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Abstract

This paper overviews the interactivist model of representation and its applications in artificial
intelligence (AI) and intelligent robotics. Selected examples from approaches in Al and robotics are
contrasted with the generic interactivist architecture in order to illustrate specific features of it.
Petitagé, an artificial agent that instantiates our interactivist-expectative theory of agency and
learning (IETAL), is discussed in detail from the interactivist perspective.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The central theme of this paper is the interactivist model of representation (needless to
say, as understood by the authors) and its application in Al and intelligent robotics. Since
our goal is to provide a broad introduction to interactivist AI and robotics, we first sketch a
generic architecture for an intelligent agent that incorporates the key elements of the
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interactivist approach to representation. Next, we have chosen several examples of agent
architectures from Al and intelligent robotics and compared them against the generic
interactivist architecture, pointing out similarities and differences. Instead of attempting to
give an extensive review of research approaches that have adopted (elements of) the
interactivist model, we have focused on a few examples that illustrate our points.

2. Enter representation

The notion of representation has always been at the core of the discussions in artificial
intelligence (Al), intelligent robotics, cognitive science, and other sciences of mind.
Competing schools of thought have been defined according to their particular model of
representation, and major changes or paradigm shifts have involved changes in the
underlying model of representation. For instance, the symbolic approach takes
representation to consist of symbols and their relations, which correspond to objects
and relations in the environment. Connectionism understands representation as sub-
symbolic and as having distributed features. Anti-representational models deny the
existence of any representation whatsoever.

Since the early 1990s, we have witnessed a growing interest in theories of cognitive
development of biological organisms as a potentially adequate theoretical background for
understanding embodied agents. In the early 1990s, the role of embodiment in cognitive
processes was being reconsidered and new ways of modeling representation were being
sought. Roughly in the same period, some researchers in Al and robotics were looking to
developmental psychology for theoretical backing; e.g., Drescher (1991), the Geneva-based
CEPIAG group (Schachner, 1997), Stojanov et al. (1995, 1997, 1999, 2001) and Stojanov
(1997, 1999a,b, 2001). Others were looking for inspiration in biology; e.g., Brooks
(1991a, b), Dautenhahn (1998), Maes (see 1990 for an overview), Mataric (1990, 1992) and
Quick et al. (1999).

The search for new conceptions of embodied agents culminated in the first Interactivist
Summer Institute and the first International Workshop in Epigenetic Robotics, which were
held in the summer and autumn of 2001, respectively.

3. Interactivist objections to classical symbolic representations

A number of criticisms of symbolic representation are now regarded as classic. One of
these is the Frame problem (Pylyshyn, 1987), which consists of determining what pieces of
the agent’s vast amount of stored knowledge are relevant for the current situation or
problem. The Symbol Grounding problem (Harnad, 1990) calls into question the basic
notion of transduction, the process that supposedly transforms sensory states into symbolic
representation. Al models that presume that representation is symbolic require
transduction. To use Harnad’s words, “How can the semantic interpretation of a formal
symbol system be made intrinsic to the system, rather than just parasitic on the meanings
in our heads?” The Frame-of-Reference problem (Clancey, 1989) is about the relations
among the observer, the designer, the artifact, and the environment. For example, when
designing a classical expert system, the knowledge engineer is at the same time an observer
and a designer who observes and describes in symbolic terms the problem-solving behavior
of a human expert. The categories and symbols are those of the engineer, and are grounded
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in his experience—not in the artifact’s experience (Verschure, 1993). These problems are
not merely of philosophical concern: they have manifold consequences for practice.
Bickhard’s interactivism is a radical alternative to symbolic models of representation:

[[nteractivism is a complex philosophical and theoretical system... [that] involves a
commitment to a strict naturalism. By naturalism is meant (roughly) a regulative
assumption that reality is integrated; that there are no isolatable and independent
grounds of reality, such as would be the case if the world were made of Cartesian
substances. (2003, pp. 1-3)

Interactivism adopts process metaphysics: the view that the world fundamentally is
organizations of processes. Bickhard (1998a) notes that in the history of the sciences,
substance-based models have been replaced with process models as each field matures and
progresses: the phlogiston model has given way to a model of the process of combustion,
models of heat in terms of caloric have given way to a kinetic energy model, and élan vital
has been superseded by self-maintaining and -reproducing organizations of processes. The
only remaining exceptions to this progression are the sciences of mind (Bickhard, 1998a).

