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Abstract. The recent advent of high throughput methods has generated large 

amounts of protein-protein interaction network (PPIN) data. When studying the 

workings of a biological cell, it is useful to be able to detect known and predict 

still undiscovered protein complexes within the cell's PPINs. Such predictions 

may be used as an inexpensive tool to direct biological experiments. Because of 

its importance in the studies of protein interaction network, there are different 

models and algorithms in identifying functional modules in PPINs. In this 

paper, we present two representative methods, focusing on the comparison of 

their clustering properties in PPIN and their contribution towards function 

prediction. The work is done with PPIN data from the bakers’ yeast 

(Saccaromyces cerevisiae) and since the network is noisy and still incomplete, 

we use pre-processing and purifying. As a conclusion new progress and future 

research directions are discussed.  

Keywords: Protein interaction networks, Graph clustering, Protein function 

prediction. 

1   Introduction 

The rapid development of genomics and proteomics has generated an unprecedented 

amount of data for multiple model organisms. As has been commonly realized, the 

acquisition of data is a preliminary step, and a true challenge lies in developing 

effective means to analyze such data and endow them with physical or functional 

meaning [1]. 

Significant amount of data used for computational function prediction is produced 

by high-throughput techniques. Methods like Microarray co-expression analysis and 

Yeast2Hybrid experiments have allowed the construction of large interaction 

networks. A protein-protein interaction network (PPIN) consists of nodes representing 

proteins, and edges representing interactions between proteins. Such networks are 

stochastic as edges are weighted with the probability of interaction. There is more 

information in a PPIN compared to sequence or structure alone. A network provides a 

global view of the context of each gene/protein. Hence, the next stage of 

computational function prediction is characterized by the use of a protein’s interaction 

context within the network to predict its functions. A node in a PPIN is annotated 



with one or more functional terms. Multiple and sometimes unrelated annotations can 

occur due to multiple active binding sites or possibly multiple stable tertiary 

conformations of a protein. The annotation terms are commonly based on ontology, 

like Gene Ontology (GO) project [2]. 

One of the main characteristics of the protein interaction networks is that they 

contain regions or subnetworks densely connected within, but very sparsely 

interconnected between themselves. This is the main reason for development of 

methods that perform clustering over the graph representing the protein interaction 

network. The modular structure of the biological networks in general is proven in [3], 

where the protein interaction network is clustered using three different approaches. 

The first one finds the completely connected subgraphs of the network and considers 

them as clusters. The second one exploits super paramagnetic clustering for data 

which are not in some metric space. The third approach observes the clustering as an 

optimization problem, thus maximizing the density of connectedness.  

One very important system for clustering protein interaction networks is the 

MCODE system described in [4]. It performs the clustering in three stages: (1) 

weightening the nodes in the graph, using the clustering coefficient of the node's 

neighbourhood, (2) the weighted graph is traversed recursively and molecular 

complex is formed out of the nodes which have weight above a certain threshold, (3) 

post processing the results. NetworkBlast [5] is a tool in which every subgraph of the 

graph of protein interactions is considered as a candidate for functional module. Its 

modularity is then evaluated by calculating the ratio between the likelihood that it can 

be set to previously created model of protein complex and the probability that the 

edges in it are random. An algorithm which detects densely connected subgraphs with 

n nodes and need at least n/2 edges to be deleted in order to break its connectivity is 

presented in [6]. Markov clustering is used in the algorithm proposed in [7]. 

The algorithm proposed in [8] is a typical member of the family of algorithms 

which represent the proteins in some metric space. It calculates the adjacency between 

two proteins as their probability to have m common neighbours. Afterwards, 

hierarchical clustering is applied to the obtained distance matrix. Other representative 

example is the system PRODISTIN [9], which assumes that the Czekanovski-Dice 

distance between two proteins, which is based on the number of their common 

neighbours, mirrors their functional distance as well. 

