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Jamova 39, 1000 Ljubljana, Slovenia

{ivica.dimitrovski,suzana.loshkovska}@finki.ukim.mk,
{Dragi.Kocev,Saso.Dzeroski}@ijs.si

Abstract. The recent overwhelming increase in the amount of available
visual information, especially digital images,has brought up a pressing
need to develop efficient and accurate systems for image retrieval. State-
of-the-art systems for image retrieval use the bag-of-visual-words repre-
sentation of the images. However, the computational bottleneck in all
such systems is the construction of the visual vocabulary (i.e., how to
obtain the visual words). This is typically performed by clustering hun-
dreds of thousands or millions of local descriptors, where the resulting
clusters correspond to visual words. Each image is then represented by
a histogram of the distribution of its local descriptors throughout the
vocabulary. The major issue in the retrieval systems is that by increas-
ing the sizes of the image databases, the number of local descriptors to
be clustered increases rapidly: Thus, using conventional clustering tech-
niques is infeasible. Considering this, we propose to construct the visual
codebook by using predictive clustering trees, which are very efficient
and have good performance. Moreover, to increase the stability of the
model, we propose to use random forests of predictive clustering trees.
We evaluate the proposed method on a benchmark database of a million
images and compare it to other state-of-the-art methods. The results
reveal that the proposed method produces a visual vocabulary with su-
perior discriminative power and thus better retrieval performance.

Keywords: image retrieval, visual vocabulary construction, predictive
clustering.

1 Introduction

An ever increasing amount of visual information is becoming available in various
digital archives. For instance, the widely used social web sites such as Face-

book1 and Flickr2 store several billions images for their users. The improve-
ment of digital cameras and user interfaces for upload of images will further

1 Facebook c©– http://www.facebook.com
2 Flickr from Yahoo! c©– http://www.flickr.com
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increase the amount of available images. The value of the information obtained
from an image depends on how easily it can be found, retrieved, accessed, fil-
tered and managed. Considering this, the development of systems for efficient
archiving, browsing and searching images is a necessity. Such systems are being
developed within the research area of image retrieval.

Image retrieval is an inter-disciplinary research area that cross-fertilizes the
following research areas: multimedia research, information retrieval, machine
learning, computer vision, and human-computer interaction. The methods for
image retrieval can be categorized into two categories [1]: text-based image re-
trieval (TBIR) and content-based image retrieval (CBIR). The former group
of methods require some meta-data for each image in textual format (i.e., im-
age tags) and then the retrieval is performed by providing textual queries. These
methods perform well and are efficient as long as the images are correctly tagged.
However, these methods have two serious limitations: a large amount of human
labour for manual annotation (which is even more exacerbated in the case of
large image databases) and the inaccuracy from the subjectivity of the human
annotators. To alleviate these limitations, CBIR methods were introduced. They
describe the images by their visual content, such as color, texture, shapes and lo-
cal descriptors. The CBIR methods heavily rely on extracting appropriate image
descriptors and a good similarity measure between images.

In this work, we focus on developing a method for efficient CBIR in large scale
image databases. More specifically, we are concerned with developing a method
for particular object retrieval from a large scale database which will retrieve all
images that contain the specific query object. In other words, we are interested
to associate two images based on the objects they contain and not based on the
entire images. For example, if the query object is a specific model of a BMW
car, then the method should retrieve the images containing that specific model
of a BMW and not other models of a BMW or any other type of car.

These methods can be readily applied in several practically relevant domains
[2]. To begin with, they can be used for creation of a web-scale visual search
engine where the query will be a visual object. Second, they can be used for
searching through personal image databases (e.g., select the photos that contain
an image of the Eiffel Tower). Next, performing product search will strongly
benefit from such systems: The user can take a photo of a given product, perform
a search on the web and compare its prices from the given store to the price in
the on-line shops. Furthermore, these methods will facilitate automatic tagging
of images upload on social media, such as Flickr and Facebook. Finally, these
methods can be used for augmented reality and creation of visual guides for
museums and art galleries. For instance, a user can take a photo of a given
sculpture and look for info on the web for the given sculpture.

