictor is the Value Histov Table (WT).
Usually, each entry has a tag to identifjl the instruction currently mapped to that entry.
Wang and Franklin investigate the potential of monitoring the stricks by which the results produced
by different instances of an instruction change, as well as the potential of pattern-based two-level
predction schemes (extensively exploited for branch prediction) [17]. In general, by storing a
maximum of 2" (n << W) most recent unique values (in the VHT of the first level), and by doing a
binary encoding of these outcomes, behaviour patterns can be captured using a two-level predictor
that performs 1-out-of-2" predictions. The VHT incorporates a Value History Pattem field that
stores the last p outcomes of an instruction as a n-p-bi t pattem. For each n . p-bit pattern, a
condensed history of the previous outcomes of the pattem is recorded in the Pattem History Table
(PH7) of the second level, by means of 2" independent up/down counter values.
The experimenta! results show that it is better to use hybridpredictors to get good accuracy over a
set of programs, due to the different data value locality characteristics that can be exploited only by
different schemes. Wang and Franklin investigate two hybrid predictors. The first one is a
combination of last outcome-based prediction and strid-based prediction, while the second one is
a combination of two-level prediction and strid-based prediction.

5. Memory prediction and data speculation techniques

Data speculation techniques [1 11 break down in two categories: those that speculate on storage
location and those that speculate on actual data value. Furthermore, techniques that speculate on
the location come in two fundamentally different flavours: those that speculate on specific attribute
of the storage location (speculative disambiguation) and those that speculate on the address (most
prefetching techniques). The techniques that speculate on data values can be d i ~ d e d into 2
subclasses: data value speculation and data dependence speculation. In data value speculation an
attempt is made to predict the data value that an instruction is going to produce [l 13. In data
dependence speculation, no explicit attempt is made to predict the data values. Instead, a prediction
is made on whether the input data value of an instruction has been generated and stored in the
corresponding named location (memory or register) [131. Although the techniques introduced by
Mochovos and Sohi 1131 look like register renaming its' realization throu@ memory aliasing is
much more complicated by using store queues and different structres like MPT (Memory Predict
Table) etc. We empasize that actually we have to differ where the memov prediction and data
speculation can be used. One possible implementation is in the instruction window where an
instruction is waiting for data value fiom another memory access instruction in the same window.
Another implementation is possible while the memory instruction is executing after the address
generation step. This means that the instruction has to wait in buffer waiting other stores to be
finished. Although the address can be predicted or already caluclated, still the memory instruction

22"d Int. Conf. lnformafion Technology interfaces /TI 2000, June 13-16, 2000, Pula, Croatia

71

delays firther execution because of memory dissambiguatioii and other memory dependences. In
this case there are a lot of shortcut techniques for elimination or predicting the data value.
Gonzalez and Gonzalez notice that loadstore instructions are very good candidates for speculative *

execution since their effective address is highIy predictable. They propose a novel technique called
Memory Address Prediction (MAP) that implements speculative execution of loadstore
instructions in an out-of-order processor [3]. Later on, the processor is allowed not only to predict
the current effective address of either a load or a store instruction, but also the next effective
addresses of loads and prefetch the data from memory into a Memory Prefetch Tabb (MPT). This
technique allows load instructions to obtain values at decode stage [4] A side-effect benefit of data
value speculation is the reduction of branch misprediction penalty, since branch outcomes are
computed earlier. By exploiting this phenomenon, they introduce even a new branch predictor that
predicts the outcomes of branches by predicting the value of their inputs and performing an early
computation of their results according to the predicted values [6].

6. The problem of quantifSring the performance of speculative execution techniques

Vast majority of the studies on branch, value and memory prediction techniques have something in
common: quantlfjring the ability of predictions to boost the ILP &om an experimental point of view
- either by measurements taken in a real system, or by simulation [7].
Only Gabbay and Mendelson analyse the dataflow graph presentation of a program and evaluate
the execution time of the critical path for both finite and infinite instruction window size when value
prediction is employed [2]. This yields closed form expressions for the average execution time of
the critical path and the average boost in the ILP of the critical path. Their work is a sole eEort to
provide an analytical model that can be used to better understand the characteristics of value and
memory prediction and to obtain a rough estimation of the potential of using them.
Analytical modelling is an attractive alternative to measurement or simulation method. A lot of
papers are concerned with the distribution of instructions in superscalar processors. Instructions can
efficiently be identi€ied as belonging to several different classes and each of them can be assigned
some probability or rate as a measure of the relativefrequency of occlcirence in the total instruction
count for dynamically committed instructions. In the same manner, predictions that are to be made
can be assigned probabilities as a measure of the average predcnon accuracy. Latencies of
different classes of instructions, misprediction rates and penalties (in clock cycles) are known, too.
In addition, the beginning of each cycle can be observed as a regeneration point, because the past
history is completely summarized in the current machine state. This pieces of evidence can be used
in modelling the operational environment (sample data set), as well as the dynamic behaviour, using
probabilistic analysis, elements of the theory of stochastic processes and the renewal theory or,
preferably, various classes of Timed Petri Nets, which are well known formalism for the description
and analysis of variety of systems where concurrency and parallelism are inherent. Since the
complex behaviour of the system can be concisely represented, the Petri Net model of a system is
usually easier to understand than a pure probabilistic analysis model. However, this approach may
also have an intrinsic problem: the reachability graph underlying the Petri Net increases very rapidly
as the model size increases. Therefore, the abstraction of the real-world system into a set of
parameters should be done carefully. Otherwise, trying to avoid trace-dtiven simulation, one may
end up with simulation of the stochastic behaviour of the Petri Net. The goal of such an analysis
would be quantifjmg the impact of speculative execution techniques on system level performance.

