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Abstract

An adaptation of one popular model of neural-
networks algorithm (ART model) in the field of
wireless sensor networks is demonstraled in this paper.
The important advantages of the ART class algorithms
such as simple parvallel distributed computation,
distributed storage, data robustness and auto-
classification of sensor readings are confirmed within
the proposed architecture comsisting of one
clusterhead which collects only classified input data
from the other units.

This architecture provides a high dimensionality
reduction and additional communication savings, since
only identification numbers of the classified input data
are passed to the clusterhead instead of the whole
input samples.

We have adapted and implemented the FuzzyART
neural-neiwork algorithm and wused it for initial
clustering of the sensor data as a sort of pattern
recognition. This adaptation was made specifically for
MicaZ sensor motes by solving mainly problems
concerning the small memory capacity of the motes. At
the final clusterhead - server, the data are stoved in a
database and the results of the data processing are
continuously presented in a classification graph.

1. Introduction

Although neural networks have been extensively
studied and developed in the last thirty years, their
beneficial properties have not been used so far in
wireless sensor networks, unlike other mathematical
methods like nearest neighbor search, principal
component analysis and multidimensional scaling (e.g
[1] and [2]).

Sensor networks place several requirements on a
distributed storage infrastructure. These systems are
highly data-driven and are deployed to observe and
analyze the physical world. A fully centralized data
collection strategy is impractical, knowing the energy
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constraints on sensor node communication. It is also
inefficient, given that sensor data have significant
redundancy both in time and in space.

Unsupervised classification of the sensor readings is
important in sensor networks since the data obtained
with them is with high dimensionality and in huge
amounts, which could easily overwhelm the processing
and storage capacity of a centralized database system.
On the other hand, the data obtained by the sensor
networks are often self-correlated over time, due to the
nature of the sensed physical phenomena, which are
usually slowly changing. The data are redundant over
space as well, due to the redundant sensor nodes
dispersed near each other. Finally the data are also
redundant over different sensor inputs due to the fact
that often the sensor readings are correlated over
different modalities sensed at one node (e.g. sound and
light from cars in a traffic control application).

When the application demands compressed
summaries of large spatio-temporal sensor data and
similarity queries, such as detecting correlations and
finding similar patterns, the use of a neural-network
algorithm is a reasonable choice.

Stll, up until recently, the only application of
neural-networks algorithms for data processing in the
field of sensor networks was [3], where they have
slightly modified the Kohonen Self Organizing Maps
model, and [4], where they have used another model of
neural network for simulating real-ime forest fire
detection with wireless sensor networks.

In our previous work ([5] and [6]) we have shown
through simulations how can some more sophisticated
models of neural-networks, namely the ART models
([7]. [8]. [®]. [10], and [11]), be used as data
management algorithms in wireless sensor networks
and how it can be a practical solution which reduces
the amount of data being communicated.

We have chosen the ART neural networks mostly
because of their documented advantages over other
types of neural networks ([12]), one of them being the



possibility for classifying the input data and learning
new categories simultaneously and another one being
the option not to constrain the number of different
categories in which the input data will be clustered.
Recently, we have fully adopted and implemented
the Fuzzy ART neural network algorithm [10] in MicaZ
sensor motes in the same time solving problems
regarding the small memory capacity of the motes.

2. Applying the FuzzyART Neural
Network

2.1. The Original FuzzyART Algorithm

Adaptive Resonance Theory (ART) has been
developed by Grossberg and Carpenter for pattern
recognition primarily. Models of unsupervised learning
include ART1 [9] for binary input patterns and
FuzzyART [10] for analog input patterns.

ART networks possess several features such as
robustness to variations in intensity, detection of
signals mixed with noise, and model both short- and
long-term memory to accommodate variable rates of
change in the environment.

In Fig. 1, a typical representation of an ART
Artificial Neural Network is given. Winning L2
category nodes are selected by the attentional
subsystem. Category search is controlled by the
orienting subsystem. If the degree of category match at
the L1 layer is lower than the sensitivity threshold ©,
originally called vigilance level, a reset signal will be
triggered, which will deactivate the current winning L2
node for the period of presentation of the current input.