Several systems for particular object retrieval have been proposed in the liter-
ature [3,2,4]. These systems are inspired from the text retrieval systems using the
analogy between bag-of-words and bag-of-visual-words representation [5]. They
consist of three phases: creation of visual vocabulary, image description and sim-
ilarity definition. The creation of the visual vocabulary starts with detection of
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interesting points in the images. From these points, then, local invariant de-
scriptors are extracted. Finally, the visual codebook is obtained by clustering
the large set of descriptors obtained from all of the images. The resulting clus-
ters represent the visual word, while all the visual words comprise the visual
dictionary. The image description phase consists of assigning all of the local
image descriptors to the visual words from the visual dictionary. Each image
is then described with a high-dimensional histogram and each component from
the histogram is the number of descriptors that are assigned to a given visual
word. Finally, the images are ranked using term frequency inverse document
frequency (tf − idf) scores which discount the influence of visual words which
occur in many images. The search is then performed efficiently using a fast and
tree-based inverted index structure [6].

The systems for particular object retrieval face several challenges [2]. To begin
with, the changes in the lighting, image scale and rotation can hurt the perfor-
mance of the retrieval systems. Second, viewpoint changes can make previously
unseen parts of the object visible and also may include obstructions which will
cover parts of the object. Finally, the systems need to be scalable with respect
to the size of the image database, while preserving the retrieval accuracy. More-
over, the construction of the visual vocabulary should be also performed more
efficiently.

In this paper, we present a novel method for fast and efficient construction
of the visual codebook for particular object retrieval. The proposed method is
based on the predictive clustering framework [7] which unifies predictive mod-
elling and clustering through methods that partition the instances into subsets,
such as decision trees and decision rules. The task of predictive clustering is
to identify clusters of instances that are close to each other both in the target
and in the descriptive space. In this work, we use the predictive clustering trees
(PCTs) to construct the visual vocabulary. More specifically, we use PCTs for
predicting multiple targets in which the descriptive attributes are also considered
as clustering/target attributes.

Using a single PCT is a fast and efficient approach to the construction of
visual codebooks. However, PCTs (and decision trees in general) are unstable,
i.e., can change substantially for small changes in the data. To further improve
the discriminative power and the robustness of our approach, we are using a
small ensemble (random forest) of PCTs (as suggested in [8]). This produces
several visual codebooks (each codebook corresponding to a single PCT from
the ensemble). The overall visual codebook is then obtained by concatenating
the visual codebooks from the single PCTs.

The remainder of this paper is organized as follows. Section 2 briefly presents
the related state-of-the-art methods for particular object retrieval. The predic-
tive clustering framework is described in Section 3. Section 4 gives the pro-
posed method for codebook construction for particular object retrieval. Section
5 outlines the experimental design, while Section 6 presents the results from the
experimental evaluation. Finally, the conclusions and a summary are given in
Section 7.
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2 Related Work

In this section, we briefly present the most widely used and state-of-the-art meth-
ods for CBIR. Many studies have shown that the bag of visual words approach
exhibits a high retrieval performance for object retrieval given a query image of
some particular object [9,10]. A crucial step in the bag of visual words approach
is the codebook construction. The best results are achieved by using large code-
book that contains one million or even more entries/visual words, which requires
clustering tens or even hundreds of millions of high-dimensional feature descrip-
tors into one million or more clusters. The methods for CBIR mainly differ in
the process of the visual codebook construction.

The visual codebook is typically constructed by applying k-means cluster-
ing to the local descriptors (e.g., Scale Invariant Feature Transform descriptors)
extracted from the images [11,12]. The resulting clusters are actually the vi-
sual words. Although this method works very well for smaller databases (and
consequently small number of descriptors), it has very serious limitations when
applied to the problem of large scale object retrieval [13]. It works with small
visual codebooks, i.e., with only thousands of visual words, while many datasets
may have tens of thousands of visual words.

