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Abstract

Most of the current in-network data processing
algorithms are modified regression techniques like
multidimensional data series analysis. In our opinion,
several algorithms developed within the artificial neural-
networks tradition can be easily adopted to wireless
sensor network platforms and will meet the requirements
for sensor networks like: simple parallel-distributed
computation, distributed storage, data robustness and
auto-classification of sensor readings. Lower
communication costs and energy savings can be obtained
as a consequence of the dimensionality reduction achieved
by the neural-networks clustering algorithms,

In this paper we will present three possible
implementations of the ART and FuzzyART neural-
networks algorithms, which are unsupervised learning
methods for categorization of the sensory inputs. They are
tested on a data obtained from a set of several motes,
equipped with several sensors each. Results from
simulations of deliberately made faulty sensors show the
data robustness of these architectures.

1. Introduction

Sensor networks are extremely data-driven and are
deployed to monitor and understand the physical world.
An entirely centralized data collection policy is hard to
implement because of the energy constraints on sensor
node communication. This policy is also inefficient
because the sensor data has considerable redundancy both
in time and in space. When the application demands
compressed summaries of large spatio-temporal sensor
data and similarity queries, such as detecting correlations
among data and finding similar patterns, the use of a
neural-network algorithm seems a reasonable choice.

The development of the wireless sensor networks is
accompanied by several algorithms for data processing
which are generally modified regression techniques from
the field of multidimensional data series analysis in other
scientific fields, with examples like nearest neighbor

search, principal component analysis and
multidimensional scaling (e.g. [7], [10]). We argue that
some of the algorithms well developed within the neural-
networks tradition for over 40 years, are well suited to fit
into the requirements imposed to sensor networks for:
simple parallel distributed computation, distributed
storage, data robustness and auto-classification of sensor
readings.

Auto-classification of the sensor readings is important
in sensor networks since the data obtained with them is
with high dimensionality and very immense, which could
easily overwhelm the processing and storage capacity of a
centralized database system. On the other hand, the data
obtained by the sensor networks are often self-correlated
over time, over space and over different sensor inputs, due
to the nature of the phenomena being sensed which is
often slowly changing, due to the redundant sensor nodes
dispersed near each other, and due to the fact that often
the sensor readings are correlated over different modalities
sensed at one node (e.g. sound and light from cars in
traffic control application).

Neural-networks algorithms, on the other hand, use
simple computations and do not represent big burden to
memory. The proposed adaptations of the ART neural
networks models can be easily parameterized according to
user needs for greater or lower level of details of the
sensor data. The outputs of the ART neural networks can
also be easily transformed into if-then decision rules
understandable to humans (e.g. [4]).

Until recently, the only application of neural-networks
algorithms for data processing in the field of sensor
networks is the work of Catterall et al. [6] where they
have made a rather simple and straightforward
implementation of the Kohonen neural-network
architecture. In many real-world situations, there is no a
priori information on variability present in the data stream,
so we can not determine in advance the required number
of output clusters in which the input patterns will fit. Thus
this straightforward implementation of the Kohonen
neural network in [6] seems rather rudimentary and the
only justification for it can be the mere possibility to apply
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some principles of Artificial Neural Networks for data
processing in wireless sensor networks.

Unsupervised learning Artificial Neural Networks
typically perform dimensionality reduction or pattern
clustering. They are able to discover both regularities and
irregularities in the redundant input data by iterative
process of adjusting weights of interconnections between
a large numbers of simple computational units (called
artificial neurons). As a result of the dimensionality
reduction obtained easily from the outputs of these
algorithms, lower communication costs and thus bigger
energy savings can also be obtained.

A neural network algorithm can be implemented in the
tiny platform of Smart-It units, which are kind of sensor
nodes or motes. Thus instead of reporting the raw-data,
each Smart-It unit can send only the cluster number where
the current sensory input pattern has been classified. In
that way a huge dimensionality reduction can be achieved
depending on the number of sensor inputs in each unit. In
the same time communication savings will benefit from
the fact that the cluster number is a small binary number
unlike sensory readings which can be several bytes long
real numbers converted from the analog inputs.

Since the communication is the biggest consumer of
the energy in the units, this leads to bigger energy savings
as well.