The learning process of the network can be
described as follows: At each presentation of a
non-zero binary input pattern, the network attempts to
classify it into one of its existing categories based on
its similarity to the stored prototype of each category
node. More precisely, for each node in the category
layer, a weighted bottom up activation is calculated,
which gives a degree of match between the current
input and each category node. Then the category node
that has the highest bottom-up activation is selected
(realizing the so called winner-takes-all competition).
The weight vector of the winning node will then be
compared to the current input at the comparison layer.
If they are similar enough, i.e. if they satisfy the
matching condition compared to a sensitivity threshold
@, then this category node will capture the current
input and the network learns by modifying the weight
vector.
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Fig. 1. Architecture of the ART network.

If, however, the stored prototype does not match the
input sufficiently, the winning category node will be
reset for the period of presentation of the current input.
Then another category node is selected with the
highest bottom-up activation, whose prototype will be
matched against the input, and so on. This “hypothesis-
testing” cycle is repeated until the network either finds
a stored category whose prototype matches the input
well enough, or allocates a new category node for the
current input. Details about the FuzzyART algorithm,
together with the corresponding equations can be
found in [10].

Due to their so called stability-plasticity property,
the ART neural networks are capable of learning
“on-line”, i.e. refining their learned categories in
response to a stream of new input patterns, as opposed
to being trained “off-line” on a finite pre-chosen
training set. We have modified the ART cycle of
testing and learning in a way that it is not necessary to
load a certain set of input patterns on which the
learning will take place, but rather it is done after each
new signal pattern has been given to the inputs.

The number of developed categories can be
controlled by setting the sensitivity threshold ®: the
higher the threshold, the larger number of more
specific categories will be created. At its extreme, the
network will create a new category for every unique
input pattern. The sensor data can be classified with
different sensitivity threshold ®, thus providing a
general overall view on the data, (smaller ®) or more
and more detailed views of the sensed data (greater ®).

2.2, Two-tier Data Aggregation Architecture

In the proposed architecture for data aggregation in
wireless sensor networks, each MicaZ unit has
FuzzyART implementations classifying only its sensor



readings. One of the MicaZ units can be chosen to be a
clusterhead collecting and classifying only the
classifications obtained at other units. Since the
clusters at each unit can be represented with integer
values, the neural-network implementation at the
clusterhead can be ART1 with binary inputs (see Fig.
2). Depending on the requirements, it can be even a
supervised neural network (e.g. FuzzyARTMAP [13])
where the user or another system can apply the teacher
input to the neural network.

ARTI1

Fig. 2. One clusterhead collecting and classifying
the data after they are once classified at the
lower level

With this architecture a great dimensionality
reduction can be achieved depending on the number of
sensor inputs in each unit. In our case it’s a 7-to-1 ratio
when used with MTS310 sensor boards and 3-to-1
ration when used with MTS300 sensor boards (see
section III). In the same time communication savings
benefit from the fact that the classification
identification numbers are usually small binary
numbers unlike raw sensory readings which can be
several bytes long real numbers converted from the
analog inputs.

2.3. Adaptation of the FuzzyART Algorithm

One of the limitations of the ART neural networks
that had to be overcome during the adaptation is the
fixed number of inputs to the neural-network. It is not
a problem in each of the nodes in the wireless sensor
network, since the physical sensors are supposed to
function continuously and it is rare that some of the
individual sensors malfunction, which requires
separate special algorithm for detection. On the other
hand, in the neural-network implemented into the
clusterhead, some of the inputs otherwise obtained
from certain sensor nodes, may become unavailable
due to the power failure of the nodes’ batteries.

We have augmented the ART neural-network
architecture in the clusterhead with the possibility to
define some of the inputs as unused. In that way only
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the maximal number of inputs is predefined and thus
limited, while the actual number of inputs to the ART
neural-network depends on the actual aggregated data.