The quality of the obtained clusters can be evaluated in couple of ways. One of the 

criteria rates the clustering as good if the proteins in a cluster are densely connected 

between themselves, but sparsely connected with the proteins in the rest of the 

network [10]. Some systems provide tools for generation of graphs with known 

clusters, which is modelled with the parameters of the explored network [11]. Then 

the clusters obtained with the clustering algorithm are compared to the known ones. 

The clustering method can also be evaluated by its ability to reconstruct the 

experimentally and biologically confirmed protein complexes or functional modules 

[3][10][12]. For a system for protein function prediction, the most useful property of a 

clustering method is the functional homogeneity of the clusters. 

In this paper we set up a framework for predicting protein function by using 

clustering in PPIN. We use two clustering methods, one that take into account the 

graph theory adjusted for PPIN, and other that transforms the PPIN into metric space. 

The PPIN data we use are from the bakers’ yeast (Saccaromyces cerevisiae).  



2   Research Methods 

The methods for protein function prediction by clustering of PPIN generally consist 

of three phases, as represented on figure 1.  

 

Fig. 1. General framework for protein function prediction by clustering in PPIN 

The first phase is the dividing the network in clusters, using its topology or some 

other information for the nodes or the edges, if such an information is available. The 

compactness and the characteristics of the obtained clusters are then evaluated in the 

second phase. From physical aspect the clusters are assessed by the ratio of the 

number of edges within and between the clusters, and from biological aspect they are 

assessed by the functional and biological similarities of the proteins in the clusters. 

This second phase is not mandatory, but it is useful because it can point out what to 

expect from the function prediction itself. The prediction of the protein annotations 

for the proteins in the clusters is the task of the third phase. 



2.1 Protein-Protein Interaction Data 

High-throughput techniques are prone to detecting many false positive interactions, 

leading to a lot of noise and non-existing interactions in the databases. Furthermore, 

some of the databases are supplemented with interactions computationally derived 

with a method for protein interaction prediction, adding additional noise to the 

databases. Therefore, none of the available databases are perfectly reliable and the 

choice of a suitable database should be made very carefully.  

For the needs of this paper the PPIN data are compiled, pre-processed and purified 

from a number of established datasets, like: DIP [13], MIPS [14], MINT [15], BIND 

[16] and BioGRID [17]. The functional annotations of the proteins were taken from 

the SGD database [18]. It is important to note that the annotations are unified with 

Gene Ontology (GO) terminology [2]. The GO consists of three structured 

dictionaries (ontologies): cellular component, biological process and molecular 

function. Due to the hierarchical structure of GO, the terms are linked between 

themselves with the relations: 'is_a', 'part_of', and 'regulates'. 

The data for protein annotations are not used raw, but are preprocessed as proposed 

in [20]. First, the trivial functional annotations, like 'unknown cellular compartment', 

'unknown molecular function' and 'unknown biological process' are erased. Then, 

additional annotations are calculated for each protein by the policy of transitive 

closure derived from the GO. The extremely frequent functional labels (appearing as 

annotations to more than 300 proteins) are also excluded, because they are very 

general and do not carry significant information.  

After all the preprocessing steps, the used dataset is believed to be highly reliable 

and consists of 2502 proteins from the interaction of the baker's yeast, has 12708 

interactions between them and are annotated with a total of 888 functional labels. For 

the purposes of evaluating the proposed methods, the largest connected component of 

this dataset is used, which consists of 2146 proteins. 

2.2 Cluster Extraction 

We use two different methods for cluster extraction from the PPIN data. The first one, 

edge-betweenness clustering, found its first use for clustering biological networks in 

[20], but the scope of this paper was to explore the dependence between the number 

of obtained clusters and the number of deleted edges for different datasets. The 

second method relies on spectral analysis of the PPIN. Similar algorithm is used in 

[21], but only for the purpose of predicting protein interactions rather than 

annotations.  