' 7. Conclusion

We propose a new taxonomy of prediction techniques based on instruction type. Effective control
and data speculation techniques are essential to explore the full perfomiance of modern superscalar
processors as they move towards wider issue and deeper super-pipelines. Various branch prediction

22nd Int. Conf. Information Technology lnterfaces IT1 2000, June 13-16, 2000, Pula, Croatia

72

schemes which significantly increase the performance by eliminating the instruction fetch std-Qin
the pipelines have been around for a long time, whereas value prediction, as a natural extension,sis
still gaining popularity. Yet, speedup obtained by data speculation is significant for a limjtjed
window, and huge for an infinite window. Researchers still have to emphasise designs (both control
and data speculative) that are faster, less complex, more testable and easy to implement. We also
believe that a variety of elements of the probability theory, statistics, stochastic processes and
renewal theory can still be identified in this area and used as a starting point for an analytical
modelling approach.

8.

1.

2.

7
3 .

4.

5 .

6.

7.

8.

9.

References

Calder,B., ReinmqG., Tullsen,D., (1 999), Selective Value Prediction, 26' Annual Int. Symp.
Computer Architecture, Atlanta, USA
Gabbay,F., MendelsoqA., (1998), Using Value Prediction to Increase the Power of
Speculative Execution Hardware, ACM Trans. Computer Systems, Vol. 16, No.3, pp. 234-270
Gonzalez,J., Gonzalez,A., (1997), Memory A&ess Prediction for Data Speculation, Proc. of
EUROPAR 97, Passau, Germany
GonzaleqJ., Gonzalez,A., (1997), Speculative Execution via Ada'ress Prediction and Data
Prefetching, Proc. of the ACM Int. Cod. Supercomputing, pp. 196-203, Vienna, Austria
Gonzalez,J., Gonzaiez,A., (1999), Control-Flow Speculation through Value Prediction for
Superscalar Processors, Proc. of the Int. Conf Parallel Arch. and Compilation Tech. (PACT)
Gusev,M, Misev.A, PopovskiG., (1999), Memory A&ess Dependencies, ITI-99, pp. 191 -
196, Pula, Croatia.
Hennessy, J.L., PattersoqD. A., (1 996), Computer Architecture: A Quantitative Appromh,
Second Edition, Morgan Kauhann Pub., San Francisco, California
Lee J.K.F., Smith A.J. (1984), Branch Prediction Strategies and Branch Target Buffer Design,
IEEE Computer, January 1984, pp. 6-22
Lipasti,M., WilkersoqC., Shen,J.P., (1996), Value Locality a n d W Value Prediction, 7' Int.
Cod. Architectural Support for Programming Languages and Operating Systems, pp. 138-147

10. Lipasti,M., Shen,J.P., (1996), Exceeding the dataflow limit via value prediction, 29' Annual

1 1. McFarling,S., (1993), Combining Branch Predictors, TN-36, DEC, Western Research Lab
12. Moshovos,A., Breach,%, Vijaykumar,T., Sohi,G., (1997), Dynamic Speculation and

Synchronization of Data Dependencies, 24' ISCA, Denver, USA
13. Mudge,T., Chen,I.K., Coffey,J.T., (1996), Limits to Branch Prediction, Technical Report

CSE-TR-282-96, University of Michigan
14. Popovski.G., Gusev,M, Misev.A, (1999), Quantifing the Perjoinrance of Branch Prediction

Scheme with the Superscalar Simulator, ITI-99, pp.2 19-224, Pula. Croatia.
15. Reinman,G., Calder,B., Austin,T.. (2000), Building a Scalable Branch Predictor and an

Instruction Prefetch Engine by Decoupling Branch Prediction from Instruction Fetch,
Technical Report CSOO-645, University of California, San Diego

16. Wang,K., Franklin,M., (1 997), Highly Accurate Data Value Prediction using Hybrid
Predictors, 3 0' Annual Int. Symp. Microarchitecture

1 7. Yeh,T.Y, Patt,Y.N., (1992), Altemative Implementations of Tivo-Level Ahptive Branch
Prediction, 19' Annual Int. Symp. Computer Architecture, pp. 124- 134, Gold Coast, Australia

18. Yeh,T.Y, Patt,Y.N., (1993), A Comparison of Dynamic Branch Predictors that Use Two
Levels of Branch History, 20' ISCA, pp 257-266, San Diego, California

ACMXEEE Int. Symp. Microarchitecture, pp. 226-237.

22"* Int. Conf. lnformafion Technology lnterfaces /TI 2000, June 13-1 6, 2000, Pula, Croatia

