Journal of Emerging Computer Technologies
Research Article
Received: 2021-01-26 | Reviewing: 2021-01-26 & 2021-02-07 | Accepted: 2021-02-07 | Online: 2021-02-07 | Issue Date: 2021-06-30

Vehicle Detection with HOG and Linear SVM

Nikola Tomikj
Ss. Cyril and Methodius University
Faculty of Computer Science and Engineering
1000 Skopje, North Macedonia
tomikj.nikola@students.finki.ukim.mk

Andrea Kulakov
Ss. Cyril and Methodius University
Faculty of Computer Science and Engineering
1000 Skopje, North Macedonia
andrea.kulakov @finki.ukim.mk

Abstract—In this paper, we present a vehicle detection system
by employing Histogram of Oriented Gradients (HOG) for
feature extraction and linear SVM for classification. We study the
influence of the color space on the performance of the detector,
concluding that decorrelated and perceptual color spaces give
the best results. An in-depth analysis is carried out on the
effects of the HOG and SVM parameters, the threshold for the
distance between features and the SVM classifying plane, and the
non-maximum suppression (NMS) threshold on the performance
of the detector, and we propose values that illustrate good
performance for vehicle detection on images. We also discuss
the issues of the approach and the reasons for its mediocre
performance on videos. Finally, we address these issues by
presenting ideas that can be considered for improving the system.

Index Terms—computer vision, machine learning, HOG, SVM,
color space, vehicle detection, autonomous vehicles

I. INTRODUCTION

In the past few years, autonomous driving has been gaining
a lot of interest and it is expected to be the next big thing
in the automotive industry. One of the main challenges in the
development of the intelligence that powers the autonomous
vehicles is its ability to detect obstacles like pedestrians, other
vehicles and objects on the road. This ability provides the
safety required to make autonomous vehicles mainstream.
Different techniques for preceding vehicle detection have been
developed throughout the literature, from traditional computer
vision techniques to deep learning ones.

Dalal and Triggs [1] describe the HOG method in their
breakthrough paper. They use the method for human detection.
They performed thorough experiments with the parameters of
the method. The values for the parameters that they found to
be optimal for human detection are akin to the values that we
found to be optimal for vehicle detection.

Creusen, Wijnhoven, Herbschleb, et al. [2] experimented
with different color spaces and concluded that the choice of
a color space significantly influences the performance of the
HOG detector, and that the optimal color space choice depends
on the type of object that the detector is trying to detect.
They showed that for decorrelated color spaces like HSV, the
performance when the H-channel is used as a single channel
detector is almost identical to the performance in the HSV
space. They concluded that this indicates that saturation and
intensity information is largely irrelevant, and that color is the
dominant feature. They also concluded that HSV and RGB

are less suitable for traffic sign detection and detection of
objects that have large color variation in general. They found
out that the LAB and YCrCb color spaces provide the best
performance, and that is probably due to the availability of
two dedicated color channels.

Mao, Xie, Huang, et al. [3] took very similar approach to
the one described in this paper, using HOG and linear SVM
as well, and they developed effective and robust preceding
vehicle detection system that can achieve high reliability target
detection and low false positive rate.

An interesting and very useful approach was proposed by
Arréspide, Salgado, and Camplani [4]. They overcame the
computational limitations of the standard HOG, which yields
excellent performance but can hardly be used in a real-time
environment. They developed alternative HOG descriptors
which are designed to be cost effective by making use of the
previous knowledge on vehicle appearance.

Lately, deep learning approaches have been gaining popular-
ity and several authors have experimented and produced state-
of-the-art results. Fast R-CNNs are used extensively for object
detection as proposed by Girshick [5]. Another important
mention is YOLO introduced by Redmon, Divvala, Girshick,
et al. [6].

In this paper we develop a pipeline for detecting preceding
vehicles using HOG and linear SVM. Our aim is to study the
HOG and linear SVM applicability and potential for vehicle
detection. We experiment with the HOG and SVM parameters,
the threshold for the distance between features and the SVM
classifying plane, and the NMS threshold, to examine their
influence on the performance of the system and to reveal
values that provide good performance.

II. METHODOLOGY

We implemented a vehicle detection pipeline in Python
that detects vehicles in images and videos recorded with
a dashcam, using HOG and Linear SVM. The pipeline is
developed in Python 2.7 [7] and OpenCV 3.4.3 [8].

