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Abstract: In this article we review the concepts of branch, value and meniory prediction used in 
conjunction with control and Liata speculative execution in superscalm processors. Since the 
amount of available instruction level parallelism within a basic block is relatively small, control 
speculation techniques increase the number of candidate instructions for execution. Moreover, the 
integration of value and memory prediction in superscalar processors introduces a new kind of 
speculative execution. Data Jpeculation techniques allow the processor to execute instructions 
beyond the limit of true data RAW depemkncies. We identifi data speculation as a natural 
extension of control speculation and capture their similarities and diflerences. We also raise a 
new question: is the analytical mockelling approach really infeasible? 
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1. Introduction 

Dependence in program executions as a general term is a relationship between items in two 
instructions that dictates the execution order. Items in the instructions can be data operands, result 
or instruction address i.e. order in its execution, as defined in [7]. Two types of dependencies can 
be determined. The first group form control and resource dependencies as a relationship when the 
program execution order is affected because of the state of the processor and the type of the 
instruction. Control dependence is a relationship between two instructions according to conditions 
that dictates their execution order, i.e. when the execution of one instruction controls whether the 
second instruction should be executed or not. Resource dependence is a relationship between two 
instructions according to conditions that enables resources for their executions, i.e. when the 
execution of one instruction occupy the resources required for the execution of the second 
instruction. The second group contains data dependencies. Data dependence is the relationship 
between data items in two different instructions, which dictates their program execution order. 
There are different taxonomies such as [8] that determine name, control and data dependencies, and 
several others, but all of them are subset of the taxonomy in [7]. 
There are several techniques to eliminate the effect of dependencies or to reduce their 
consequences. For example, data forwarding and implementation of shelving reduce the effect of 
RAW dependencies and register renaming eliminates the false or name (WAR and WAW) 
dependencies. However, the potential of new processors with hundreds of processing units requires 
more parallelism then the one obtained by these techniques. One alternative is introducing of 
various speculation techniques based on prediction. The other alternative is introducing more 
advanced elimination techniques. 

. 
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2. Taxonomy of prediction techniques 

Many superscalar processors speculatively execute control-dependent instructions before resolving 
the branch outcome. They rely upon branch prediction techniques in order to tolerate the effect of 
control dependencies. Data dependencies can be eliminated at run-time by predicting the outcome 
values of instructions (value prediction) and by executing the true data RAW dependent 
instructions. The execution becomes speculative when it is not assured that true data RAW 
dependent instructions were fed with correct input values. Since the correctness of execution must 
be maintained, speculatively executed instructions retire only if the prediction was proven to be 
correct - otherwise, they are discarded. 
Some authors [ 1,6,11 , 13,161 consider value prediction as generaliizarion whenever a result value is 
expected as outcome of instructions that introduce true data (RAM? dependencies. However it is 
natural to divide this class to two classes upon the instruction type Therefore we identlfjl value 
prediction as prediction of the outcome of arithmetic instruction and memory prediction as 
prediction of the outcome of memory access instructions. 
All these prediction techniques used in conjunction with specularive execution in superscalar 
processors are our main concern in this paper. There are several taxonomies of speculative 
execution techniques, such as Lipasti and Shen (111 and others. However we introduce new 
taxonomy for prediction based on: instruction type and determination of addresses and values, as 
presented in Fig.l.Branch prediction and control speculation can be realised by predicting the 
direction (takednot-taken) or the target (address or instruction). Value prediction is used whenever 
an arithmetic instruction is going to be skipped although its execution is delayed because of true 
data (RAW) dependencies. Memory prediction concerns memory data and address dependencies. 
Whenever memory access instruction is scheduled, there are two steps of execution. The first step 
considers address generation. It can use true data (RAW) dependent operands and therefore the 
execution is delayed. One possible way to introduce speculation is to predict the outcome of the 
address generation step i.e. to predict the address. In speculation we can go even fbrther to predict 
the data value of the memory load instruction. 