Bickhard vigorously and persuasively argues against classical representations as ill-
conceived, immature substance-based notions (Bickhard, 1993; Bickhard & Terveen, 1995).
Among other things, classical representations (often referred to as encodings in the
parlance of interactivism) cannot account for the normativity of representations or for the
emergence of new representations. Below we present several objections raised by Bickhard
on various occasions.

Encodingism is circular. By postulating the existence of symbols as the basic
representational units, which represent objects (actions, events, etc.) from the real world,
encodingism presupposes phenomena that it is supposed to explain. Namely, it cannot
explain how new symbols will be learned.

Encodingism is incoherent. Encodings are able to carry representational content when
such content is already provided. X, can stand in for (or represent) X,_;, when X,_;
provides the representational content for X,. So, all human-generated representations
(maps, diagrams, drawings, etc.) convey content by virtue of pre-established conventions.
They stand in for those conventions. The stand-in relation can be iterated many times, but
there must be some bottom level X, of foundational encodings. There have to be
representations that do not just stand in for other representations, but these representa-
tions have to be encodings, too. Bickhard calls this the terminal incoherence.

Encodingism relies on symbols which need to be interpreted, but it fails to account for
the interpreter. Such external representations as maps, statues, and pictures are useful for
their human interpreters. But it is not clear, once the maps and pictures and other
encodings are assumed to be internal for some artificial system, what the interpreter is—
who the interpreter is—or where it is.

What could it mean within the cognitive system, without direct, nonrepresentational
contact with the world (whatever that would be), for the system to know that some
representation is not correct? At best, if given some external feedback about the
correctness of a given representation, a system that relies on symbols can replace it with
(a combination of) another symbols drawn from a pre-given set.

Instead of contending with such frequently discussed issues as systematicity,
productivity, and other characteristics of representational systems in linguistically capable
agents, we first need to deal with the problems presented above.
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4. Interactivist representations

Interactivist representations emerge out of the interaction between the agent and its
environment. They are not an outcome of any sort of processing of inputs.

Passive systems that only receive inputs cannot be representational in the interactive
sense. No “processing’ of inputs can yield interactive representationality, including
any connectionist processing of inputs: representation is an emergent property of
situated interacting systems, not passive systems. (Bickhard, 1998b)

In some of our previous works, we have put forward similar claims (Stojanov et al., 1995).
This comes as no surprise because according to Bickhard (1980a, 2003) interactivism
shares much with Piaget (1970) genetic epistemology—and genetic epistemology was
precisely our point of departure for several projects (e.g., Stojanov et al., 1995, 1997). In
our later research we explicitly embraced interactivist ideas (Stojanov, 1997, 1999a, b).

Before proceeding further with interactivist representations, we will elaborate on the
generic notion of an interactivist agent.

5. Agents as action systems

Within the interactivist framework, the generic agent is seen as an action system. An
action system is a system that is autonomous and stable, can perform actions in the
environment it inhabits, and can sense the effects of those actions (Fig. 1).

Subsystems of the action-system are engaged in interactions with the portions of the
environment (Fig. 2). The very structure (embodiment) of the agent imposes a primordial
structure on the sensory influx. Certainly, there are actions internal to the agent the
consequences of which can be available to the agent and which are without any immediate
effect to the environment.

For example, it is impossible for, more or less, standard human agents (and without
additional equipment) to see what is in front of them and what is behind them—at the same
moment. Again, you cannot touch your chin with the thumb and the top of your head with
the index finger of the same hand, simultaneously.

Fig. 1. Artist’s rendition of an action system. The circle represents the tentative boundary of the agent; arrows
represent actions. Note that even arrows coming into the system are treated as differentiating/detecting perceptual
actions of the system, rather than actions of the environment on the system.
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Fig. 2. Subsystems of the action system are engaged in interactions with the portions of environment.

