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Abstract 
Curiosity is a notion that is increasingly receiving special 
attention, particularly in the context of the emerging fields 
of developmental robotics. In the first part of the paper we 
give a brief critical overview of the research in motivational 
systems in intelligent robotics. The overall impression is 
that the prevailing understanding of curiosity is rather one 
dimensional and reductionist in spirit. We argue that this is 
a result of rather simple agent’s representations of the 
environment that are usually adopted. In the second part of 
the paper we put forward some arguments towards modeling 
of curiosity in context of other cognitive phenomena like 
feeling of understanding, analogy-making and expectations, 
integrated in a more general cognitive architecture.   

Introduction   
With the advent of developmental (epigenetic) robotics we 
are witnessing an increased interest in motivational 
subsystems for autonomous agents and especially in the 
notion of curiosity. This is not surprising as this 
community is particularly interested in agents that, during 
their development, exhibit ever more complex behavior via 
the much sought after open-ended learning. Sometimes 
this type of learning is also referred to as task-independent 
or task non-specific. Curiosity then, in this context, is 
understood to be the mechanism that would drive these 
systems to do something rather than nothing. Also, 
sometimes it is explicitly pointed to be a goal-generation 
mechanism.  

But what exactly is curiosity? Often it is referred as a 
drive whose satisfaction should generate positive emotions 
in the agent. This terminology, most probably, originates in 
the behaviorist psychology where curiosity drive was 
introduced to account for situations where (mainly) 
animals were learning (to negotiate a maze, for example) 
even in the absence of any external reward (e.g. food to 
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satisfy the hunger-drive). In a classical paper Hebb (1955) 
gives an overview of different understandings (and their 
origins) of the notion of drive. As Hebb writes, the 
apparent inability to reduce different types of behavior as 
being elicited by the basic drives (or motivations): hunger, 
pain, maternal, and sex drive, have led the researchers to 
introduce curiosity drive which would explain “both 
investigatory and manipulatory activities on the one hand, 
and exploratory, on the other” (Hebb, 1955). Examples 
include Berlyne (1950, 1954), Thomson and Solomon 
(1954) who explored the curiosity drive, and Harlow 
(1953) who investigated other types of motivations. 
Received reinforcements were categorized as primary or 
secondary (e.g. recognition by the society for one’s 
actions). As it is not our purpose here to give a historical 
account of the development of the understanding of the 
curiosity, in the last paragraph of this section, we will 
briefly summarize what we believe is today’s 
understanding. 
 Curiosity is usually related to notions like: novelty, 
anticipation, surprise, epistemic-hunger, exploratory 
behavior, interest, play and even mild fear as a positive 
attraction of risk taking and mild frustration during 
problem solving (Hebb, 1955). It is certainly widely 
considered as a precursor for intelligent behavior. Dennett 
in (1996) says that “[C]uriosity -epistemic hunger - must 
drive any powerful learning system”. It is long considered 
that monkeys, dolphins and other mammals exhibit 
genuine curiosity. Research in other animal behavior like 
sharks’ (e.g. Klimley and Ainley, 1998), shows compelling 
evidence that sharks exhibit some sort of curiosity and that 
their behavior is more than just instinctive (which is yet 
another term). 
 Often (Arbib and Fellous, 2004) curiosity is treated as a 
kind of emotion. There exists a vast body of research in 
emotions in AI. Scheutz in (2002) gives a critical overview 
of it. First, he presents an overview of various, often 
incompatible, characterizations of emotions in psychology. 
Scheutz then goes on to claim that  
 



it should not come as a surprise that this terminological and 
conceptual plurality too is spread throughout the AI 
literature.(ibid.)  
 

Arbib and Fellous in (2004) put forward an understanding 
of emotions in their functional context i.e. striping them of 
their first person qualitative experiential attributes. They 
distinguish two aspects in emotions: 

1) Emotional expression for communication and 
social coordination; and 

2) Emotion for organization of behavior (action 
selection, attention and learning); 

where the first is called external aspect of emotions, and 
the second internal aspect. An illustration for the first 
aspect may be the research of Breazeal (e.g. Breazeal, 
2002). 
 In what follows, we will review some works that indeed 
have functional understanding of the curiosity and are 
concerned with its internal aspect.  