This is necessary in order to further reduce the
communication usage, in a way that the sensed inputs
are first classified and only in the case when the new
sensor input sample is classified as different from the
previous one, the new classification result is sent over
the communication channel. Still, another parameter is
needed for the whole network to function correctly.
Specifically, it is the time needed to declare one
network node as power exhausted. If certain amount of
time has passed, even in the case that the neural-
network is classifying the sensors’ data as the same
with the previous ones continuously, a data packet that
is announcing it is sent, in order to inform the
clusterhead that the node is still functioning and that its
reported data should be taken into account when
classifying it again in the ART neural-network
implemented into the clusterhead.

On the other hand, what had to be limited in each
MicaZ node is the number of different categories into
which the sensory inputs can be classified. Due to the
limited memory, their number has to be limited by the
maximum allowed memory. We have modified the
ART algorithm in way that after the maximum number
of different categories is reached, the sensitivity
threshold is lowered a little and no further additions of
new categories is allowed. Only modifications of the
existing weights among the neural network nodes are
performed, in that allowing the adaptation of the
existing categories to the future input data. This
modification does not apply to the clusterhead unit that
has practically no memory limits since it is running on
a PC.

Before applying the sensed input data into the ART
neural-network, each sensor value has to be
normalized and transformed into the real numbers’
interval from 0 to 1.

3. Hardware and Software Platform

MicaZ motes (see Fig. 3) are 8-bit microcontrollers
running at 16 MHz and have only 4 Kbytes of RAM.
We have used 7 such motes, 4 of them equipped with
MTS310 sensor boards having a light sensor, 2
accelerometers, 2 magnetic sensors, a thermometer and
a microphone, while 3 of them were equipped with
MTS300 sensor boards having only a light sensor, a
thermometer and a microphone. The operating system
that runs on the motes is TinyOS [15].



Fig. 3. A single MicaZ mote

The program for the MicaZ units is written in NesC
[14] where the platform-independent adapted code for
the Fuzzy ART neural network is about 300 lines long.
After compilation it requires 17942 bytes of program
ROM and 3086 bytes of data RAM, having the limit of
48 different categories into which the input data can be
categorized. (The source code is made available at
http://odl-skopje.etf.ukim.edu.mk/WSN )

Fig. 4. Experimental setup with seven MicaZ
motes and one clusterhead mote connected to a
laptop.

For the clusterhead we have used NesC to program
the mote which is connected by Ethernet link to a PC.
The collected data are first saved into a PostgreSQL
database and are further classified using the ARTI
neural network classifier. For the PC we have
implemented a graphical server application which
classifies the data and displays them continuously on a
graph. This program written in C++ for Microsoft
Visual Studio is about few thousand lines of code.

The whole experimental setup can be seen in Fig. 4.
where 7 motes are spread in our lab, together with the
clusterhead mote which is connected by Ethernet link
to the laptop computer. We have influenced the
environment by switching lights on/off, by shouting
and by knocking and shaking the desks. The results of
the classification are displayed in real-time in a
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specially developed application, running at the laptop
computer, and can be seen enlarged in Fig. 8.

The debugging of the programs written in NesC is
very difficult since the memory model simulated for
the debugging process in a PC, does not reflect
correctly the real memory organization in MicaZ
motes. In that way, the original functions of the ART
neural-networks written in C, had to be rewritten,
because they were made for a memory organization of
a PC, not for embedded systems like MicaZ motes.

At the end, one of the most useful debugging tools
for tracking the execution of our programs in real
Micaz motes, turned to be the three LED lights and the
sounder integrated into motes. The most time-
consuming part of the debugging process was the
practice of taking out the batteries and plugging the
motes into the programmer card, which had to be
repeated many times.

We have also tested the prototype in a more realistic
environment — in an application of a traffic control at a
parking. The experimental setup can be seen in Fig. 5,
where 7 motes are distributed along the road leading to
the parking in front of our lab. The clusterhead had to
be placed near the entrance of our lab, since the
communication range of the motes is very small.

Fig. 5. The experimental setup in a traffic control
application. With yellow circles are highlighted
the motes distributed along the road leading to

the parking.