AV

Fig. 3. Trajectories (p;...p,) in the parameter space of an action system. One of the dimensions is time and the
others depend on the nature of the parameters.

The action-system creates its inputs by performing various actions. The sensory-motor
influx thus generated serves as a basis for interactive representation. So, we can write that

S=f(4, E),

where the sensory input (S) is affected by the actions (A4) that the agent performs, and by
the environment (E) which imposes certain constraints. Note that the notion of action
incorporates the constraints imposed by the very embodiment of the agent (mentioned in
the previous paragraph) and that to some particular agent the environment is manifested
via a particular relation f{.). Note also that some subsystems work within the action system,
producing no externally observable behavior, but are still capable of inducing changes in S.
In other words: the environment unfolds its structure to the agent (the action system) by
putting specific constraints on how processes initiated by the agent proceed through time.

We can illustrate the dynamics of such a system by displaying the trajectories of some
chosen set of parameters of the system (p;...p,) through time (Fig. 3). One can think of
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Fig. 4. The situation image is a snapshot of the values of parameters and the possible continuations at a given
moment.

these parameters as a subset of elements of S and A; i.e., they are strictly a view from
within.

At a given moment, the snapshot of the values of the parameters, as well as the
indications for their possible continuations is called the situation image for extensive
definitions of the interactivist concepts mentioned here see Bickhard, 1980b. An instant of
time is represented by the plane in Fig. 4.

So far in our discussion, we have remained on a fairly general and definitional level. In
the next section we resume our elaboration of interactive representation.

6. Why do agents act?

The answer to the question “Why do agents act?” is far from straightforward. An
external (human) observer could describe the behavior of the agent at different levels,
depending on what is taken as an element of behavior, or basic action.

Although in this context we tend to construe the verb fo act as referring to something
that the agent is doing intentionally, we would like to cover all of the processes taking
place in and between the action system and its environment.

We take the autopoietic view (Maturana & Varela, 1980) that agents (or action systems)
act to preserve their autonomy and to maintain the conditions for their further existence.
Bickhard (1998a) often puts forward the canonical example of a candle flame. The flame
maintains above threshold combustion temperature, vaporizing wax into fuel and—in
standard conditions—induces convection (which brings in fresh oxygen and disperses
waste products). Bickhard calls these systems self-maintenant. Furthermore, a system that
could maintain its condition of being self-maintenant is called recursively self-maintenant.
A candle flame certainly is not recursively self-maintenant: there is not much that the flame
(or more precisely the burning candle) could do when it runs out of wax. But, a bacterium
may be able to swim as long as the sugar gradient is rising, and tumble if it senses that it is
swimming down the gradient (Campbell, 1990). In the above-mentioned sense, this
bacterium is a primitive recursive self-maintenant system capable of switching between
interactions that differentiate good and bad directions of swimming.
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Future potential
trajectories

Present situation
image

Actual past
trajectories

Fig. 5. A view from the above.

We see that in order to be recursively self-maintenant, an action-system has to be able to
discriminate various aspects of the environment and evaluate them within its inner value
system. (The values in this inner value system are different from values in the knowing-
levels model. In the knowing-levels model (Campbell & Bickhard, 1986; Bickhard, 1998b),
there are goals at Level 1 and metagoals, or values, at Level 2. The inner value system,
though, is part of a larger system that functions at Level 1).

Back to Figs. 3 and 4: the situation image in a given moment should include also
indicators of potentialities for interaction, which would guide the trajectories towards
preferred subspaces (where the inner value system determines what is preferred). For
example, an agent’s representation of something that is a physically manipulable object
would include indicators for the invariant patterns of interaction with that object, based on
past experiences. As depicted metaphorically in Fig. 5, the situation image also includes
indicators for the potential paths that may be taken. These indicators would include
contextual information regarding the agent’s goals, experience, and level of development.