The hierarchical k-means (HKM) approach [3] addresses the issue of small
visual codebook. HKM performs the clustering in a hierarchical manner with a
predefined number of levels (n). At the first level, the descriptor space is clustered
into k1 clusters, then at the second level, each of the k1 clusters is re-clustered
into k2 clusters, and so on, until level n. The final visual codebook then consists
of k1 ·k2 · ... ·kn visual words. However, a major drawback of this method is that
it is not a priori clear how many levels to use and how to choose the appropriate
values for k1..., kn.

Philbin [2] proposed the approximate k-means (AKM) algorithm. In AKM,
the exact nearest neighbor search is replaced with approximate nearest neighbor
search in the assignment step when searching for the nearest cluster center for
each point. In particular, the current cluster centers in each k-means iteration
are organized by a forest of k − d trees to perform an accelerated approximate
nearest neighbor search.

Most closely related to our approach is the CBIR method based on indexing
random sub-windows (extracted from the images) with extremely randomized
trees [14]. These sub-windows are sampled from the images at random positions
and random sizes. The sampled sub-windows are resized using bilinear inter-
polation to size 16 × 16. Each of the sub-windows is then described with the
HSV values (thus resulting in a 768 feature vectors). Next, these feature vec-
tors are used to construct extremely randomized tree: each node split is selected
randomly; thus, these trees are constructed in an unsupervised manner. These
trees are then used as search structures for the retrieval phase. Furthermore, the
extremely randomized trees method can be used to construct ensembles thus
further improve their retrieval performance [8].

Uijlings et al. [15] have performed experimental comparisons of visual
dictionaries constructed using k-means and tree-based approaches. The main
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conclusions from their study is that the tree-based approaches are more efficient
than approaches based on k-means. However, the improvement of the computa-
tional efficiency comes with the price of decreasing the discriminative power of
the vocabulary.

In this paper, we propose a method for visual codebook construction using the
predictive clustering framework. More specifically, we propose to construct the
visual codebook using PCTs and random forests of PCTs. There are two major
differences between the method proposed here and the one proposed by Mareé et
al. [14]. First, the former is used in the vocabulary construction phase and then
it employs the tf − idf scores and inverted index for the retrieval process, while
the latter method tries to emulate the complete process. Second, the selection
of splits in the former is performed with an informed approach, while in the
latter method this is done randomly. Namely, the split selection in the proposed
method is performed by considering the compactness of the produced clusters.
This split selection is the main reason for obtaining a visual vocabulary with
high discriminative power.

3 Predictive Clustering

In this section, we first outline the predictive clustering framework, which is the
foundation of our codebook generation approach. We then briefly describe
the predictive clustering trees for predicting multiple targets. Finally, we present
the method for construction of random forests of predictive clustering trees.

3.1 Predictive Clustering Framework

The notion of predictive clustering was first introduced by Blockeel [7]. The pre-
dictive clustering framework unifies two machine learning techniques, predictive
modelling and clustering, usually viewed as completely different. The connection
between these techniques is made by machine learning methods that partition
the instances into subsets, such as decision trees and decision rules. These meth-
ods can be considered both as predictive and as clustering methods.

The task of predictive clustering is to identify clusters of instances that are
close to each other both in the target and in the descriptive space. Figure 1 il-
lustrates the tasks of predictive modelling (Figure 1(a)), clustering (Figure 1(b))
and predictive clustering (Figure 1(c)). Note that Figure 1 presents the target
and the descriptive space as one-dimensional axes for easier visual interpretation,
but they are usually of higher dimensionality.