I 
I 

Figure 1. Taxonomy of prediction techniques 

3. Branch prediction and control speculation techniques 

The branch performance problem can be divided into two sub problems [ll]. The first is a 
prediction of the branch direction that requires binary decision (taka vs. not-taken). The second 
sub problem is providing the instructions from the branch target to k available for execution with 
minimal delay. The latter requires a nzulti-valued decision, since the -aset can be anywhere in the 
pr0g1-a”~ address space. 
Many branch prediction schemes have been explored in the literature [9,12,18,19]. They can range 
between no prediction, fixed, static displacement based, static with profiling, and various dynamic 
schemes, like BHT with n-bit counters, BTAC, BTIC, mixed etc. )-eh and Patt [ 191 describe and 
characterize possible variations of their adaptive branch prediction model according to the manner 
in which the fist-level branch history register or second-level pattern history table is kept: 
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G (g) - outcomes of different branches update the same global branch history register (table), 
S (s) - a set of branch instructions shgre,the same branch history register (table), 
P (p) - branch history is kept for each distinct static branch instruction individually (each 

This yields nine variations of the adaptive (A) model: GAg, GAS, GAP, SAg, SAS, SAP, PAg, PAS 
and PAP. With respect to the cost-effectiveness of different variations, PAS tums to be the most 
effective among low-cost schemes, and GAS among high-cost schemes with the best average 
prediction accuracy of 97.2 percent. A good survey of branch prediction strategies and 
measurements of their accuracy, their comparison can be found in [ 151. 
Are there limits to branch prediction? That is the question Mudge et al. try to answer in [ 141. They 
apply two daerent approaches to measure inherent limits of branch prediction. For simple. 
programs, they analyse asymptotic predictability exactly, but in dealing with more complicated 
programs, they use well-understood universal compressiodprediction algorithms, such as 
Prediction by Partial Matching (PPW, as a measure of inherent predictability. The bases of a 
PPM algorithm of order m are a set of (ni+ 1) Markov predictors (a Markov predictor of order j 
predicts the next bit based upon the j immediately preceding bits), which, in turn, exhibit strong 
similarities with two-level adaptive branch predictors. Since the complexity of PPM is roughly 
twice that of a two-level predictor using same history, it may only suggest some improvements to 
existing predictors. 
Being on the right course, in a recent work Reinman et al. present an architecture that decouples 
the branch predictor fiom the instruction fetch unit [16]. They introduce a Fetch Target Queue 
(FTQ) that is inserted between the branch predictor and the instruction cache, allowing them to 
operate relatively autonomously. If the branch predictor has a multi-level hierarchy or requires 
multiple cycles to access, the instruction cache can continue fetching from the FTQ while the 
predictor is stalled or in mid-access, or the branch predictor, on the other hand, can work ahead of 
the instruction cache when the cache is stalled due to a miss or a 111 instruction buffer. 

4. Value prediction and data speculation techniques 

Another major hurdle to ILP processing is the presence of data dependencies, which prevent the 
execution of instructions in parallel. If an instruction is data dependent on a preceding instruction, it 
can be executed only after the preceding instruction's result becomes available. For a long time in 
the past, these constraints imposed by true data dependencies were regarded as an absoiute limit on 
parallel execution of serial programs. However, Lipasti et al. show that it is possible to overcome 
the hurdles imposed by data dependencies with the use of data value preaiction [ 101, [ 1 11. They 
conclude that although a 32:bit register can contain any one of over four billion values, the task of 
data value prediction becomes much easier when each static instruction is considered individually. 
This technique is built on the concept of value locality [lo], as the likelihood of a previously seen 
value recurring repeatedly within a storage location inside a computer system. Their research 
summarizes value locality of memory load instructions and instructions that write to registers. The 
former is called load value locality and the other is register value locality. With a history depth of 1. 
most of integer benchmark programs exhibit load (register) value locality in 50% (40-50%) range, 
while extending the history depth to 16, it can improve to more than 80% (60-70%) range. This 
means that a majority of static instructions exhibit very little variations in values that they write 
during the course of a program's execution. 
Several architectures have been proposed for value prediction [l] including: last value prediction, 
stride prediction, context predictors and hybrid approaches. Lipasti and Shen [ 10,111 describe and 
evaluate a Value Prediction Unit (Wv) for predicting the results of instructions at dispatch by 
exploiting the aflinity between instruction addresses and the values they produce. There are 
similarities between the BTAC (with associated prediction bits) and the VPU. The latter consists of 