Wrapping up this section about interactive representation we want to quote Bickhard
(1980b) again:

There is no direct or total knowledge of the world, only fallible and partial
knowledge of its interactive characteristics. Thus, the world image is constructed
from the specific to the general, out of the basic elements of knowledge in the
procedures innate to the system, while the situation image is differentiated within the
world image from the general to the specific by the outcomes of various interactions.
The world image is a hierarchicalized network of general interaction possibilities and
dependencies, while the situation image is a scheme structure of current possibilities.
(p. 59, emphases added)

7. Generic interactivist architecture

Drawing on the general considerations we put forward above, and on details from our
previous work (Stojanov, 1997, 1999a; Kulakov, 1998), we have proposed the essential
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architectural elements for an agent capable of interactive representation: structures, inner
values, hierarchies, and stages (Kulakov & Stojanov, 2002).

Fig. 6 is far from being a blueprint for building an interactivist robot but it illustrates the
main concepts. At the core of the system there is the agent’s innate structure, which
determines the actions that can be initiated by the system. There is also a primitive innate
value system (depicted in Fig. 6 as lights with different shades of gray), which provide for
the emotional coloring of the outcomes of the probes; once the agent comes into existence
it starts acting in the environment according to these structures. The environment puts
constraints on the way actions are being performed; a subsystem called action-sensory flow
monitor transmits its output to a pattern detector subsystem which is triggered by certain
patterns in the flow (see Fig. 3) and can have top-down influence on action selection, as
well as generate anticipations about the incoming sensor inputs. All of these components
are necessary so that the recursively self-maintenant action system can keep the trajectories
in the “good” subspaces (cf. the bacterium example). A particular implementation
would—at least—need to specify the details of the inner value system and define the
pattern recognition subsystem accordingly. As the agent grows, structural changes
introduce meta-pattern detectors which lead in turn to more complex value systems that

Inborn inner- [ %\g\ .3"‘5*'\) Tentative boundaries
N AN
value system l S \)f\/
4 I irn detector
Top down influ- anticipation

on action selection

Environmental
constraints

Fig. 6. Generic interactivist architecture of a “newborn” agent.
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provide a basis for more complex behavior. The tentative boundary of the agent stresses the
fuzziness of the transition between “physical” and ‘“‘social” environment (De Preester,
2002), as well as the process metaphysics of the whole approach (see Fig. 7).

The next step would be to find interpretations of the concepts mentioned in the previous
paragraph, in terms of goals, motivations, emotions, cognitive development, adaptation,
social and physical situatedness, and so on.

To illustrate some of the points expressed above, we present the results of an experiment
that we have performed with our existing agent Petitagé (see, e.g., Stojanov, 2001, for a
detailed description of this agent).

Towards the social Umwelt

10

— —

[ Meta-pattern |

- detector
[ Meta-inner value J

system
4 ﬁ Tentative boundaries of

L\> A the agent
L€
Rl Pattern de-
%\\? - tector
A
Top down : anticipation
influence T
on action -
selection : /
/

High —
level

system

Environmental
constraints

Fig. 7. A mature agent, capable of experimenting and gaining insights in its idiosyncratic physical and social
environment (Umwelt).
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8. An illustrative experiment

Originally, our Petitagé architecture was developed to illustrate the sensory-motor stage
and the beginnings of the preoperational stage according to Piaget (1937/1954). By
building a model of its environment Petitagé successfully solves the navigation problem in
2D maze-like environments.

Central to this architecture is the notion of an “inborn” schema. Such a schema is a
particular sequence of elementary actions that the agent is capable of performing. Petitagé
can perform 4 elementary actions (“f"—go forward, “b”’—go backwards, “1”"—go left,
“r’—go right) so one possible “inborn” schema is ffrfffrffibftf.

We have conducted an experiment with Petitagé in two different environments, starting
with the same “inborn” schema. The “inborn” schema partly reflects the particularities of
the embodiment of the agent.