Curiosity and Motivational Systems in 
Artificial Agents 
In this section we provide a brief overview of prior work in 
motivational systems in intelligent robotics, and especially 
in the notion of curiosity. Needless to say, this is far from 
an exhaustive overview, but we believe that it gives the 
general understanding of the motivational issues by the 
researchers in this community. 
 Schmidhuber (1991) introduces the notion of curiosity 
in an otherwise Reinforcement Learning (RL) setup. In his 
agent there are 2 recurrent neural networks (RNN). The 
first one models the environment (by implementing a 
predictor mechanism: Situation1-Action-Situation2) and 
the second one (the controller) actually controls agent’s 
behavior (i.e. chooses the next action to be executed). 
There are also pain units which get activated whenever the 
agent bumps into an obstacle. Positive reinforcement is 
given whenever the obstacles are avoided. The long term 
goals of the agent are to maximize the cumulative positive 
reinforcement and to minimize the cumulative pain. Both 
RNNs are updated during agent’s life in the environment, 
using algorithm which is functionally equivalent to BPTT 
(Back Propagation Through Time). Certainly, the better the 
model RNN is the better the performance of the controller. 
Schmidhuber makes the distinction between goal-directed 
learning vs explorative learning. The latter is used “to 
increase the knowledge about the world”. In this way, any 
goal-directed activity, which depends on the world model, 
will be indirectly improved. Therefore, for Schmidhuber, 
curiosity is the “explorative aspect of learning”. The way 
this is implemented is quite straightforward: a curiosity 
reinforcement unit is added to the controller, and it gets 
activated proportionally to the mismatch between the 
output of the model network (i.e. the prediction) and the 
actually perceived reality (the current percept). The net 

effect of the mechanism is that the agent (in order to 
maximize the reinforcement) goes in the parts of its 
environment which are so far unknown, providing more 
learning opportunity for the model network. Moreover, the 
mechanism is implementable for any type of model based 
learning. However, a problem arises with monotonic 
increasing reinforcement for the curiosity unit. On a long 
term it may push the agent towards parts of the 
environment that are inherently unpredictable (white noise) 
or probabilistic. Thus, although Schmidhuber uses linear 
mismatch-to-curiosity reinforcement functions, in the same 
paper he says that far more realistic functions would take 
into account that high reinforcement should be given only 
when the predictor generates near-misses, discouraging 
high prediction errors. In a recent paper (Schmidhuber, 
2006) summarizes his previous research into one basic 
principle: 
 

Generate curiosity reward for the adaptive action selector 
(or controller) in response to predictor improvements. 
(ibid.) 
 

 In our opinion a fair description would be to say that 
generally Schmidhuber equates curiosity with surprise.    
    Kaplan and Oudeyer (2002) report an “architecture of 
a self developing device” by which an AIBO robot can 
learn to trace successfully the brightest point (the sensory 
input S) in the image coming from its CCD camera (which 
the robot can move in the pan and tilt directions: the motor 
output M). There are three essential “processes” that 
interact with each other: motivation, prediction, and 
actuation. Motivation process is based on three 
motivational variables: predictability (how good is the 
prediction process in guessing the next S(t) given the 
previous (SM(t-1)), familiarity (how many times the robot 
has actually experienced that particular transition SM(t-1) 
to S(t)), and stability (how close remains S(t) to its average 
value). The reward function is such that the robot gets 
positive reinforcement if it maximizes stability 
motivational variable, and when it maximizes the first 
derivative of the predictability and familiarity motivational 
variables. This pushes the robot towards unknown 
situations Ss from where it can go back to known Ss and 
get some reinforcement. Apparently this reward policy is a 
variation of Schmidshuber’s principle. Kaplan and 
Oudeyer also relate their motivational variables to the 
notions of novelty and curiosity as used by (Huang and 
Weng, 2002) and (Kulakov and Stojanov, 2002). In their 
recent work these researchers report of interesting 
emergent behavior in groups of AIBO robots controlled by 
variants of the above explained architecture (Oudeyer and 
Kaplan, 2006). 
 Blank et al. in (2005) identify three essential notions for 
autonomous development in robots: abstraction, 
anticipation, and self-motivation. The self-motivation 
subsystem   

 

[…] indicates to the system how “comfortable” it is in 
the given environment. If it is too comfortable, it 



becomes bored, and takes measures to move the robot 
into more interesting areas. Conversely, if the 
environment is chaotic, it becomes over-excited and 
attempts to return to more stable and well known 
areas. 
 