static branch instruction has its own pattem history table), 
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a direct mapped Value Prediction Table (W1) for generating value predictions (history depth-can 
be greater than one) and a Classzjication Table (CT) for deciding which predictions are likely to?be 
correct (a table of 1- or 2-bit saturating counters which are incremented whenever the predictjjd 
value is correct and decremented otherwise). One might think the work of Lipasti et al. is a 
generalization of the well-known control speculation techniques. Dynamic branch prediction can 
be considered a restricted application of data value prediction i.e. prediction of a single condition bit 
based on its past behaviour. Even though, it is not possible to directly apply branch prediction 
techniques to data value prediction. Branch prediction deals with 1 -out-of-2 predictions, while 
value prediction deals with 1-out-of-2" predictions (Wis the word size of the computer). 
The previous scheme actually keeps track of the last value of an instruction. A good heuristic 
would be to record the recent results (values) produced by several consecutive instances of an 
instruction, and predict the result of the instruction's next instance based on past results [17], that 
forms a context predictor. The main part of such a predictor is the Value Histov Table (WT). 
Usually, each entry has a tag to identifjl the instruction currently mapped to that entry. 
Wang and Franklin investigate the potential of monitoring the stricks by which the results produced 
by different instances of an instruction change, as well as the potential of pattern-based two-level 
predction schemes (extensively exploited for branch prediction) [17]. In general, by storing a 
maximum of 2" ( n  << W ) most recent unique values (in the VHT of the first level), and by doing a 
binary encoding of these outcomes, behaviour patterns can be captured using a two-level predictor 
that performs 1-out-of-2" predictions. The VHT incorporates a Value History Pattem field that 
stores the last p outcomes of an instruction as a n-p-bi t  pattem. For each n .  p-bit pattern, a 
condensed history of the previous outcomes of the pattem is recorded in the Pattem History Table 
(PH7) of the second level, by means of 2" independent up/down counter values. 
The experimenta! results show that it is better to use hybridpredictors to get good accuracy over a 
set of programs, due to the different data value locality characteristics that can be exploited only by 
different schemes. Wang and Franklin investigate two hybrid predictors. The first one is a 
combination of last outcome-based prediction and strid-based prediction, while the second one is 
a combination of two-level prediction and strid-based prediction. 

5. Memory prediction and data speculation techniques 

Data speculation techniques [ 1 11 break down in two categories: those that speculate on storage 
location and those that speculate on actual data value. Furthermore, techniques that speculate on 
the location come in two fundamentally different flavours: those that speculate on specific attribute 
of the storage location (speculative disambiguation) and those that speculate on the address (most 
prefetching techniques). The techniques that speculate on data values can be d i ~ d e d  into 2 
subclasses: data value speculation and data dependence speculation. In data value speculation an 
attempt is made to predict the data value that an instruction is going to produce [l 13. In data 
dependence speculation, no explicit attempt is made to predict the data values. Instead, a prediction 
is made on whether the input data value of an instruction has been generated and stored in the 
corresponding named location (memory or register) [ 131. Although the techniques introduced by 
Mochovos and Sohi 1131 look like register renaming its' realization throu@ memory aliasing is 
much more complicated by using store queues and different structres like MPT (Memory Predict 
Table) etc. We empasize that actually we have to differ where the memov prediction and data 
speculation can be used. One possible implementation is in the instruction window where an 
instruction is waiting for data value fiom another memory access instruction in the same window. 
Another implementation is possible while the memory instruction is executing after the address 
generation step. This means that the instruction has to wait in buffer waiting other stores to be 
finished. Although the address can be predicted or already caluclated, still the memory instruction 
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delays firther execution because of memory dissambiguatioii and other memory dependences. In 
this case there are a lot of shortcut techniques for elimination or predicting the data value. 
Gonzalez and Gonzalez notice that loadstore instructions are very good candidates for speculative * 