For the sake of this experiment, we neglected the navigational system of the agent, and
after choosing a particular “inborn” schema we let it cruise in two different environments.
The first environment (Fig. 8) is more “‘corridor”-like, while the second one (Fig. 9) is more
“open.” Each step that the agent takes is one agent-length. The “inborn” schema at the
beginning was frirfifrfifrfreffrifeffrififfiffrirlf. The agent tries to execute this “‘inborn”
schema, but because of environmental constraints, only certain action sequences are
enabled.

If the agent is in front of a “wall,” and the next action to be executed is “f,” then this
action is skipped, until the next possible action is encountered from the “inborn’ schema.
In that way, in the first environment, the created schemas look like: Iffffffffffffffft,
e A e, SEEFEEreeereeere, frfAfeerfeerreerffef, etc. while in the second environment the
created schemas look like frrefifrlfrfffrifrffrAAAffrlf, rfrflfrefeffrlifreffifeelf, frirfl-
Al rlelf, frfelfelfeffelAfaftriclf, freffrfifrfrffrlfefirfftferlf, etc.

Petitage —*

Fig. 8. Corridor-like environment.
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N

Petitagé

Fig. 9. An “open” environment.

It should be noted that a subsequence, as understood here, may contain actions that are
not contiguous in the original schema (e.g. ab is a subsequence of accb).

It is apparent that in the corridor-like environment, the schemas contain long subsequences
of “f-s, while in the open environment the schemas more “r”’-s and “1”-s than “f”-s.

Also, the average schema in the corridor-like environment (average schema
length = 19.6 actions, SD = 2.18) is shorter than the average schema in the open-
environment (average schema length = 26.9 actions, SD = 3.46), because of the greater
constraints that the corridor-like environment imposes on the agents’ actions.

What we need now is the pattern detector mentioned in the previous subsection, so the
agent can differentiate between these two environments (and act according to its inner
value system). Below we present one possible example of how such a pattern detector can
be implemented.

In order to have a quantitative measure of the differences between the schemas in the two
environments, a dissimilarity function was created that compares two sequences and after
normalization returns the result in the interval [0,1], where 0 means most similar, while 1
means most different. The function that measures dissimilarity between two schemas counts
all possible subsequences from the shorter schema that appear in the longer schema.

The number of all possible appearances is

ny _ 7
n= Z("z —i+ 1)(”1 _n22 l>,
i=1

where n; and n, are the lengths of the longer and shorter schemas respectively, which yields
that

3ny —nmy+ 1
n:nz(nz—i—l)%.
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Then the dissimilarity function is 6 = 1—(c¢/n), where ¢ is the number of appearances of
the subsequences of the shorter schema in the longer one.

Since the dissimilarity function returns values in the upper part of the interval [0,1], we
have decided to use the much smaller number

w=m(m =" 2)
= 1 — ]
2

which is the number of all possible appearances of the whole shorter schema in the longer
schema, while truncating values of the function ¢ which are smaller than zero.

The latter function is then used to produce the matrix of dissimilarities between all
schemas that emerged in both environments. The matrix, in turn, serves as input to a
multidimensional scaling method for grouping similar objects in increasing number of
dimensions. The method gives the Kruskal’s best stress value for 2 dimensions (stress:
0.38396). As can be seen on the following plot, the schemas from different environments
tend to group themselves according to the environment where they were created.

The boundaries, which were drawn in Fig. 10 in freehand after the scaling, are used only
to emphasize the groupings. Fig. 10 shows how different subschemas describe different
environments and, consequently, different objects, that the agent enters into interaction
with. One can easily imagine that objects present in the environment will be represented by
particular subregions of this space according to the possibilities for interactions that they
offer to the agent.

To summarize what is happening in Petitagé, we present Fig. 11. As the agent tries to
exercise its inborn schemas, the environment imposes certain constraints. The mechanism
that is monitoring the sensory-motor flux recognizes patterns in the flux, and at a higher
level of abstraction, describes the environment in terms of these emergent patterns. The
process can go to a higher level, at which meta-pattern detectors would now look for
regularities in the sequences of the lower pattern detectors. In accordance with to the

[—Env 1
L_Env2

Fig. 10. Distribution of schemas in 2D after performing multidimensional scaling.
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Fig. 11. Schematic description of the functioning of the Petitagé agent.

innate value system (e.g. go to the place where you’ll find “food”) particular trajectories
are selected from the set of possible trajectories.

