
MPEG-4 3D Graphics: from specifications to the screen

Sasko Celakovski*, Marius Preda**, Slobodan Kalajdziski*, Danco Davcev*, Françoise Preteux**

*Faculty of Electrical Engineering, Karpos II, bb, 1000 Skopje, Macedonia
**ARTEMIS Project Unit, GET-INT, 9, rue Charles Fourier, 91000 Evry, FRANCE

etfdav@etf.ukim.edu.mk, marius.preda@int-evry.fr

Abstract: - This paper presents a novel implementation of a 3D rendering engine able to display 3D graphics
MPEG-4 objects. By using the MPEG-4 SDK (Software Developer Kit), the 3D objects are first decoded and

the MPEG-4 scene graph structure is filed. We introduce a scene manager able to address in an optimized

manner the rendering requirements. It is developed as part of the rendering engine and it enables to create an
appropriate form representation of the data resources. The novel concept implemented here is to consider the

scene management with respect to the rendering constraints and not to the representation of the data as in a

usual MPEG-4 approach. This paper describes the software communication procedures between the MPEG-4
SDK and the rendering scene management in the case of static and animated (skinned) object and some results

dealing with the representation of an articulated model illustrate the performances of the developed approach.

Key words -3D Graphics, MPEG-4 Standard, Rendering Engine, Software Developer Kit

1 Introduction

The latest developments in the multimedia field as

well as the need of exchanging data through a wide

spread of networks, lead the scientific and
industrial communities to build new and rich

multimedia standards. Among existent or on-going

multimedia standards, MPEG-4 [1] is one of the
most complete in terms of media representation,

compression, 2D and 3D graphics primitives, user

interaction and programmatic environment. As a
member of the MPEG family, the MPEG-4

standard inherits and improves all the features of its

predecessors, offering the possibility of efficient
transmitting and/or storing a huge amount of digital

audio / video. Furthermore, the standard addresses

state of the art techniques such as advanced audio
coding, video compression-based on visual object,

wavelet deployment and mesh-based representation.

In addition to representing elementary media,
MPEG-4 goes further and specifies mechanisms

that allow to create complex multimedia scenes. It

is now possible to combine several media, to define
synthetic content and to add interaction and

dynamic behavior of the scene. These features are

supported by using a special description language
called BInary Format for Scenes (BIFS). BIFS is

based widely on Virtual Reality Modeling

Language [2] (VRML) and represents a binary
encoded version of an extended subset of VRML,

which can represent roughly the same scene as with

VRML in a much more efficient manner. In this
paper we are interested in the BIFS functionalities

for representing synthetic content, especially the

3D objects. The wide range of functionalities

supported by MPEG-4 makes this standard one of
the most complete and advanced solution, and

companies are slowly deploying MPEG-4

technologies inside their applications. The
complexity of the standard is a serious drawback

and its wide acceptance as a common multimedia

format has difficulties to take off. In a previous
paper [3], we stated that the development of an

MPEG-4 SDK that make transparent for the

developer some MPEG-4 key techniques such as
encoding, can improve the standard acceptance and

speed up the development of applications based on

MPEG-4. We demonstrate this statement by
developing a 3DSMax plug-in and a Maya exporter.

In this paper, we will demonstrate the same concept
(facility of building applications based on the

MPEG-4 SDK) but in the case of a new application:

an MPEG-4 3D player.

Currently there is no significant commercial

application of MPEG-4 3D capabilities. Some 3D
mesh compression implementations of the MPEG-4

3DMC approach are reported in the literature (IBM,

Samsung). In addition simple players for face
animation provided by face2face inc. [4] or for

body animation provided by VRLab [5] and

ARTEMIS [6] are only restricted implementations
of subparts of MPEG-4 specifications.