Edge-Betweenness Clustering 

The idea for clustering of networks using the concept of edge-betweenness was first 

proposed in [22] and is an extension of the concept of node-betweenness, which is an 

estimate of the centrality of a node in a network. Analogous to the definitions for 

node-betweenness, the betweenness of an edge is calculated as the number of shortest 



paths between any two nodes in the graph which pass through that edge. The edges 

which are between clusters, i.e. which connect two nodes of different clusters have 

higher betweenness then the edges which connect nodes that belong to the same 

cluster. By deleting the edges with the highest betweenness, after certain number of 

iterations the graph will be separated into several components which can be treated as 

clusters.  

The main changing parameter of this algorithm is the number of edges that need to 

be deleted. In our research, this number in obtained empirically. The betweenness of 

each edge is recalculated after each iteration, which, regarding to [22] is better 

strategy then just calculating the edge betweenness of every edge only once at the 

beginning and then deleting the edges with highest betweenness.  

If the number of nodes in the graphs is |V| and the total number of edges between 

them is |E|, then the complexity of the algorithm is O(|E|
2
|V|). 

Clustering Based on Spectral Analysis of the Protein-Protein Interaction Graph 

One of the basic types of graph clustering, according to [23], is the spectral clustering, 

which performs spectral analysis of the graph's adjacency matrix or some of its 

derivatives, by finding its eigenvalues and eigenvectors. The first step in the spectral 

clustering is transforming the initial dataset into a set of points in an n-dimensional 

space, whose coordinates are elements of n selected eigenvectors. This change in the 

representation of the data enhances the characteristics of the clusters making them 

more distinctive. Then a classical clustering algorithm, like k-means for example, can 

be used, to cluster the data. 

Although the initial idea for spectral analysis was intended directly to the 

adjacency matrix of the graph, the newer algorithms use the Laplacian matrix L, 

which is derived from the adjacency matrix A as in equation (1). 

L = D – A .    (1) 

In this equation, D is a diagonal matrix whose diagonal element Dii equals the 

degree of the node i of the graph. Before spectral analysis, the Laplacian matrix needs 

to be normalized.  

The main characteristic of the graphs' Laplacian matrix is the fact that the number 

k of zero eigenvalues equals to the number of connected components of the graph. 

The non-zero values of the corresponding eigenvectors are on the indices of the nodes 

that belong to the corresponding connected component. If those eigenvectors are put 

as columns of one |V|xk matrix, each row represents one node which has only one 

non-zero value: on the position of the eigenvector of the connected component it 

belongs to.  

If the graph consists of only one connected component, that the Laplacian will 

have only one non-zero eigenvalue. Let the number of clusters that the graphs should 

be separated into be k. Taking the k eigenvectors that correspond to the k eigenvalues 

closest to 0, and transforming the nodes of the graph into the k-dimensional space that 

they form, all the nodes that belong to one cluster will be situated close in that space. 

This way the nodes will be brought into a form suitable for using any clustering 

algorithms, like k-means. The number of clusters is determined empirically. 



2.3 Cluster Evaluation 

One of the evaluation models which give a general overview of the qualitative 

differences between the clustering algorithms is proposed in [10] and it provides 

information whether a cluster has the character of a module or densely connected 

subgraph. This is highly important, because, according to [3], the term functional 

module is closely related to subgraphs rich in edges within it. The first necessary 

criteria for a cluster to be considered as a module is given with (2), where n is the 

number of nodes, kin is the number of edges within the cluster and kout is the number of 

edges from the cluster to nodes which don’t belong to it. 
n

i

i

out

n

i

i

in kk
11 .    (2) 

The second criterion requires that collectively, the number of neighbors of each 

node within the cluster is higher than the number of neighbors from the module to the 

outside. This criterion is given by (3). 

},...,,{},...,,{ 2121 n

outoutout

n

ininin kkkkkk
  (3) 

Whether the module meets these criteria or not is determined by using the 

Wilcoxon non-parametric statistical test for comparing the distribution of two random 

variables. 