They present the initial results on a simulated agent that 
solves the navigational problem. For the abstraction and 
the anticipation subsystem Blank et al. use Self Organizing 
Maps (SOM) and RNNs. The implementation of the self-
motivation is only hinted. 
 Working within the context of a research program called 
autonomous mental development (Weng et al., 2001; 
Weng, 2002) Weng and Huang (e.g. Huang and Weng, 
2002) have implemented a motivational system in a 
physical robot called SAIL, which rewards the robot for 
going into novel situations. A novel situation is defined in 
terms of how different are the current sensory inputs from 
the ones encountered in the past. This pushes the robot 
towards regions where its predictor makes biggest errors in 
guessing the next sensory input, and, as expected the robot 
indeed improves its performance in environments that are 
deterministic and learnable. The problem arises in 
probabilistic and/or noisy environments where the robot 
apparently behaves randomly in order to maximize the 
prediction error (and the reinforcement with that). 
 In their recent research Barto et al. (e.g. Barto at al. 
2004; Stout et al, 2005) generalize their traditional 
reinforcement learning approach (e.g. Sutton and Barto, 
1998) by distinguishing between external reinforcement 
(usually given by a teacher or critic) and internal 
reinforcement. The internal reinforcement allows for 
intrinsically motivated learning which would enable the 
agent to learn 
 

a broad set of reusable skills for controlling its 
environment… [The intrinsic reward system] favors the 
development of broad competence rather than being 
directed to more specific externally-directed goals. But 
these skills act as the “building blocks” out of which an 
agent can form solutions to specific problems that arise 
over its lifetime. Instead of facing each new challenge by 
trying to create a solution out of low-level primitives, it can 
focus on combining and adjusting higher-level skills, 
greatly increasing the efficiency of learning to solve new 
problems. (Barto et al. 2004) 

   

 As for the implementation, their simulated agent has 
built-in notions of a saliency of particular stimuli (e.g. 
changes in light and sound). Therefore, whenever as a 
result of the agent’s actions a salient stimulus is perceived, 
intrinsic reward is generated. The agent then uses standard 
RL techniques to actually learn how to produce that 
particular stimulus and, when it can do this reliably the 
intrinsic reward vanishes (i.e. the agent gets “bored”). 
These authors quote research from psychology (e.g. White, 
1959) regarding motivations, and neuroscience (e.g. Dayan 
and Balleine, 2002; Kakade and Dayan, 2002) regarding 
the role of dopamine (a neuromodulator) in the intrinsic 