Any application that would visualize MPEG-4

encoded 3D objects will influence the significance
of the whole standard.

https://www.researchgate.net/profile/Slobodan_Kalajdziski?el=1_x_100&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/profile/Marius_Preda?el=1_x_100&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/profile/Danco_Davcev?el=1_x_100&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/profile/Sasko_Celakovski?el=1_x_100&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==

Real-time rendering engines are used to visualize

3D content together with animations while instantly

reacting to different user interactions. These
engines are widely used in applications for

entertainment, educations, GUI and so on. Open

source examples of such engines are OGRE [7] and
Irrilich [8]. They both offer extended set of

rendering functionalities but differ in design

approaches.
The rendering process has to be hardware

independent. The technologies that enable high

level of hardware abstraction layer (HAL) allow
functioning of the rendering engines on a wide

range of graphics hardware. Two most important

HAL technologies are DirectX [9] and OpenGL
[10].

OpenGL is the first standard which defined open

interface to the graphics hardware. However at the
moment it lacks of the support of the latest release

of graphics hardware. DirectX is a set of low-level

application programming interfaces for creating
games and other high-performance multimedia

applications. It includes support for 3D graphics. It

represents the current trends in computer graphics
development.

In this paper we report on a highly optimized 3D

player able to decode and display MPEG-4 content.
The rendering architecture is described in detail in

Section 2. The content decoding is ensured by the

use of the MPEG-4 SDK, previously reported and

shortly introduced in Section 3. In Section 4 we

show how the two applications are merged together
in order to build the MPEG-4 player. In Section 5

we present some performances of the player in

terms of speed and rendering quality.

2 Rendering Engine Architecture

The object oriented approach is used for the design

of our rendering engine. In that way we manage to
provide abstract representation of the 3D scene that

enables handling of different input formats. At the

same time we can encapsulate implementation of
separate logical objects referring to different

functionalities of the rendering engine. The

rendering engine implements functionalities for
representation, manipulation, maintenance and

presentation of the 3D scene. Figure 1 shows the

hierarchical structure of the objects in the rendering
engine.

The representation of 3D objects in the scene is

achieved by visualizing their corresponding
abstraction named entities. Entities contain the

geometry definition of 3D objects segmented in

geometry subsets of meshes.

Figure 1 –Rendering engine architecture.

The entity abstraction is not considered for non-

geometrical properties of 3D objects. These

properties (texture and material) are described with
a help of entity resource which are related to every

instance of entity’s subsets. The entity resource

defines the appearance of an entity’s subset by
defining its material (diffuse, ambient, emissive

and specular characteristics) and texture map.

Texture and material properties have to be treated
differently by the rendering engine because while

the first one maps to the 3D surface the second

defines the surface appearance parametrically.
The entities in the 3D scene can be static or

animated. The animation controller stores the data

needed to calculate the orientation and position of
the animated entities in each frame of their

animation.

The 3D scene management involves construction,
manipulation and destruction of different entity,

entity resource and animation controller instances.

In our approach we delegate this complex task to
the scene manager. It contains lists for all entities,

entity resources and animation controllers in the

scene and their mutual dependences or relations.
The scene manager provides external interfaces for

creation of instances of different scene objects and

user interaction. The content input feeds the scene
manager with scene objects. In our approach we

integrate MPEG-4 content by using decoder SDK.
More details on this interface are given in the next

section. The interaction input provides data about

user actions on the screen to the scene manager.
The scene manager passes instructions to the

renderer for visualization of the entities. The

renderer uses this information together with the
lightning, camera setup and presentation

parameters to create output to the rendering device.

We use DirectX technology in order to encapsulate
hardware dependent 3D visualization functionality.

3 MPEG-4 SDK

The MPEG-4 SDK is designed to offer an access to

the MPEG-4 fundamental elements - the BIFS
scene and the elementary streams – transparently

with respect to the compression layer. The

developer using the SDK must know the interface
of the nodes defined by the standard but no

knowledge is required concerning how this

information is compressed. Figure 2 presents the
MPEG-4 SDK architecture.

Figure 2 –Architecture of MPEG-4 SDK.

The MPEG-4 SDK main functionalities refer to (1)
encoding/decoding MPEG-4 scene and elementary

streams; (2) browsing and modifying the attributes

of MPEG-4 scene nodes and the content of MPEG-
4 elementary streams, and (3) creating/deleting

MPEG-4 scene nodes and elementary streams.

Figure 3 – Operations supported by the MPEG-4 SDK.