The clusters that were obtained using the target space only (Figure 1(a)) are
homogeneous in the target space (the target variables of the instances belonging
to the same cluster have similar values). On the other hand, the clusters obtained
using the descriptive space only (Figure 1(b)) are homogeneous in the descriptive
space (the descriptive variables of the instances belonging to the same cluster
have similar values). The predictive clustering combines these two and produces
clusters that are homogeneous both in the target and in the descriptive space
(Figure 1(c)).
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Fig. 1. An illustration of predictive clustering: (a) clustering in the target space, (b)
clustering in the descriptive space, and (c) clustering in both the target and the de-
scriptive space. Figure adapted from [7].

In this work, we use a specific setting from the predictive clustering frame-
work where the descriptive space is equal to the target space, i.e., the target
variables are used to provide descriptions for the obtained clusters. This focuses
the predictive clustering setting more on the task of clustering. This approach
has two major advantages over classical clustering (such as k-means). First, we
obtain the clusters much more efficiently as compared to standard clustering
algorithms. Second, there are cluster descriptions for each of the clusters. The
cluster description is the conjunction of the tests starting from the root node of
the tree then following the path to the leaf (or the conditions used in a predictive
clustering rule). This also improves the efficiency when new examples need to
be projected into the clusters.

3.2 PCTs for Multiple Continuous Variables

The predictive clustering framework is implemented using decision trees (called
predictive clustering trees - PCTs) and decision rules (called predictive clustering
rules) as predictive models. The predictive clustering framework sees a decision
tree as a hierarchy of clusters: the top-node corresponds to one cluster containing
all data, which is recursively partitioned into smaller clusters while moving down
the tree. PCTs can be induced with a standard top-down induction of decision

trees (TDIDT) algorithm [16]. The algorithm is presented in Table 1. It takes as
input a set of examples (E) and outputs a tree. The heuristic (h) that is used
for selecting the tests (t) is the reduction in variance caused by partitioning (P)
the instances (see line 4 of BestTest procedure in Table 1). By maximizing the
variance reduction the cluster homogeneity is maximized and it improves the
predictive performance. If no acceptable test can be found (see line 6), that is, if
the test does not significantly reduces the variance, then the algorithm creates
a leaf and computes the prototype of the instances belonging to that leaf.

The main difference between the algorithm for learning PCTs and a standard
decision tree learner is that the former considers the variance function and the
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Table 1. The top-down induction algorithm for PCTs

procedure PCT(E) returns tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ �= none then

3: for each Ei ∈ P∗ do

4: tree i = PCT(Ei)

5: return node(t∗,
⋃

i
{tree i})

6: else

7: return leaf(Prototype(E))

procedure BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on E

4: h = Var(E)−
∑

Ei∈P
|Ei|
|E|

Var(Ei)

5: if (h > h∗) ∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

prototype function, that computes a label for each leaf, as parameters that can be
instantiated for a given learning task. So far, the predictive clustering framework
has been used for the prediction of multiple continuous variables, prediction
of multiple discrete variables, hierarchical multi-label classification (HMC) and
prediction of time series [17]. The predictive clustering framework is implemented
in the CLUS system3.

The variance and prototype functions of PCTs for predicting multiple con-
tinuous variables are instantiated as follows. The variance is calculated as the
sum of the variances of the target variables, i.e., Var(E) =

∑
T

i=1 V ar(Yi). The
variances of the target variables are normalized, so that each target variable con-
tributes equally to the overall variance. This is due to the fact that the target
variables can have completely different ranges. Namely, if one of the target vari-
ables is in the range (0, 1) and another in the range (10, 100) and normalization
is not used, then the values of the second variable will contribute much more
to the overall score than the values of the first variable. In addition, weighting
of the (normalized values of the) target variables so that the variance function
gives more weight to some variables and less to others is supported. The proto-
type function (calculated at each leaf) returns as a prediction the tuple with the
mean values of the target variables, calculated by using the training instances
that belong to the given leaf.