motivational control of animal behaviors associated with 
novelty and exploration. 
 In his recent book, Trajkovski (2006) describes an 
emergent curiosity in multi-agent societies, where agents 
model own ‘confidence levels’ in the predictions of the 
outcomes of their own actions in the environment. During 
agents’ interactions among each other, they share their 
knowledge structures in a way that the less confident agent 
adopts the structures of the more confident agent. 
 As a general discussion from the above presented work 
we can say that in the majority of cases, the researchers 
have adopted a sort of common sense understanding of 
curiosity, which is often given in dictionaries, together 
with the usual anthropomorphism that goes along. Often it 
is treated as a motivational drive, and as a way for the 
agent to get additional internal reinforcement, in a manner 
very similar to behaviorist psychology in the ‘50s. At the 
same time, with some exceptions, in the research in 
artificial curiosity one can rarely find explicit references to 
relevant research from psychology. At best, the work of 
White (1959) and Piaget would be quoted. We want to 
argue that this is due to the fact that the RL paradigm 
(again, the preferred behaviorist learning paradigm) is most 
commonly adopted, and that in the RL framework such 
understanding is natural. In the classical RL framework the 
agent is represented via its elementary actions, which are 
applied in different environmental states using a policy 
which would maximize the reward (in terms of internal 
primary reinforcement) given by an external teacher 
(critic) when the agent arrives at a goal-state. During its 
life, the agent tries to learn a model of the environment (if I 
am in situation S1 and apply action A1 I will end up in 
situation S2). If there’s no specific goal, via the 
introduction of curiosity the agent gets rewards whenever it 
steps into the unknown, which would hopefully improve its 
world model and its performance on subsequent tasks. 
Variation of this policy include: rewards proportional to 
the prediction error (when in S1 the world model predicts 
that the agent will get in S2 if A1 is performed; instead, the 
agent ends up in S3 and the error is defined as the 
difference between S2 and S3); rewards proportional to the 
decrease of this error in two consecutive trials; rewards 
that, except the prediction error, include other factors 
describing the agent history (familiarity of a particular S; 
probability to be in particular S, and the like). Rarely some 
more complex representation is used (i.e. something above 
the percepts S) although one can find abstractions like: 
behaviors, visual know-how (Kaplan and Oudeyer, 2003), 
skills and options (Precup 2000; Sutton, Precup, & Singh 
1999). Certainly, this way of understanding and 
implementing curiosity can sometimes lead to exciting 
emergent behaviors (e.g. Oudeyer and Kaplan, 2006) but 
the overall impression is that that the prevailing 
understanding of curiosity is rather one dimensional, and 
rather reductionist in spirit. As mentioned in the 
introduction, curiosity is almost exclusively understood as 
something that animate otherwise inert agents. We want to 
put forward a thesis that without some more refined model 



for internal representation and thinking we cannot go 
much further towards higher developmental levels. One 
can even argue that the current framework doesn’t offer 
ways to implement more sophisticated models of curiosity. 
 Elsewhere (Kulakov and Stojanov, 2002; Stojanov et al, 
in press) we argued for internal representations, and 
cognitive models in general, based on Bickhard’s 
interactivism (Bickhard, 1993, 1998). The agents that were 
proposed in our previous works don’t do something only 
because the curiosity drive is active. Their way of being in 
the world is by acting on it. In fact, they enact the world 
they are in. As Bickhard writes in (2000): 
 

A classical construal of motivation has been as that which 
induces a system to do something rather than nothing. The 
organism is assumed to be inertness motivated to do 
something […] That is, the organism is assumed to be inert 
unless some sort of “energy” is provided to move it. But 
organisms are alive, and living because they cannot stop, 
cannot be inert, without simply ceasing to exist as living 
beings. Living beings cannot do nothing. So the problem of 
motivation cannot be that of what makes an organism 
something rather than nothing. The problem of motivation 
must be what makes an organism do one thing rather than 
another. 

 

In the remaining part of the paper we will describe our 
understanding of curiosity and related motivational 
phenomena by way of presenting our agent architectures 
based mainly on Bickhard’s interactivism,   

Interactivist Representations as a Basis for 
Curiosity 
The purpose of our architectures Petitagé (Stojanov, 1997), 
(Stojanov et al, 1997), (Stojanov, 2001) and Vygovorotsky 
(Kulakov, 1998), (Kulakov and Stojanov, 2002) was to 
demonstrate the process of autonomous internalization of 
the environment. The key notion in these architectures is 
the schema mechanism. Inspired by the Piagetian notion of 
scheme (Piaget, 1954) a schema is an ordered sequence of 
elementary actions that the agent is capable of performing 
(e.g. ABBCDCEDEE may be an example of such a 
schema, where A, B, C, D, E are the elementary actions). 
The agent has a collection of inborn schemas that are self-
motivated to get executed. One can think of this set of 
schemas as a result of the evolution that has equipped the 
agent with useful set of initial behaviors for the survival 
(self-preservation) of the agent. The sensory-motor influx 
thus generated represents the background for the activity of 
pattern detectors whose role is to build chunks (proto-
categories, proto-concepts) and anticipate future sensory-
motor influxes. Initially, this process is guided by the 
primitive internal value systems based on the satisfaction 
of agent's drives, one of them being the curiosity drive that 
will be explained later. The result of this process is a 
graph-like internal representation of the environment like 
in Figure 1. 