Here we are interested in the MPEG-4 capability

for representing static and animated 3D objects. We

previously showed that one needs only 11 scene
graph nodes from the total number of more than

150 nodes that MPEG-4 specifies in order to

represent static and articulated mesh objects.
The MP4SDK is a C++ library based on the

MPEG-4 Reference Software [11] (IM1). In this

experimentation we used the SDK generated
according to the "Animated Character" profile. This

profile, currently under consideration within the

MPEG community, selects 11 nodes in the scene
graph and 2 streams from the media layer. The

components of this profile (the list of scene nodes

and elementary streams) and the corresponding
SDK classes are described in Figure 4.

Figure 4 – The SDK Generator applied to the Animated

Character profile.

4 Merging MPEG-4 SDK and the

Rendering Engine

The integration of MPEG-4 SDK in the rendering
engine will be explained through the example

which will show how the 3D geometry objects

given in MPEG-4 format are transferred to the
scene manager.

The 3D static objects in the MPEG-4 scene are

represented through instances of the Shape class
and the 3D animated objects through instances of

the SBSkinnedModel class. For each case we show

the communication between the MPEG-4 SDK
component and the scene manager.

4.1 MPEG-4 SDK and Rendering

communication for static objects

The Shape class contains information for the 3D
geometry and its appearance. The geometry is

given in MP4 IndexedFaceset structure that
contains an array of vertices and indexed faces. The

Appearance class gives the description of the

appearance of the 3D geometry object.
This information is used to generate the initial 3D

scene as illustrated in Figure 5. Upon decoding of

the MPEG-4 content the create scene process is
initiated. This process populates the scene manager

by triggering two scene manager interfaces: create

entity and create entity resource. The create entity
process uses the MP4IndexFaceset structures (MP4

coordinate and MP4 coordIndex), while the create

entity resource process uses theMP4Appearance
data (MP4 material and MP4 texture) from the

MPEG-4 SDK. The actual mapping of MPEG-4

structures and rendering engine’s structures is
given in Figure 6.

Figure 5 – The communication between the MP4 SDK

and the Scene Manager for the Shape object.

As can be seen from the Figure 6 when MPEG-4

SDK finishes the parsing of the 3D content it stores

the geometry in the MP4IndexedFaceset instances
and the appearance attributes in MP4Appearance

instances. After invoking the create scene process

(presented on the Figure 5), it retrieves all of the
MP4Shape instances in the 3D scene. By iterating

through these instances, it fetches the geometry and

appearance attributes necessary for converting the
data needed for registering of corresponding Entity

and EntityResource instances to the scene manager.

The Entity class stores all necessary geometry of
the object, while the EntityResource class gives the

real look of the object by providing its materials

and textures

Figure 6 – Class mapping between MP4 SDK and

rendering for the IndexedFaceSet geometry type.

4.2 MPEG-4 SDK and rendering

communication for articulated objects

MPEG-4 defines the SBSkinnedModel node to

describe articulated (skin-bone animated) 3D

geometry. Communication between the MPEG-4
SDK and the rendering engine for providing

support for skin-bone animated objects is presented

in Figure 7.

Figure 7 – The communication between the MP4

SDK and the Scene Manager for the

SBSkinnedModel object.

Each instance of the SBSkinnedModel contains a
set of vertices coordinates and 3D normals for the

geometry object stored in the skinCoord and

skinNormal members respectively. The vertices
and normals in the SBSkinnedModel are shared by

all of the different parts in the 3D object, so called

skins. Different skins in the skinned model are
described in an array of Skin field. Each of these

Skin components stores appearance and geometry

attributes. The geometry in each Skin component
has an IndexedFaceSet which refer to the 3D

vertices from the SBSkinnedModel and in addition

it defines face indices in its coordIndex member.
The appearance field contains the material and the

texture for the skin. The entity creation process

iterates through all of the SBSkinnedModel
instances in the MPEG-4 scene and collects the

necessary data to register appropriate entity and

entity resource instances in the scene manager as it
is illustrated in Figure 8. Similarly to static 3D

objects in the scene, the Entity instances hold the

3D geometry data while the Entity resource

instances provide realistic appearance of the 3D

objects.

Figure 8 – Class mapping between MP4 SDK and

rendering for the SBSkinnedModel node.