From what was said above, it should be clear by now what kind of properties existing
agent architectures in Al and intelligent robotics will need to exhibit to support the claim
that they (partly) adopt the interactivist stance. There should be at least: some innate
structure, an internal value system, a mechanism which enables recognition of emerging
patterns in the sensory-motor flux or an abstraction mechanism, and a way in which these
emergent structures are made causally effective by influencing the behavior of the agent.
Please note that no representation (of environment, of objects, of relations) exists in the
symbolic sense. “‘Perceiving” objects means generating the set of potential trajectories for
interaction with them.

9. AI and intelligent robotics architectures that (partly) implement interactivist
representations

Gary Drescher’s work (1991) is the most elaborated architecture directly inspired by
Piaget’s theory. From this fact alone, we should expect to find elements of the interactivist
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Fig. 12. (a) An example of an elementary schema for Drescher’s agent; (b) the simulated world of the Drescher’s
agent. The visual field moves relative to the body. In this example, the agent encompasses the body and an object
but not the hand.

model in it. The central place in the agent is, as expected, given to the notion of schema’,
which is formalized as the triplet context—action—result. Fig. 12 depicts an example of one
such schema that states that if the hand is in front of the mouth, moving it backwards will
result in feeling a touch on the mouth.

For Drescher, the context consists of a Boolean combination of propositions on the
state of the world, which are either true or false (on or off). This world is the visual field of
the agent, which moves relative to the simulated body and hand (Fig. 12b). Initially, the
agent has a few schemas whose context and result fields are empty. The schema mechanism
is equipped with a learning facility referred to as marginal attribution. Using this facility,
the agent builds a model of its environment by learning the effects of different actions in
different contexts. This is done by extensively calculating all possible cross-correlations
(among all possible contexts, actions, and results). Through the process of adaptation the
agent builds a meta-level of schemas based on the existing schemas, which represent the
agent’s Umwelt. In conclusion, Drescher’s agent enters the environment with its
elementary initial schemas and the structure of the environment given. By interacting
with the environment, the agent establishes the consequences of its actions, and uses its
schemas to achieve the goal. It does not utilize symbols in the classical Al sense (Fig. 13).

Some early work by Mataric (1990, 1992, 1995) can be viewed as highly interactivist in
spirit. Her Toto robot (Fig. 14), equipped with a ring of 12 sonars and a compass, actively
explores the environment in search of regions that look the same, in the sense that the
perceptual input remains the same while some particular action is performed.

Thus, the environment is partitioned into regions a;*p;/* (i.e., strings of same actions
concatenated with same perceptual input) and the environment model consists of the links
among these regions: link(a;*p;*, a,,*p,*—Figs. 15 and 16).

Tani (1996) describes a system (Yamabico, shown in Fig. 17) for mobile robot
navigation that uses recurrent neural networks (RNNs) to generate predictions about the
robot’s position in a closed environmental niche. He does not offer a general framework of
design principles but rather relies on the particularities of the RNN. Attractors that emerge
in the interaction between the dynamics of the neural network and the environmental
dynamics constitute the grounding of the internal symbolic description of the environment

"Piaget used the French word schéme, correctly translated in English as “scheme,” for elementary cognitive
structures of the sort we are discussing here. However, some translations of Piaget, including Cook’s (1937/1954),
have rendered schéme as “‘schema,” and Drescher followed these sources. Although it is incorrect from a strict
Piagetian standpoint, we have retained Drescher’s usage to prevent further confusion.
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Fig. 14. Mataric’s Toto Robot.

by the agent. The goal-directed planning is carried out by utilizing the acquired internal
representation embedded in the intrinsic dynamics of the recurrent neural networks.

Here too, we can see how an emergent structure (the attractors) influences the behavior
of the agent. The interpretation of the attractors as a higher-level abstraction of the
sensory-motor flow comes naturally (Fig. 18).