3.3 Random Forests of Predictive Clustering Trees

An ensemble classifier is a set of base classifiers, which typically has a better
performance than the individual classifiers. A new example is classified by com-
bining the predictions of each classifier from the ensemble for that example. The
predictions are typically combined by taking their average (for regression tasks)
or their majority/probability vote (for classification tasks).

We use the random forests method to create the base classifiers in the ensem-
bles. A random forest [18] is an ensemble of trees, obtained both by bootstrap
sampling of the training set and by randomly changing the feature set during
learning. More precisely, at each node in the decision tree, a random subset of

3 The CLUS system is available for download at http://clus.sourceforge.net/ .

http://clus.sourceforge.net/
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the input attributes is taken, and the best feature is selected from this sub-
set (instead of the set of all attributes). The number of attributes that are
retained is given by a function f of the total number of input attributes x (e.g.,
f(x) = x, f(x) =

√
x, f(x) = ⌊log2 x⌋+ 1).

4 Codebook Construction Using Predictive Clustering

The architecture of the system for fast and scalable image retrieval using PCTs
is presented in Figure 2. The systems consists of an off-line phase and an on-line
phase. The off-line phase implements the construction of the visual codebook,
the image descriptions and the search structure for the retrieval. The on-line
phase implements the construction of the query image description, the querying
of the images and presenting the result of the retrieval. In the remainder of this
section, we discuss these phases in more detail.

The off-line phase starts with the generation of the local descriptors for the im-
ages. For each image in the database, affine-invariant Hessian regions are located
[2]. Typically there are 3300 regions detected on an image of size 1024× 768. For
each of these affine regions, a 128-dimensional Scale invariant feature transform
(SIFT) descriptor is then computed [12]. Next, the descriptors are used to create
the visual codebook, which is the central part of the image retrieval system.

The proposed method for constructing the visual codebook is as follows. First,
we randomly select a subset of the local (SIFT) descriptors from all of the images.
Next, the selected local descriptors constitute the training set used to construct a
PCT. For the construction of the PCT, we set the descriptive attributes (i.e., the
128 dimensional vector) to be also target and clustering attributes. Note that,
this feature is a unique characteristic of the predictive clustering framework. To
control the size of the visual codebook, we apply pre-pruning of the trees by
requiring a given minimum number of instances/descriptors in each tree leaf.
In order to get the desired number of leaves of a tree (i.e., visual words) for a
given dataset, the number of required instances in a leaf can be easily estimated
(roughly, it should be a bit smaller than the ratio between the number of training
examples and the desired codebook size). Each leaf of the tree is a separate visual
word and all of the leaves constitute the visual codebook. After the construction
of the visual codebook, we sort all of the descriptors through the tree and count
the number of descriptors that fall in a given leaf (i.e., correspond to a given
visual word). We describe each image then with a histogram (sparse frequency
vector) of the number of descriptors per visual word.

The PCTs are computationally efficient: it is very fast to construct them and
to produce a prediction. However, the trees are unstable, i.e., the structure of
the tree can change substantially for small changes in the training data [18].
To overcome this limitation and to further improve the discriminative power of
the visual codebook, we use a small random forest that consists of four PCTs
(similarly as in [8]). The final visual codebook is then obtained by concatenating
the individual visual codebooks from each of the PCTs in the forest, thus the
size of the final visual codebook is the sum of the sizes of the individual visual
codebooks.
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Once the visual codebook is constructed and the image descriptors are ob-
tained, we proceed to create the search structure for the retrieval. For the search
engine, we use the vector-space model of information retrieval [6]. The query
and each image in the database is represented as a sparse vector of visual word
occurrences. The search then calculates the similarity between the query vector
and each image vector by using a L2 distance. As a weighting scheme for the
distance, we use the standard tf − idf weighting scheme [6], which reduces the
contribution to the relevance score of the words that occur commonly (since they
are less discriminative).