 
Figure 1. Graph like internal representation as a result of agent’s 

interaction with the environment 

 
 Initially the links represent sequences of concrete 
actions and the nodes are configurations of perceptual 
states. The abstraction building mechanism introduces new 
links and nodes using various techniques. The new links 
and nodes are more and more abstract as they depart from 
the initial schemas grounded in the actual sensory-motor 
experiences. Elements of this representation also include 
mechanisms for novelty detection, judging the reliability or 
the confidence of the schemas' predictions, and enable 
development of more sophisticated models of different 
cognitive phenomena necessary for the development of 
curiosity. 

 
Figure 2. General cognitive architecture of an agent. LLPS 

stands for Low-Level Perceptual System, HLPS is High-Level 
Perceptual System, LLAS is Low-Level Action System and 

HLAS is High-Level Action System. 
 
 In Figure 2 we give a schematic representation of our 
generic agent architecture. The light bulbs represent the 
Low-Level Inner Value System, which provides different 
emotional ‘coloring’ (influence) on the whole architecture. 
 We can metaphorically depict the agent’s initial point of 
view as in Figure 3a. It is intended to show the sensory-
motor influx as an un-interpreted, un-segmented 
environment that the newborn agent finds itself in. 



 During the agent-environment interaction, the 
environment provides stimuli which serve as triggers for 
certain motor-schemas of the agent. The environment also 
imposes certain constraints on the way that the schemas are 
executed. 
 

a)  b)  
Figure 3. a) Uninterpreted, unsegmented sensory stimuli, versus 

b) segmented, classified sensory stimuli 

 
Together with the biases that come from the inborn value 
system, this process results in emergence of certain 
structure in the sensory-motor influx. This is illustrated in 
Figure 3b. We can think of these clusters as proto-concepts 
that will eventually lead to concepts which the agent then 
uses to interpret (parse) the immediate environment. This 
is illustrated with the downward arrows in Figure 2 
(anticipation, and top-down influence on action selection). 
Another interpretation would be that the agent is actually 
changing the environment it is in by actively imposing a 
structure on the incoming sensory influx. 
 We summarize the 4 crucial mechanisms that guide 
agent’s development while it matures: 

abstraction mechanism that  provides chunking of 
the sensory inputs and of the motor outputs, i.e. of 
the pattern sequences (sensory-motor schemas) 
and which enables the agent to deal with more and 
more complex situations with the same or less 
cognitive effort; 
thinking and planning mechanism which 
hypothetically combines various previous 
experiences into new knowledge, for example by 
analogy-making 
mechanism that provides emergence of more 
complex inner value and motivational systems 
according to which new experiences are judged, 
foreseen and executed; 
socialization mechanism that enables the agent to 
interpret in a special way inputs coming from 
other intelligent (live or A-live) agents. 

 The wide arrows at the top of Figure 2, towards and 
from the social Umwelt are depicted here in order to stress 
the interaction between the agent and its social 
environment, although this interaction anyhow goes 
through the perceptual system and through the motor 
action system of the agent. 
 Figure 4 depicts our notion of a knowledge graph 
(internal representation) of the cognitive agent, which is 
implemented in our cognitive architectures. Stemming 
from several levels of abstraction, proto-concepts are 
grouped into more or less coherent and compact groups of 
sensory-motor pattern sequences, connected among each 
other with abstract action-types. 

Although not depicted there, action-types are also 
following the abstraction hierarchy from more primitive 
motor actions. We do not discuss here about concepts, 
because according to our stance, in agreement with 
Hofstadter’s theory of Fluid Concepts (Hofstadter, 1995) 
and Rosch’s theory of Radial Categories (Rosch, 1973), a 
concept is a ‘hallo’ of several proto-concepts and more or 
less abstract sensory-motor pattern sequences, activated 
around a certain central part of that particular concept. 
 