The details of each component in the pipeline are presented
as follow:

A. Data Preprocessing

The labeled data come from a combination of the GTI
vehicle image database [9] and KITTI vision benchmark suite
[10]. The data are png color images with dimensions 64 x64,

Cite (APA): Tomikj, N., Kulakov, A. (2021). Vehicle Detection with HOG and Linear SVM. Journal of Emerging Computer Technologies, 1(1), 6-9.
Volume:1, No:1, Year: 2021, Pages: 6-9, June 2021, Journal of Emerging Computer Technologies

Journal of Emerging Computer Technologies

which is convenient for computing the HOG descriptors of
the images. The labeled data contain 8792 vehicle images and
8968 non-vehicle images. The non-vehicle data also contain
some images extracted from a real dashcam video with hard
negative mining to reduce the number of false positives.

Because all training images have the same dimensions, their
HOG feature vectors have the same length and can be used
to train an SVM. So, preprocessing is not necessary, however
converting the images to certain color spaces could potentially
increase the performance of the detector.

B. Feature Extraction

After the preprocessing stage, feature extraction is per-
formed by computing the HOG descriptors of every prepro-
cessed image from the labeled dataset. These descriptors are
used to train and test a linear SVM.

C. Training a Linear SVM

This is 2-class classification problem, so the viable SVM
type options that OpenCV offers are C_SVC and NU_SVC
types. As they are very similar, we decided on using NU_SVC.

We were bound to use linear SVM because only the primal
form of a linear SVM can be passed as an argument to the
HOGDescriptor struct setSVMDetector function. This function
allows the usage of the performant detectMultiScale function
which this pipeline is trying to make use of.

D. Vehicle Detection

The last step is to perform vehicle detection on real dashcam
data. For this purpose, we used the detectMultiScale function
to detect vehicles in images and videos. This function performs
a sliding windows search using windows with different sizes,
so that vehicles with arbitrary dimensions can be detected in
the input image or video.

III. RESULTS
A. Color Space

To determine the color space that provides the best per-
formance, experiments using various color spaces were per-
formed, using constant values for the HOG and SVM param-
eters.

Table I gives comparison of the performance for 8 different
color spaces based on the error as a percent of misclassified
images from the test set when the images are in certain color
space. The values of the HOG and SVM parameters used for
the experiments are given in table II. These are some common
default values for these parameters.

Oddly enough, BGR gives the best performance, or the
least percentage of misclassified samples. This was unexpected
because the BGR color space has strongly correlated channels
and is non-perceptual. But, although it achieves the best
performance during the testing phase, it performs poorly when
detection is performed on real images and videos. We think
that the reason is that real images and videos have a lot of
background color variation, so using BGR which has strongly
correlated channels will cause many misdetections. That is

Tomikj and Kulakov
Table 1
COLOR SPACE PERFORMANCE
Color Space Error
BGR 2.5732%
GRAY 3.5867%
LAB 3.3531%
LUV 3.2573%
HLS 5.7742%
HSV 6.0923%
YCrCb 3.2404%
YUV 3.1757%
Table 11
PARAMETERS TESTING VALUES
Parameter Value
Detection window size 64x 64
Block size 16x16
Block stride 8x8
Cell size 8x8
Bins 9
Discrete derivative mask size 1
Gaussian smoothing window parameter | -1 (means no smoothing)
Block normalization type L2-Hys
L2-Hys threshold 0.2
Gamma correction False
Signed gradient False
Nu 0.09

the case because HOG calculates separate gradients for each
color channel and the one with the largest norm is taken as
the pixel’s gradient vector. LAB, LUV, YCrCb and YUV all
achieve similar performance, and follow after BGR. Any of
these 4 color spaces is a viable option because the difference
between their performance is very small. We decided to use the
YUYV color space because it has the smallest error percentage
in table I and it works well with our test data.

B. HOG Parameters

HOG is the key component in the pipeline, so the choice of
the values for the HOG parameters is a very important one.
We experimented with different values for these parameters
and found out that the ones suggested by Dalal and Triggs
[1], shown in table II are performing reasonably well. The
specific effects that the values of these parameters have on
the performance i.e. the linear SVM testing error, are the
following:

o Because the dataset images are 64 x 64 pixels, it is reason-
able to use a 64 x 64 detection window size. Decreasing or
increasing this size will decrease the performance because
the images will contain less information, or it will make
the descriptor more sensitive to noise, respectively.

o Block size, block stride and cell size depend on each
other’s value and influence the performance together,
so they must be tested together. Table III shows the
results of the experiments and gives insight about the
effects of these three parameters on the performance.
The interpretation of these results is that overlap of 3/4
slightly improves the performance, however it drastically