For computational efficiency, the search engine stores the word occurrences in
an tree-like index structure. The index structure maps the individual words to
the images in which they occur. In the worst case, the computational complexity
of querying the index structure depends linearly from the database size, but in
practice it depends closely to linear from the number of images that match a
given query. This presents a big saving of computational time. For sparse queries,
this can result in even a more substantial speed-up, as only images which contain
visual words present in the query need to be examined. The scores for each image
are accumulated so that they are identical to explicitly computing the similarity.
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Fig. 2. Architecture of the proposed system for fast and scalable image retrieval based
on predictive clustering trees
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5 Experimental Setup

In this section, we present the experimental design we used to evaluate the
proposed algorithm and compare it to other approaches. First, we present the
dataset of images that we use. Next, we describe the evaluation metric we use
to assess the retrieval performance. Finally, we state the experimental questions
under investigation in this study.

5.1 Oxford Buildings Dataset

The Oxford Buildings dataset [19] is typically used as a benchmark dataset for
large scale particular object retrieval. It consists of 5062 high-resolution images
(1024 × 768) automatically downloaded from Flickr by searching for 11 Ox-
ford landmarks. The images are then manually annotated as to provide a solid
ground truth for evaluation of the performance of retrieval systems. It also de-
fines 55 queries (5 query objects/images for each of the 11 Oxford landmarks)
that are used for performance evaluation. Each query consists of an image and
query region/object of interest. This dataset is very challenging due to the sub-
stantial variations in scale, viewpoint and lighting conditions of the images and
the objects that need to be retrieved.

In addition to this dataset often called Oxford 5K, we use two other datasets
to test the scaling abilities of the retrieval systems: Oxford 100K and Oxform
1M [2]. The Oxford 100K dataset contains 99782 high resolution images (1024×
768), which were obtained from Flickr by searching the 145 most popular tags.
The Oxford 1M is created in a similar way, by crawling the 450 most popular
tags from Flickr and it consists of 1040801 images with medium resolution
(500× 333). These datasets are not challenging in terms of size, but also in the
fact that they have much broader domain than the Oxford buildings: they include
a mixture of different scenes, object, people, and buildings from all around the
world.

5.2 Evaluation Measure

The most widely used performance measure for evaluation of methods in image
retrieval is the mean average precision (mAP ) [9,10]. We thus adopt mAP to
evaluate the performance of our method for particular object retrieval and the
discriminative power of its visual codebook.

The mAP is calculated as follows. For each of the 55 queries (5 for each of
the 11 chosen Oxford landmarks), the average precision (AP ) is computed as
the area under the precision-recall curve (AUPRC) for that query. This score
combines both precision and recall into a single performance score. Precision is
defined as the ratio of retrieved positive images to the total number retrieved.
Recall is defined as the ratio of the number of retrieved positive images to the
total number of positive images in the dataset. An ideal precision-recall curve
has precision 1 over all recall levels and this corresponds to an average precision
of 1 and also AUPRC of 1. The values of AUPRC score are in the range [0,1]
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and if they are bigger then the retrieval performance of the system is better. The
overall mAP value is obtained by taking the mean of the average precisions of
all queries and it is used as a single number to evaluate the overall performance.

5.3 Experimental Questions

We focus the experimental evaluation of the propose method on the following
three research questions:

1. Does the use of predictive clustering trees for visual codebook construc-
tion improves the retrieval performance of the bag-of-visual-words approach
compared to the widely used methods based on k-means and approximate
k-means?

2. Whether the increase of number of descriptors and the visual codebook size
influences the retrieval performance?

3. Does the proposed method for visual codebook construction is efficient and
scalable to larger problems?

In order to answer these three question, we designed the following experimen-
tal setup. For answering the first question, we compare the performance of the
visual codebook constructed using the random forest of PCTs with the perfor-
mance of the one constructed using k-means and approximate k-means. This
comparison is justified by the fact that most current results related to content-
based particular object retrieval are obtained by using large visual codebooks
created using k-means, while the current state-of-the-art results are obtained
using approximate k-means.