2.4 Functional Annotation Using Clusters 

After clustering the PPIN we set up a strategy for annotating the query protein with 

the adequate functions according to the functions of the other proteins in the cluster 

where it belongs. The simplest and most intuitive approach would be that each 

function is ranked by its frequency of appearance as an annotation for the proteins in 

the cluster. This rank is calculated by the formula (4) and is then normalized in the 

range from 0 to 1. 

Ki

ijFj z=f(j)     (4) 

where F is the set of functions present in the cluster K, and 

 

otherwise ,0

F fromfunction th -j  with theannotated isK  fromprotein th -i if ,1
zij

       (5) 

3 Results and Discussion 

Each protein in the PPIN is streamed through the prediction process one at a time as a 

query protein.  The query protein is considered unannotated, that is we employ the 

leave-pone out method. Each of the algorithms works in a fashion that ranks the 

“proximity” of the possible functions to the query protein. The ranks are scaled 



between 0 and 1 as explained in 2.4. The query protein is annotated with all functions 

that have rank above a previously determined threshold ω. For example, for ω = 0, the 

query protein is assigned with all the function present in its cluster. We change the 

threshold with step 0.1 and compute numbers of true-positives (TP), true- negatives 

(TN), false-positives (FP) and false-negatives (FN). For a single we consider the TP 

to be the number of correctly predicted functions, and for the whole PPIN and a given 

value of ω the TP number is the total sum of all single protein TPs . 

To compare performance between different algorithms we use standard measures 

as sensitivity and specificity (6). 

FNTP

TP
ysensitivit

     FPTN

TN
yspecificit   (6) 

We plot the values we compute for the sensitivity and specificity using a ROC 

curve (Receiver Operating Curve). The x-axe corresponds to the false positive rate, 

which is the number of false predictions that a wrong function is assigned to a single 

protein, scaled by the total number of functions that do not belong to that particular 

protein. This rate is calculated with (7).  

yspecificit
TNFP

FP
fpr 1    (7) 

The y-axe corresponds to the rate of true predictions that is the sensitivity. At last 

we use the AUC (Area Under the ROC Curve) measure as a numeric evaluator of the 

ROC curve. The AUC is a number that is equal to the area under the curve and its 

value should be above 0.5, which is the value that we get if the prediction process was 

random. The closer the value of AUC to 1, the better is the prediction method. 

Before we evaluate the prediction performance of the proposed methods, first we 

assess their clustering properties on the PPIN. For each of the methods we use a 

changing parameter as explained in 2.2. For the edge-betweenness method we 

performed experiments using deletion of 1000 and 1400 edges. For the spectral 

clustering we experimented with different numbers of eigenvalues starting from 50 up 

to 300, with a changing step of 50. The results are presented in Table 1. 

Table 1. Evaluation results of the clustering methods using method described in 2.3 

  
changing parameter 

number of 

clusters 

clusters meeting module 

criteria (%) 

edge-

betweenness  

1000 103 85.44 

1400 217 54.84    

spectral 

clustering 

50 50 100.00 

100 100 94.00 

150 150 84.67 

200 200 65.50 

250 250 47.60 

300 300 35.67 

 

As can be concluded from Table 1, the number of clusters which have the nature of 

a module reduces as the cluster size decreases i.e. as the total number of clusters 

increases. However, for certain parameters for the both algorithms (1000 removed 



edges with the edge-betweenness method and 50, 150 and 200 eigenvalues for the 

spectral clustering method), the percentage of modules among the obtained clusters is 

sufficiently high. Thus, it is reasonable to presume that the clustering process has 

produced functional modules. 

After evaluating the clustering properties we move towards the evaluation of the 

function prediction when using the two clustering methods.  