Tani and Nolfi (1998), extending the main idea of Tani’s previous work, introduce level
structures into a system that would otherwise consist of a mixture of expert RNNs (Jacobs,
Jordan, Nowlan, & Hilton, 1991). They consider multiple levels of modular networks.
Now, when a particular place in the environment is recognized, the output of a lower level
RNN (say, activation of some output node or nodes is given to the RNN of the level
above). When the system repeatedly experiences a similar sequence of RNN module
activation in the lower level, this sequence can itself be learned by a RNN module in the
higher level. Each module at the higher level learns to encode a different sequence of the
primitives, in terms of RNN module activations, that is reusable in different situations.
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Fig. 15. Toto’s representation of one floor of the MIT Al department.
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Fig. 16. Abstraction in Toto; the upper level generates expectations for sensory input while moving the robot
toward the goal place.

In Fig. 19 we can see the basic RNN modules (b, c¢), and a part of the overall system
showing two levels of the hierarchy (a).

A nice example of the abstraction process in an agent with this architecture can be seen
when it is put in the kind of environment shown in Fig. 20. After spending some time in
“room” A the first layer learns “primitive” concepts like corridors, corners, and crossings.
The second level then learns to distinguish between room A and room B by relying on
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Fig. 17. Tani’s Yamabico mobile robot and schematic representation of its sensory input.

regularities in the sequences of primitive concepts, so that we may think of it as the agent
has learned the concept of a specific room.

The learning mechanism of Cohen’s et al. (1996) simulated agent Neo is very similar to
Drescher’s marginal attribution. The Neo project built a virtual infant that learned many
of the cognitive skills that are expected from a 3-year-old. A conceptual structure that
identifies classes, and supports judgments of similarity underlies these skills. Neo’s fluents
represent objects, states, dependencies and activities. Cohen and his co-investigators were
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Fig. 20. The environment of Tani and Nolfi’s agent. The agent learns the “primitive”” concepts of corners,
corridors, and crossings out of the regularities in the sensory-motor flux; at the second level, it learns the notions
of room A and room B, from the regularities in the occurrences of these primitive concepts.

able to identify classes by examining Neo’s learned activities, thus providing evidence that
conceptual structures can be learned by interacting with the environment. The agent Neo
walks through the environment so that it can move its arm through the simulated space
(i.e., vary its joint angles through configuration space) in an exhaustive fashion, at a given
level of resolution. When the agent encounters an object, its reflexes may cause it to
interact with the object, depending on the details of the encounter.

Cherian and Troxell (1995) propose a functional model of representation for behavior-
based systems. They note that

[A]lthough there are many behavior-based robot control practitioners, the nature of
representations in behavior based systems has not been investigated in detail except
to show that explicit correspondence based representations are not necessary for
building competent autonomous systems. (1995, p. 692)

Cherian and Troxell’s behavior networks consist of a collection of task-achieving behaviors
that interact amongst themselves and with the environment, thus generating a global
behavior that promotes the agent’s survival while it carries out its tasks. Representations
and motivations in their system are seen as aspects of the underlying control structures,
instead of elements out of which it is built. The authors explicitly appeal to Bickhard’s
interactivism. They rightly point out that:

Within the behavior network architecture, activation and excitation status of
behavior modules and the activity levels along excitatory and inhibitory connections
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between behaviors, constitute indications of interaction potentialities that are
anticipatory in nature. (p. 694)

But in their theory they do not provide mechanisms for learning those connections among
the behavior modules. The topology is hand coded—which is not in the spirit of Bickhard’s
theory where the indications of interaction potentialities are to be learned by the agent. As a
matter of fact, a sufficiently primitive interactive agent could be strictly a knowing system
from an interactive point of view, but the goals in Cherian and Troxell’s system require an
agent capable of learning.