 
 

Figure 4. Knowledge structures developed in a grown-up 
cognitive agent. After several levels of abstraction, proto-

concepts at the Sensory map are chunked into more abstract 
proto-concepts. These proto-concepts are grouped into more or 

less coherent and compact groups of sensory-motor pattern 
sequences connected among each other with abstract action-types. 
 
 So far, research in AI and related disciplines have not 
come out with an agent that will also follow this type of 
ontogenetic development. Researchers concentrated either 
on very high level representation formalisms (predicate-
like, close to natural language) detached from the actual 
embodiment of the agent, or, disregarding any 
representation, they concentrate their effort on producing 
agents with purely reactive behavior. 
 In our opinion, having a curiosity drive which would 
only maximize the learning curve of an agent, equipped 
with a mechanism for reinforcement learning, is not 
enough to fully explain the curiosity. First of all, curiosity, 
being a part of the motivational system, may only partially 
influence the decision for taking actions. Also, the 
curiosity may provoke internal interest for thinking about 
certain parts of knowledge graph, without overt behavior, 
depending on the complex High-level Inner Value System, 
as well. 

Curiosity and the feeling of understanding 
In what follows we would relate the curiosity with the 
feeling of understanding. According to Natika Newton 
(Newton, 1996), we have an experience of understanding 
about which it can be said that, if we feel that we are 
perplexed, then we are, and if we feel that we understand, 
then no matter that it sometimes can be misunderstanding, 
we do feel that we understand. It is not about ‘correct’ 



meaning, it is about meaningfulness. Also there seem to be 
levels of confidence of our understanding from totally 
perplexed through tip-of-the-tongue, when there seems to 
be some initial understanding, to the A-ha Erlebniss when 
we suddenly receive an understanding of something. 
 We distinguish two kinds of feelings of understanding in 
our architecture. One is the feeling of understanding for the 
working memory, the other one is for the whole knowledge 
graph. 
 For each conceptual node an average reliability (or 
confidence) of all schemas in the vicinity of certain 
conceptual node (within a distance of few links) is 
calculated. Whenever this node becomes activated by the 
mechanism for activation spreading, this local average 
confidence is used to judge the situation at hand. Whenever 
this parameter is high enough, the situation at hand 
(represented in the Working Memory) seems to be well 
understood. Whenever it is low, the situation at hand is 
perplexing. Unlike this, the feeling of understanding for the 
whole knowledge graph is calculated as an average 
reliability (or confidence) of all the schemas in the graph. 
 The curiosity drive in our architectures is defined as 
directly proportional function of the both feelings of 
understanding as defined before. Its purpose is to create a 
tendency to raise the confidence of the agents’ knowledge. 
The agent’s interest for a certain part of the knowledge 
graph (or the desirability of that part) is directly 
proportionate to the overall average confidence of the 
schemas in the graph, while on the other hand, it is 
inversely proportionate to its local average confidence. 
This interest for a certain part of the knowledge graph is 
twofold, both for behavior, as a goal for a plan, and for 
thinking, as a target for analogy-making. 
 This is modeled so, because whenever we are generally 
perplexed we are hardly eager to learn about new things, 
but rather we first try to explain for ourselves what is 
perplexing us at hand. So, only when the agent is confident 
enough in its currently active knowledge, it is willing to 
continue to explore new situations or only to think about 
new things. This prevents the appearance of many ‘holes’ 
of loosely understood parts in agent’s knowledge graph. 
 Having defined all this, we can mathematically model 
the Aha-Erlebniss as a first-order derivative of the feeling 
of understanding of the working memory. 

Curiosity and analogy-making 
The true understanding of each concept in the memory will 
be achieved when that conceptual node will be strongly 
connected with other nodes, not only with hierarchical 
links obtained through the process of abstraction, but also 
with reliable (confident) sensory-motor schema links to 
other conceptual nodes as well. 
 