In the paper we will review first the ART1 [1] and
FuzzyART [2] models. Later our proposal of three
different kinds of architectures for incorporating the
Artificial Neural Networks into the small Smart-It units’
network will be given. Shortly we will present the
hardware platform that has been originally used to obtain
the data that we later used to test our proposal and we will
give some results of the classifications of the data within
different architectures. We will also give results from the
simulations where we have purposefully made one of the
input sensors malfunctioning in order to show the data
robustness of our approach.

2. ART and FuzzyART algorithms

Several models of unsupervised Artificial Neural
Networks have been proposed like Multi-layer Perceptron
(MLP), Self-Organizing Maps (SOMs), and Adaptive
Resonance Theory (ART) ([8] and [9]). Out of these we
have chosen the ART models for implementation in the
field of sensor networks because they do not constrain the
number of different categories in which the input data will
be clustered. Although the later extensions of MLP and
SOMs involve the principle of incrementally growing
structure, their topological self-organization is possible
only with so called off-line learning cycle separate from
the classification cycle. Having two separate cycles is
inconvenient in the presence of potentially unlimited
stream of input data with no reliable method of choosing

the suitably representative subset for a learning cycle.
ART algorithms offer another example of topological self-
organization of data but they can adapt structure quickly
in the so called fast-learning mode explained later.

Adaptive Resonance Theory (ART) has been
developed by Grossberg and Carpenter for pattern
recognition primarily. Models of unsupervised learning
include ART1 [1] for binary input patterns and FuzzyART
[2] for analog input patterns.

ART networks develop stable recognition codes by
self-organization in response to arbitrary sequences of
input patterns. They were designed to solve the so called
stability-plasticity dilemma: how to continue to learn from
new events without forgetting previously learned
information. ART networks model several features such
as robustness to variations in intensity), detection of
signals mixed with noise, and both short- and long-term
memory to accommodate variable rates of change in the
environment. There are several variations of ART-based
networks: ART1 (three-layer network with binary inputs),
Fuzzy ART (with analog inputs, representing neuro-fuzzy
hybrids which inherit all key features of ART), their
supervised versions ARTMAP and FuzzyARTMAP and
many others. ARTMAP models [3], for example, combine
two unsupervised modules to carry out supervised
learning.

Figure 1 Architecture of the ART network.

In Figure 1 typical representation of an ART Artificial
Neural Network is given. L2 is the layer of category
nodes. If the degree of category match at the L1 layer is
lower than the sensitivity threshold Θ, originally called
vigilance level, a reset signal will be triggered, which will
deactivate the current winning L2 node which has
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maximum incoming activation, for the period of
presentation of the current input.

An ART network is built up of three layers: the input
layer (L0), the comparison layer (L1) and the recognition
layer (L2) with N, N and M neurons, respectively. The
input layer stores the input pattern, and each neuron in the
input layer is connected to its corresponding node in the
comparison layer via one-to-one, non-modifiable links.
Nodes in the L2 layer represent categories into which the
inputs have been classified so far. The L1 and L2 layers
interact with each other through weighted bottom-up and
top-down connections that are modified when the network
learns. There are additional gain control signals in the
network which are not shown in Figure 1 but regulate its
operation and they will not be detailed here.

The learning process of the network can be described
as follows: At each presentation of a non-zero binary input
pattern p (pj ∈{0, 1}; j = 1, 2, …, N), the network attempts
to classify it into one of its existing categories based on its
similarity to the stored prototype of each category node.
More precisely, for each node i in the L2 layer, the
bottom-up activation Ai is calculated, which can be
expressed as
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where wi is the (binary) weight vector or prototype of
category i, and ε > 0 is a parameter. Then the L2 node C
that has the highest bottom-up activation, i.e. AC =
max{Ai | i = 1, …, M}, is selected. The weight vector of
the winning node (wC) will then be compared to the
current input at the comparison layer. If they are similar
enough, i.e. if they satisfy the matching condition:
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where Θ is the sensitivity threshold (0<Θ ≤1), then the L2
node C will capture the current input and the network
learns by modifying wC:

old
C

old
C

new
C w)1()pw(w γγ −+= � (3)

where γ is the learning rate (0<γ ≤1). All other weights in
the network remain unchanged. The case when γ =1 is
called “fast learning” mode.