execution since their effective address is highIy predictable. They propose a novel technique called 
Memory Address Prediction (MAP) that implements speculative execution of loadstore 
instructions in an out-of-order processor [3]. Later on, the processor is allowed not only to predict 
the current effective address of either a load or a store instruction, but also the next effective 
addresses of loads and prefetch the data from memory into a Memory Prefetch Tabb (MPT). This 
technique allows load instructions to obtain values at decode stage [4] A side-effect benefit of data 
value speculation is the reduction of branch misprediction penalty, since branch outcomes are 
computed earlier. By exploiting this phenomenon, they introduce even a new branch predictor that 
predicts the outcomes of branches by predicting the value of their inputs and performing an early 
computation of their results according to the predicted values [6]. 

6. The problem of quantifSring the performance of speculative execution techniques 

Vast majority of the studies on branch, value and memory prediction techniques have something in 
common: quantlfjring the ability of predictions to boost the ILP &om an experimental point of view 
- either by measurements taken in a real system, or by simulation [7]. 
Only Gabbay and Mendelson analyse the dataflow graph presentation of a program and evaluate 
the execution time of the critical path for both finite and infinite instruction window size when value 
prediction is employed [2]. This yields closed form expressions for the average execution time of 
the critical path and the average boost in the ILP of the critical path. Their work is a sole eEort to 
provide an analytical model that can be used to better understand the characteristics of value and 
memory prediction and to obtain a rough estimation of the potential of using them. 
Analytical modelling is an attractive alternative to measurement or simulation method. A lot of 
papers are concerned with the distribution of instructions in superscalar processors. Instructions can 
efficiently be identi€ied as belonging to several different classes and each of them can be assigned 
some probability or rate as a measure of the relativefrequency of occlcirence in the total instruction 
count for dynamically committed instructions. In the same manner, predictions that are to be made 
can be assigned probabilities as a measure of the average predcnon accuracy. Latencies of 
different classes of instructions, misprediction rates and penalties (in clock cycles) are known, too. 
In addition, the beginning of each cycle can be observed as a regeneration point, because the past 
history is completely summarized in the current machine state. This pieces of evidence can be used 
in modelling the operational environment (sample data set), as well as the dynamic behaviour, using 
probabilistic analysis, elements of the theory of stochastic processes and the renewal theory or, 
preferably, various classes of Timed Petri Nets, which are well known formalism for the description 
and analysis of variety of systems where concurrency and parallelism are inherent. Since the 
complex behaviour of the system can be concisely represented, the Petri Net model of a system is 
usually easier to understand than a pure probabilistic analysis model. However, this approach may 
also have an intrinsic problem: the reachability graph underlying the Petri Net increases very rapidly 
as the model size increases. Therefore, the abstraction of the real-world system into a set of 
parameters should be done carefully. Otherwise, trying to avoid trace-dtiven simulation, one may 
end up with simulation of the stochastic behaviour of the Petri Net. The goal of such an analysis 
would be quantifjmg the impact of speculative execution techniques on system level performance. 

' 7. Conclusion 

We propose a new taxonomy of prediction techniques based on instruction type. Effective control 
and data speculation techniques are essential to explore the full perfomiance of modern superscalar 
processors as they move towards wider issue and deeper super-pipelines. Various branch prediction 
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schemes which significantly increase the performance by eliminating the instruction fetch std-Qin 
the pipelines have been around for a long time, whereas value prediction, as a natural extension,sis 
still gaining popularity. Yet, speedup obtained by data speculation is significant for a limjtjed 
window, and huge for an infinite window. Researchers still have to emphasise designs (both control 
and data speculative) that are faster, less complex, more testable and easy to implement. We also 
believe that a variety of elements of the probability theory, statistics, stochastic processes and 
renewal theory can still be identified in this area and used as a starting point for an analytical 
modelling approach. 
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