Volume:1,No:1, Year: 2021, Pages: 6-9, June 2021, Journal of Emerging Computer Technologies

7

Journal of Emerging Computer Technologies

Table III
HOG PARAMETERS PERFORMANCE
Block Size | Block Stride | Cell Size Error
8x8 4x4 4x4 3.2751%
8x8 8x8 88 6.5991%
16x16 4x4 4x4 2.3341%
16x16 8x8 88 2.6858%
16x16 16x16 16x16 7.7984%
32x32 8x8 88 2.3649%
32x32 16x16 16x16 2.7703%
32x32 32x32 32x32 16.4527%

increases the time required for extracting the HOG fea-
tures and training the SVM which makes it not worth
it for such a small performance increase. 1/2 overlap is
enough.

o Discrete derivative masks of size 1 without Gaussian
smoothing work best. Using larger masks decreases per-
formance and smoothing decreases performance signifi-
cantly. However, larger masks and Gaussian smoothing
can be useful on real videos.

e Using more than 9 bins with unsigned gradients will
not improve the performance significantly. Decreasing
the number of bins decreases the performance. So, it is
appropriate to use 9 bins for vehicle detection.

o The only block normalization type currently available in
OpenCV is L2-Hys. The optimal L2-Hys threshold is
0.2, increasing or decreasing this threshold decreases the
performance.

o Using gamma correction increases the error for around
0.5%, however it can be useful on real videos.

o Dalal and Triggs [1] used unsigned gradients for human
detection in their paper, but they suggested that for some
other tasks like vehicle detection sign information helps
substantially. However, we found out that this is not the
case. Signed gradients seem to cause overfitting of the
SVM and cause false negatives on real images and videos.
Using signed gradients also increases the time required
for extracting features and training the SVM, because
the feature vectors become longer (assuming the number
of bins is 18) and therefore, the pipeline is slower. So,
we think that one should stick to unsigned gradients for
dashcam vehicle detection.

C. Linear SVM Parameters

The optimal Nu value was determined to be 0.09 with the
trainAuto function using 10-fold cross-validation. However,
although this value of the parameter minimized the testing
error, we observed bad detection on real images and videos.
After experimenting, we found out that for Nu 0.25
the pipeline performs very good and the detections are very
accurate. In this case the testing error is larger, but it improves
the performance by significantly reducing the false positives
on dashcam data. We assume that the vehicles and non-
vehicles images from the dataset have more distinguishable
HOG feature vectors, so smaller Nu value produces smaller
error. On the other hand, sliding windows of a real image that

~
~

Tomikj and Kulakov

contain or do not contain vehicles seem to have similar HOG
feature vectors which requires larger misclassification cost or
larger Nu value, thus reducing the number of false positives.
So, the Nu value depends on the training data and the input
images or videos.

D. detectMultiScale parameters

The optimal values of the detectMultiScale parameters
depend on the input on which the detection is performed. The
hitThreshold parameter is a threshold for the distance between
the features and the SVM classifying plane. Setting its value
too low will cause false positives and setting its value too high
will lead to false negatives. In our experience, for best results
the hitThreshold value should be between 1 and 2 depending
on the finalThreshold value and the input image or video,
when Nu = 0.25. The finalThreshold parameter is an NMS
threshold. The function will classify a region as a vehicle if
there are more positives in the region than this given threshold,
otherwise it will classify the region as non-vehicle. Setting its
value too low will cause false positives and setting its value
too high will cause to false negatives. In our experience, for
best results the finalThreshold value should be between 0.5
and 1.5 depending on the hitThreshold value and the input
image or video, for Nu = 0.25. Figure 1 shows the results
with hitThreshold set to 1.25 and finalThreshold set to 0.75,
values that were found to give the desired results.

E. Real Data Performance

Although the described pipeline performs reasonably well
on real dashcam images, its performance on real dashcam
videos is not satisfying. It is unusual that there are lots of
false positives in a video frame, while there are none in an
image that seems identical to that video frame. This is the case
because video frames contain artifacts which are caused by the
application of lossy compression. HOG descriptors describe
the shapes or the edges of an object, so the HOG feature
vectors of those artifacts can be very similar to the ones of
real vehicles. That will cause false positive misclassifications
in unusual regions, like in the sky or the asphalt. As mentioned
before, gamma correction, larger discrete derivative mask and
Gaussian smoothing can be applied on videos to improve the
detector’s performance. However, vehicle detection in lossily
compressed images and videos still suffers from false positives
as they are not fully eliminated by tweaking these HOG
parameters.