We address the second question by constructing visual codebooks with differ-
ent size and by using different numbers of local descriptors. More specifically, we
use 800K, 1M , 5M , 16.7M of local descriptors and produce codebooks with 10K,
20K, 50K and 1M visual words, respectively. The codebooks are constructed
using our approach and the competing k-means and approximate k-means.

For answering the third question, we apply the visual codebook obtained
by our method to the Oxford 100K and Oxford 1M image datasets. The per-
formance results are compared with the results obtained using approximate k-
means. We do not compared with exact k-means because it can’t be scaled up
to such a huge number of descriptors and visual words [2].

6 Results and Discussion

In this section, we present and discuss the results obtained from the experimen-
tal evaluation of the proposed method. First, we compare the performance of
the proposed method to other methods from the literature. Next, we discuss the
influence of the size of the codebook and the number of local descriptors consid-
ered to the retrieval performance of our system. Finally, we show the scalability
of the proposed method by comparing its performance on a database with a
million images.
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Table 2 shows the results of the comparison of the three algorithms for visual
codebook construction: k-means, approximate k-means (AKM) and random for-
est of predictive clustering trees (RF of PCTs). The results include experiments
with a varying number of descriptors and a varying number of clusters. From
the presented results, we can note that our method has a performance that is as
least good as the one of the competing methods.

Table 2. Retrieval performance of k-means, approximate k-means and our algorithm
based on predictive clustering trees (RF of PCTs) over the Oxford Buildings image
dataset using different number of descriptors and visual words

Clustering parameters mAP

# of descriptors codebook size k-means AKM RF of PCTs

800K 10K 0.355 0.358 0.360
1M 20K 0.384 0.385 0.384
5M 50K 0.464 0.453 0.468

16.7M 1M / 0.618 0.618

Furthermore, these results clearly show that the increase of the number of local
descriptors and codebook size improve the retrieval performance of the systems.
The best result (last row of Table 2) is obtained by using visual codebook with
1 million visual words obtained by all SIFT descriptors generated from all the
images of the Oxford 5K dataset. To construct the codebook our method was
running for 43.35h, while the approximate k-means needed 69.9h (which is ∼ 1.6
times slower). Considering that the proposed method based on random forests
of PCTs is very computationally efficient [17], we can at small computational
expense construct even larger visual codebook. An initial set of experiments
indicates that further increase of the codebook size improves even more the
retrieval performance.

Next, we evaluate the scalability of our method on the 5K, 5K + 100K and
5K+100K+1M datasets using the 1M words visual codebook. The results are
given in Table 3. Here, we compare our method to approximate k-means, since
using the standard k-means is not feasible. From the results, we can see that
the retrieval performance of our method is better than the one of approximate
k-means. We can also note the drop in performance with the increase of the size
of the image database. This is mainly due to the fact that these datasets now
include much more noisy images outside of the domain of Oxford buildings.

We visually inspect the retrieval results and illustrate part of them in Figures 3
and 4. The first image in each row is the image that contains the query object,
while the remaining four images are part of the retrieved images. The retrieval
results given in Figure 3 reveals that the proposed method performs very well
when there are considerable variations in the viewpoint, the image scale, the
lighting and partial occlusion of the object.

On the other hand, the retrieval results given in Figure 4 illustrate examples
in which the proposed systems fails to successfully retrieve the particular query



Fast and Scalable Image Retrieval Using PCTs 45

Table 3. Comparison of the discriminative power (with the mAP values) of the visual
codebooks obtained by AKM and our method (RF of PCTs) over the three image
datasets (both the algorithms use a codebook with 1M visual words)

Image dataset AKM RF of PCTs

5K 0.618 0.618
5K+100K 0.490 0.512

5K+100K+1M 0.393 0.401

Fig. 3. Examples of searching the 5K dataset for: Bridge of sighs, Hertford College
(first row), Pitt Rivers Museum (second row). First image in each row is the query
image and the selected region with yellow color is the query object/building. The other
four images in each row are result images obtained using the proposed system and
algorithm.