 One understands an object if one can imagine it 
incorporated in a token of an understood action-type with 
an image rich enough to guide oneself in reaching the goal. 
(Newton, 1996) 

 

 From this we can conclude that it is not necessary to 
have immediate experience for all of our understanding. It 

is sufficient that we have rich enough abstract experience 
which we can relate by analogy to the current interest. 
 Back in terms of our architectures, the percept (or the 
group of already recognized proto-concepts) will be 
understood if a connection can be found between the 
current percept and some percepts that are part of some 
already understood (reliable, confident) sensory-motor 
schema. A transfer of knowledge occurs when a good 
analogy-mapping has been made. New relations (schemas) 
are constructed between the nodes of the ‘target situation’ 
and they are given a particular initial reliability 
(confidence) depending on the ‘goodness’ of mapping. 
Since in the moments before this transfer occurs, the 
‘target situation’ was loosely connected with the rest of the 
knowledge graph, adding new connections would increase 
the interconnectivity of the whole graph. In that way the 
feeling of understanding will be increased, i.e. a moment of 
understanding has happened, no matter that these new 
relations can sometimes lead to a misunderstanding. 
 The understanding of one part of conceptual network 
(the target) metaphorically by another part (the source), is 
actually a transfer of the relations (schemas) that hold in 
the source part to the target part. 

Curiosity and expectations 
Our architectures have one very important characteristic of 
intelligence – the expectations. The mind is fundamentally 
an anticipator, as Dennett deduced succinctly in his efforts 
for explaining intelligence (Dennett, 1996). In every 
moment, in every step we anticipate something, and then 
we expect the outcome of our actions. By learning the 
environment in a manner of connecting the current percept 
with some motor scheme to some expectation for the next 
percept and so on, our agents structure the environment 
according to their possibilities to perceive, to act, and to 
sense. In that way they build an expectation framework for 
the environment which they inhabit. So, whenever the 
expectations are met, the agent does not have to bother 
what it will do next – it continues the sensory-motor 
schema as if on “auto-pilot”. The problem for the agent 
appears when the agent is surprised by the detected 
mismatch between the expectations and the current 
percepts. Only when it is surprised, the agent has to stop 
and try to figure out the solution according to the current 
state in the stack of goals. Besides this, new goals have to 
be redeemed when the current plan is finished, if the stack 
of goals happens to be empty. 
 Still these surprises can be internally provoked, as for 
example when a new way of understanding something that 
we knew before comes to our mind or a new plan has just 
been constructed. We would like to distinguish between 
these kinds of surprises generated by internal processes 
with the surprises generated by the mismatch during the 
process of behavior monitoring. 
 

For the behavior it is inherent to reduce uncertainty, while 
for the processes of thinking or imagination it is inherent to 
produce unexpectancies [hypotheses] that will later be 
checked. (Kulakov, 1998) 



 While the curiosity drive has a function for reducing the 
uncertainty of the knowledge by proving it or rejecting it 
by behavior, it also has a function to increase the 
unexpectancy or uncertainty, by adding new nodes in the 
knowledge graph during imagination or thinking, done by 
analogy-making for example. This is obtained by 
calculating the desirability of each part of the knowledge 
graph according to this drive and choosing some of them, 
not only as goals for behavior plans, but also as goals 
(targets) for making analogy mappings and transfers. 

Summary and Conclusions 
We have opened this paper by reviewing representative 
current research on curiosity in artificial agents. The 
overall impression is that the prevailing understanding of 
curiosity is rather one dimensional and reductionist in 
spirit. We argued that this was a result of rather simple 
agent’s representations of the environment that were 
usually adopted. In the second part of the paper we briefly 
summarized our generic cognitive architecture based on 
Bickhard’s interactivism and Piaget’s notion of scheme. 
We argued that a cognitive architecture built along these 
principles would allow for more complex internal 
representation, which in turn would allow more 
sophisticated models of curiosity. Curiosity would not be 
treated as a simple driving force which only pushes the 
agent to do something, but rather as an elaborated 
mechanism which is inseparable from the internal 
knowledge representation and can guide the processes of 
thinking and imagination. The anticipations, feeling of 
understanding, and analogy making are complementary 
processes that together with curiosity enrich internal 
representation. Ultimately, the whole process would 
culminate in language-like representation which will open 
the way to powerful symbolic reasoning available only to 
linguistically competent agents.   
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