IV. DISCUSSION

The described approach performs reasonably well on images
and achieves mediocre performance on videos. There are
numerous proposed solutions for this problem. Unfortunately,
tuning the HOG parameters is not one of them. Even if there
are some optimal values for these parameters, performing
detection on every video frame is computationally expensive.
Bear in mind that those values will not be optimal for other
videos. The right approach would be to implement vehicle

Volume:1,No:1, Year: 2021, Pages: 6-9, June 2021, Journal of Emerging Computer Technologies

8

Journal of Emerging Computer Technologies

Figure 1. Vehicle detection in images with hitThreshold=1.25 and finalThresh-
0ld=0.75 with mean shift grouping

tracking, which is computationally inexpensive, rather than
performing detection on every frame.

Some latest trends prefer using CNNs, RNNs or other deep
learning approaches for these types of problems. We agree
that these approaches are faster and more robust. However, our
goal was to use classic image processing techniques instead of
neural networks, because we wanted to get some perspective
and experience in image processing and computer vision. So,
although this approach cannot be used for real-time detection
and is susceptible to false positives, it helps in understanding
color spaces, image gradients, and SVM classifiers.

V. CONCLUSION AND FUTURE WORK

We studied the influence of the color spaces on the perfor-
mance and concluded that decorrelated and perceptual color
spaces work best. We also studied the influence of the HOG
parameters on the performance and concluded that in most
cases, the optimal values of the HOG parameters for vehicle
detection problems are the same as the proposed HOG parame-
ters for human detection problems given in the original HOG
paper [1]. HOG, SVM and detectMultiScale parameters are
highly correlated and the choice of their values has profound
effects on the performance of the detection. However, the
performance of these parameters also depends on the input
image or video and the goal should be finding the values for
these parameters that generally work reasonably well with a
lot of real images and videos and allow few misclassifications,
instead of finding the perfect values for the parameters for
only one image or video. The few misclassifications should
be handled with other techniques.

We have shown that using HOG and linear SVM is a viable
approach for vehicle detection in images, while it has some
limitations for vehicle detection in videos. However, by using

Tomikj and Kulakov

some simple techniques and extending the pipeline, this ap-
proach can easily overcome these limitations. Implementation
of a vehicle tracking system is one of the future steps that will
be considered for improving this pipeline. The false positives
can be eliminated by checking whether the positive detections
in a region are appearing in more consecutive frames. There
are numerous HOG extensions and improvements that can be
used, and SVMs with more complex kernels or modern and
more sophisticated classification algorithms can be considered.
These improvements can make the system resistant to artifacts
and can provide overall better detection.

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of oriented
gradients for human detection”, in international
Conference on computer vision & Pattern Recognition
(CVPR’05), IEEE Computer Society, vol. 1, 2005,
pp- 886-893.

[2] 1. M. Creusen, R. G. Wijnhoven, E. Herbschleb,
and P. de With, “Color exploitation in hog-based
traffic sign detection”, in 2010 IEEE International
Conference on Image Processing, IEEE, 2010,
pp. 2669-2672.

[3] L. Mao, M. Xie, Y. Huang, and Y. Zhang, “Preceding
vehicle detection using histograms of oriented
gradients”, in 2010 International Conference on
Communications, Circuits and Systems (ICCCAS),
IEEE, 2010, pp. 354-358.

[4] J. Arréspide, L. Salgado, and M. Camplani, “Image-
based on-road vehicle detection using cost-effective
histograms of oriented gradients”, Journal of Visual
Communication and Image Representation, vol. 24,
no. 7, pp. 1182-1190, 2013.

[5] R. Girshick, “Fast r-cnn”, in Proceedings of the IEEE
international conference on computer vision, 2015,
pp. 1440-1448.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object
detection”, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016,
pp. 779-788.

[7]1 G. Rossum, “Python reference manual”, Amsterdam,
The Netherlands, The Netherlands, Tech. Rep., 1995.

[8] G. Bradski, “The OpenCV Library”, Dr. Dobb’s
Journal of Software Tools, 2000.

[9] I P. G. at UPM, Gti vehicle image database, https:

/lwww.gti.ssr.upm.es/data/, 2011.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision

meets robotics: The kitti dataset”, International

Journal of Robotics Research (IJRR), 2013.

(10]

Volume:1, No:1, Year: 2021, Pages: 6-9, June 2021, Journal of Emerging Computer Technologies