Fig. 4. Examples of errors in retrieval for two query images (first images in the rows).
The false positives for the first query is visually plausible, but the false positive for the
second query is due to visual ambiguities in the local regions and the low numbers of
visual words in the retrieved image.

object. For the first query (the first row of images), the failure is due to the
presence of images that are visually plausible and consistent with the query
image (the retrieved images also contain windows with bars).



46 I. Dimitrovski et al.

The failure for the second query (the second row of images) is a result of the
visual ambiguities present in the images (the first two result images) and the
‘burstiness’ effect (the second two result images) [20]. The visual ambiguities
arise because the images have a very small number of local regions. This in turn
results in a very large tf − idf weights in the matching phase thus making an
error while retrieving the particular object. The burstiness effect appears when a
given local descriptors appear more frequently in an image than a model would
predict. In this context, the burstiness distorts the image similarity measure (i.e.,
the tf − idf weights) and thus pollutes the ranking of the images in the retrieval
results. In our case, this is a result of the rich texture present in the resulting
images such as water-drops and flowers.

7 Conclusion

In this paper, we present a method for fast and efficient construction of visual
codebooks for particular object retrieval from large scale image databases. The
construction of a codebook is an essential part of the bag-of-visual-words ap-
proach to image retrieval. It should thus be efficient and deliver a codebook
with high discriminative power. However, the construction of a visual codebook
is a bottleneck in the bag-of-visual-words approach, because it typically uses k-
means clustering over millions image patches to obtain several tens of thousands
visual words. Existing approaches are able to solve the efficiency issue, however,
a part of the discriminative power of the codebook is sacrificed for better effi-
ciency. In this paper, we propose to use predictive clustering trees (PCTs) for
codebook construction. In this way, we efficiently construct visual codebooks
and increase the discriminative power of the dictionary.

PCTs are a generalization of decision trees and are capable of performing
predictive modelling and clustering simultaneously. More specifically, the method
we propose uses PCTs for predicting multiple targets to construct the visual
codebook – each leaf in the tree is a visual word. Furthermore, we construct
a small random forest of PCTs to increase the stability of the codebook and
its discriminative power. The overall codebook is obtained by concatenating the
smaller codebooks from each tree.

We evaluated the proposed method on the Oxford buildings image database,
which is a benchmark database for large scale particular object retrieval. We
used three variants of the database that include 5K, 100K and 1M images.
We compare the proposed method to literature standard and state-of-the-art
methods: k-means and approximate k-means clustering.

The results from the experimental evaluation reveal the following. To begin
with, our method has a performance that is as least good as the competing meth-
ods on the smaller database with 5K images. Next, the increase of the number
of local descriptors and codebook size improve the retrieval performance of the
systems. Considering that the proposed method is computationally efficient, we
can afford to construct larger codebooks that in turn will increase the retrieval
performance. Finally, on the large databases, our method exhibits better re-
trieval performance than the competing approximate k-means. All in all, the
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proposed method is able to efficiently produce a visual codebook with a high
discriminative power.

We plan to extend this work along three major dimensions. First, we plan to
extend the method and allow soft assignment of the descriptors to the visual
words. Several studies have suggested that this could increase the retrieval per-
formance of the system. Second, we will use the PCTs as search structures for
performing the retrieval itself. This means that we will bypass the tf − idf cal-
culation and the creation of the inverted index, thus speed-up the retrieval even
more. Finally, we will address the issue of burstiness by performing re-ranking
of the top-ranked results by using spatial constraints. This procedure uses the
predictions of the feature locations to estimate a transformation between the
query region and each target image.
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