4. Experimental Results

The data obtained from this experiment can be seen
in Fig. 6. Although the photo of the experimental lab is
taken by daylight, we have carried the experiments by
twilight, when the illumination was slowly
extinguishing and the temperature was slowly
decreasing. Each time some car has passed, the lights
sensor, the microphone and the temperature sensor
reacted correspondingly. The accelerometers and even
the magnetic sensors reacted as well, but only at those
sensors which were nearest to the road.
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Fig. 6. Part of the data collected in the traffic
control application, collected after around 2100
samples.
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Results from the simulations, where we have even
deliberately made of the sensor inputs
malfunctioning in order to show the data robustness of
this approach can be seen in [5] and [6] and are shown
in Fig. 7 for comparison reasons.
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Fig.7. Results of the classifications show
significant data robustness of the architecture
with one clusterhead node collecting only
classified input data from the other units.
s12_zero and s_17_zero are signals where the
12" or the 17" sensor readings are deliberately
forced to zero values, while s12_random and
s17_random are signals where the 12" or the
17" sensor readings are consisted of random
values in the designated interval.

We have conducted experiments with the original
data obtained from another experimental setup [3] and
with the synthetically made erroneous data. In Fig. 7.
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we give the results of the classifications at the
clusterhead collecting only the prior classifications
from the other units. The results show no significant
difference among the classifications when all sensors
are functioning correctly or when some of the sensors
give only zero or random signal (in our case sensors
number 12 and 17). In Fig. 7 to Fig. 9, the
classification identification number is the number of
the cluster where the corresponding input sample is
classified and has no additional meaning since the
unsupervised learning is used in this scheme.
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Fig.8. Results of the classification at the
clusterhead node, of the already classified input
samples at the previous level, displayed in real-
time, in the first experimental set-up.
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Here we present only the classification results at a
clusterhead node after collecting the classification
results of the input data sensed at the previous level.
The data presented in Fig. 8. are obtained after around
one thousand input samples were sensed and classified.
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Fig. 9. Results of the classification of the data

obtained at the clusterhead node in the prototype
of a traffic control application.

The inputs used for the simulation and for the real
experiment are different, which is reasonable since we
can not repeat the same conditions. Still, it can be seen



that the results from the simulation have very similar
nature as the ones obtained in a real experiment. At the
beginning the number of different categories into
which the data 1s classified i1s small and later, when
some events change the environmental conditions, the
number of different categories proliferate.

In Fig. 9. are shown the results of the classification
of the data obtained from the prototype of the traffic
control application.

What can be further done is to add certain
annotation labels to certain classification identification
numbers, and in that way to obtain a supervised
learning scheme with attached meanings to these
classification identification numbers.

For future work we envisage a comparison of the
FuzzyART with other well-known methods in data
processing of wireless sensor networks, by using the
comparison metrics which include: accuracy of final
decision, sensor network power consumption,
reduction of the communication costs, and complexity
of implementation.

5. Conclusion

It 1s not graceful to program embedded devices like
MicaZ motes, mainly because there are no developed
tools yet for easy debugging of the programs. Small
memory capacity represents big burden which prevents
more intensive pre-processing algorithms to be
implemented in MicaZ motes, including time-sequence
analysis of patterns either by using wavelets or other
methods. In our opinion, this should be the direction
for development of small embedded wireless sensor
devices.

We have adapted and implemented a FuzzyART
neural- networks algorithm into MicaZ motes. When
used in a two-tier architecture, this method shows
confirmed data robustness, leads to lower
communication exchange and thus results in lower
power consumption. QOutcomes from the simulated
deliberately erroneous sensors, where we imitate
defective sensors giving only zero or random output,
show that the model is robust to small variations in the
input.

The proposed architecture can be expanded into a
multi-tier data classification scheme, where each
clusterhead would further transmit its results of the
classification and at the end the main clusterhead
would finally classify the event that provoked the burst
of communication. Also a possibility to attach tags to
the categories obtained at the main clusterhead can be
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added, which would later be exploited for recognition
purposes.
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