Figure 9 illustrates rendered MPEG-4 objects in
wire frame, Goroud shaded form and textured

model. The rendering engine enumerates all

graphics devices on the local machine, and selects
the most convenient device for the visualization of

the 3D scene. If some required features are not

supported by the rendering device, then the engine
initializes the software emulation. This approach

has two main advantages. The combination of

hardware and software rendering enables usage of a
wide range of graphics hardware. The support of

hardware accelerated rendering enables more

efficient visualization 3D scene with large number
of polygons and rendering effects.

a) b) c)

Figure 9 – Visualization by the rendering engine: a) in

wireframe, b) in Goroud shaded and c) textured
model.

The current implementation of the renderer
supports geometry, materials and textures. As soon

as other features such as bone-based animation,

will be supported by the MPEG4 SDK, they will be

included in the renderer as well.

5 Conclusion and future work

In this paper we presented a novel implementation
of a 3D rendering engine able to display graphics

objects represented by using the MPEG-4 standard.

Based on the MPEG-4 SDK, the media entity (here
the 3D objects) is first decoded and the MPEG-4

scene graph structure is filed. Then a scene

manager, developed as part of the rendering engine,
creates the data resources to be displayed in an

optimized manner with respect to rendering

requirements. The novel concept here is to consider
the management of the scene close related to the

rendering and not to the representation of the data

as in a common MPEG-4 approach [12]. We
described the software communication between the

MPEG-4 SDK and the rendering scene

management in the case of static and animated
(skinned) object. Finally we illustrate some results

dealing with representation of an articulated model.

The future work will aim to integrating the
elementary media (video, audio and animation

stream) which requires synchronization and stream

control.

Acknowledgment

This work is partially supported by the EGIDE and

French Embassy in Skopje. The authors would like
to thank Vladimir Trajkovik, Blerim Mustafa and

Son Tran for their valuable contributions.

References

[1] ISO/IEC 14496-1:2001 Information
technology -- Coding of audio-visual objects --

Part 1: Systems, International Organization for

Standardization, Swiss, 2001.
[2] ISO/IEC 14772-1: 1998, Information

technology — Computer graphics and image

processing — The Virtual Reality Modeling
Language — Part 1: Functional specification and

UTF-8 encoding.

[3] O. Folea, M. Preda, F. Prêteux, MPEG-4
SDK: from specifications to real applications, 9th

WSEAS International Conference on

Communications, Athens, Greece, July 14-16 ,
2005

[4] Facial animation solutions, face2face. Inc,

http://www.f2f-inc.com/

[5] T.K. Capin, D. Thalmann, Controlling and
Efficient coding of MPEG-4 Compliant Avatars,

Proc. IWSNHC3DI'99, Santorini, Greece,

September 1999.

[6] M. Preda, T. Zaharia, F. Prêteux, “3D body

animation and coding within a MPEG-4

compliant framework”, in proceedings

International Workshop on Synthetic-Natural

Hybrid Coding and Three Dimensional Imaging

(IWSNHC3DI'99), Santorini, Greece, 15-17
September 1999, pp. 74-78.

[7] Object Oriented Graphics Rendering

Engine - OGRE, http://www.ogre3d.org
[8] Open source high performance engine,

http://irrlicht.sourceforge.net

[9] Microsoft DirectX,
http://www.microsoft.com/DirectX

[10] OpenGL, http://www.opengl.org

[11] ISO/IEC 14496-5:2001 Information

technology -- Coding of audio-visual objects --
Part 5: Reference Software, International

Organization for Standardization, Swiss, 2001.

[12] F. Pereira, T Ebrahimi, The MPEG-4 book,
IMSC Press Multimedia Series/Andrew Tescher,

2002.

View publication statsView publication stats

https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/245729039_3D_Body_Animation_and_Coding_within_a_MPEG4_Compliant_Framework?el=1_x_8&enrichId=rgreq-fcb6f91a708f663e78f2cbd63c1bfb49-XXX&enrichSource=Y292ZXJQYWdlOzIyODc4OTQxMztBUzoxMDE1NTUwNzYzMzc2NzBAMTQwMTIyNDAyNTY2OA==
https://www.researchgate.net/publication/228789413