In their paper Parisi and Cecconi (1995) make a distinction between two different modes
of learning in neural networks. The first is the traditional, passive mode, when the
networks incorporate in their internal structures the regularities present in the input and
the teaching input that they passively receive. In their critique of connectionist modeling,
Bickhard and Terveen (1995) assume the passive model. In a second mode, which Parisi
and Cecconi call active, the network is equipped with a repertoire of actions and can
partially control its input. Networks that function in the active mode are called ecological
networks because they are seen as agents living in some environment where they learn to
predict the consequences of their actions. They then empirically show that “hidden”
environmental properties are better learned in active mode. Parisi and Cecconi provide an
example of how adding simple control over perception—that is, the capacity for
autonomous interaction—enables the construction of better representations. To some
extent, Parisi and Cecconi depart from classical connectionism by adding top-down
control signals over the network input.

In a similar vein, Rao and Ballard (1995, 1996) propose architectures for modeling the
capacity for invariant recognition, motion, and stereo vision. The key point is that, apart
from the input-driven bottom-up signals, in their model they include expectation-driven (or
top-down) signals. The two types of signals are dynamically combined in order to predict
the current recognition state. The model is based on a hierarchical form of extended
Kalman filters, according to the minimal description length principle (MDL). In
particular, this model successfully predicts the properties of the neural response in the
visual cortex during visual recognition and fixation tasks. The key point is that perception
is construed as an active process of constructing the expected input, rather than a passive
input processing.

As a last example, we want to present a model of rhythm recognition and perception
intended as a proof of concept for the interactivist position. Buisson (2004) has constructed
a fairly simple Java program called Tam-Tam that implements the most important ideas of
interactivist representation as well as assimilation schemes a la Piaget. The stress in the
model is given to the inherent temporal dimension of perception as well as its mutual
determination by action. The user simply strikes a single key on the keyboard, according to
certain rhythmic pattern. The program is supposed to predict the next stroke; i.e., to learn
the rhythm. This is done without any explicit recording of the input flow. Instead, the
program manages a set of sensory-motor schemes (SMS) which are analogous to Piaget’s
assimilating schemes. These SMSs react to the actions from the world (the keystrokes) and
accommodate to these actions in order to maximize the assimilation. Though not going
into the detailed description of the program, we will nevertheless try to explain its
functioning. In the very beginning there is a single simple SMS: a half-tone which
corresponds to a simple monotonic tam-tam. The program tries to assimilate everything
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which comes from the world using this SMS. Obviously, unless the user taps this simple
tam-tam rhythm the program will not be very successful. When the user starts to use more
complex patterns of strikes, the program has two possibilities to account for them:
stretching—or compressing—the intervals between the strikes (which actually represents
fine tuning of some SMS which is otherwise well suited to the input) or, in case this does
not bring satisfactory stroke prediction, the program generates new SMSs by a variation/
selection algorithm. Thus, the population of SMSs evolves as new SMSs are created via
substitution, deletion, or insertion of notes. Every new SMS is then evaluated according its
success of predicting the next stroke from the user; i.e. how well it assimilates the current
rhythm. Each SMS is in fact a program thread running in parallel with other SMSs,
indicating potential rhythms which are more or less in accordance with the user input. The
one which best predicts the timing of the upcoming stroke is chosen to generate the
anticipation of the next time interval. This simple program (only about 400 lines of JAVA
code) illustrates in an elegant manner many features of the interactivist model: the inherent
temporality of interaction and participation; the emergence of representation out of
interactive anticipatory organization; the anticipation of truth value in anticipations, using
internally detectable representational error; the inherent variation and selection
constructivist mechanism of learning, which is controlled by this internal error detection.

10. Conclusion

The interactivist model in its entirety can be used to explain phenomena in various
disciplines and on various levels. Here, we focused our discussion on the problem of
representation and on interactivist-flavored solutions to it in Al and intelligent robotics. In
conclusion, we can say that there is apparently not yet a full-fledged implementation of
Bickhard’s interactivist model in these fields. Neither it seems that one can be expected in
the near future. A main shortcoming of each model presented here is that the number of
abstraction levels and the criterion for their introduction are hand-coded. This, in our
opinion, will remain a significant challenge for future implementations of the interactivist
model.
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