Table 2. Function prediction evaluation when using edge-betweenness method 

No. of deleted edges ω = 0,1 0,3 0,5 0,7 0,9 AUC 

1000 
sens. 0,6693 0,4753 0,3266 0,2459 0,1445 

0,8610 
fpr 0,0456 0,0136 0,0051 0,0027 0,0011 

1400 
sens. 0,6651 0,5131 0,3741 0,2872 0,1623 

0,8430 
fpr 0,0355 0,0118 0,0046 0,0025 0,0012 

 
Table 3. Function prediction evaluation when using spectral clustering method 

No. of 

eigenvalues 
ω = 0,1 0,3 0,5 0,7 0,9 

AUC 

50 
sens. 0,6484 0,4436 0,3246 0,2082 0,1147 

0,8644 
fpr 0,0565 0,0159 0,0077 0,0036 0,0014 

100 
sens. 0,6702 0,4713 0,3376 0,2430 0,1404 

0,8590 
fpr 0,0479 0,0142 0,0056 0,0028 0,0010 

150 
sens. 0,6709 0,5053 0,3620 0,2688 0,1598 

0,8531 
fpr 0,0400 0,0128 0,0050 0,0026 0,0012 

200 
sens. 0,6783 0,5295 0,3859 0,3053 0,1870 

0,8458 
fpr 0,0383 0,0116 0,0049 0,0027 0,0013 

250 
sens. 0,6690 0,5434 0,3987 0,3175 0,2039 

0,8381 
fpr 0,0329 0,0121 0,0047 0,0028 0,0015 

300 
sens. 0,6538 0,5375 0,3952 0,3196 0,2143 

0,8283 
fpr 0,0307 0,0121 0,0046 0,0028 0,0017 

 

 
Fig. 2. ROC curves for the function prediction evaluation for the edge-betweenness 

and spectral clustering method  



By comparing the AUC values of the results in Table 2 and Table 3, it can be 

concluded that the edge-betweenness method performs better when 1000 edges are 

removed, while the spectral clustering renders best results when only 50 eigenvalues 

are considered. The spectral clustering method is slightly superior over the edge-

betweenness method according to the AUC values, but the edge-betweenness method 

achieves better sensitivity and false positive rate for ω = 0.1. It is important to notice 

that for ω = 0 the algorithms achieve very high sensitivity of over 77.78% for the 

edge-betweenness method and 82.35% for the spectral clustering method in best case. 

However, the profitability of this result for the spectral clustering method is 

questionable, because the false positive rate in that case is nearly 20%. Therefore, it 

would be useful to inquire what the permissible trade-off limit between correctly and 

incorrectly detected protein functions is. Graphical visualization of the function 

prediction results is given in Fig. 2.  

4 Conclusion and Future Directions 

This paper exploits the ability of two graph clustering methods for detecting 

functional modules and predicting protein functions from PPIN. The methods were 

tested over one of the richest interactomes: the interactome of the baker’s yeast. The 

first approach uses the edge-betweenness algorithm for graph clustering, while the 

second one performs spectral clustering over the Laplacian of the adjacency matrix of 

the PPIN. Due to the fact that the PPIN data contain a lot of false positive 

interactions, the dataset needs to be preprocessed and purified prior to the functional 

annotation. This paper also illustrates a general framework for the vast set of 

algorithms for protein function prediction which are based on clustering of the PPIN. 

The proposed approaches prove that utilizing clustering of the PPIN has high 

potential in the task of protein function prediction. The results show that both 

algorithms achieve high sensitivity and small false positive rate and they both have 

high AUC values, with some advantage of the edge-betweenness method which has 

smaller false positive rates. However there is one limitation of our current approach, 

that is, all of our analyses were performed on unweighted graphs, because our 

reference PPIN does not contain any information that would enable us to assign 

reliability values (weights) to the edges. It should be mentioned that if a method can 

deal with weighted graphs it would be likely to give better performances if the 

weights reflect the reliability of the links between proteins. Since spectral clustering 

can deal with weighted graphs, while the edge-betweenness clustering does not take 

in account any edge weight, future directions for using clustering for the aim of 

function prediction should follow the spectral clustering approach. 
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