If, however, the stored prototype wC does not match the
input sufficiently, i.e. if the condition (2) is not met, the
winning L2 node will be reset for the period of
presentation of the current input. Then another L2 node
(or category) is selected with the highest Ai, whose
prototype will be matched against the input, and so on.
This “hypothesis-testing” cycle is repeated until the

network either finds a stored category whose prototype
matches the input well enough, or allocates a new L2 node
in which case learning takes place according to (3).

As a consequence of its stability-plasticity property, the
network is capable of learning “on-line”, i.e. refining its
learned categories in response to a stream of new input
patterns, as opposed to being trained “off-line” on a finite
training set.

The number of developed categories can be controlled
by setting the sensitivity threshold Θ: the higher the
threshold, the larger number of more specific categories
will be created. At its extreme, if Θ = 1, the network will
create a new category for every unique input pattern.

FuzzyART is an analog version of the ART1 algorithm
which takes analog inputs and classifies them in a similar
way as ART1. The main ART1 operations of category
choice (1), match (2), and learning (3) translate into Fuzzy
ART operations by replacing the ordinary set theory
intersection operator � of ART1 with the fuzzy set theory
conjunction MIN operator ∧.

In FuzzyART (but as well in ART1), complement
coding of the input vector prevents a type of category
proliferation that could otherwise occur when weights
erode. Complement coding doubles the dimensionality of
an input vector p � (p1, …, pN) by concatenating the vector
p with its complement pc. The input to the FuzzyART
network (L0 in Figure 1) is then a 2N-dimensional vector:
I=(p, pc), where (pc)i � (1- pi). If p represents input
features, then complement coding allows a learned
category representation to encode the degree to which
each feature is consistently absent from the input vector,
as well as the degree to which it is consistently present in
the input vector, when that category is active. Because of
its computational advantages, complement coding is used
in nearly all ART applications, and we have used it in our
models as well.

The strengths of the ART models include its unique
ability to solve a stability-plasticity dilemma, extremely
short training times in the fast-learning mode, and an
incrementally growing number of clusters based on the
variations in the input data. The network runs entirely
autonomously; it does not need any outside control, it can
learn and classify at the same time, provides fast access to
match results, and is designed to work with infinite stream
of data. All these features make it an excellent choice for
application in wireless sensor networks.

3. Proposed architectures of sensor
networks

Three types of network architectures are proposed. The
results of the classifications of a real-world data will be
given later for each of the architectures.
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3.1. One Clusterhead collecting all sensor data

First we have made this architecture to compare the
work of Catterall et al. (which used Kohonen SOMs), in
order to show that ART model can be used
straightforwardly instead of SOMs. This model brings
advantages in that we do not have to fix in advance the
number of clusters (categories) that the network should
learn to recognize. Here the Smart-It units send the
sensory readings to one of them chosen to be a
Clusterhead, where a FuzzyART network is implemented.

Figure 2 Clusterhead collecting all sensor data from its
cluster of units

3.2. Each unit being a Clusterhead clustering data
with different level of details

In this architecture each unit receives the input data
from all Smart-It units in one cluster by a broadcast. Then
each unit classifies the sensor data with different
sensitivity threshold Θ, thus providing a general overall
view on the network, (smaller Θ) or more and more
detailed views of the network (greater Θ). Depending on
the level of details needed at the moment, the
corresponding Smart-It unit can be queried depending on
the level of the sensitivity threshold Θ used to classify the
data.

Θ1 < Θ2 < Θ3 < Θ4 < Θ5 < Θ6

Figure 3 Redundant Clusterheads collect data at different
levels of details

Instead of having only one Clusterhead, since the data
is broadcast anyway, in this architecture all Smart-It units
collect data from all over units and they all have
FuzzyART implementations. So we can use different
sensitivity thresholds Θ with which we achieve different
kinds of views over the same data (coarser with smaller
number of categories or more detailed with bigger number
of categories).

3.3. Clusterhead collecting only clustering outputs
from the other units.

Each Smart-It unit has FuzzyART implementations
classifying only its sensor readings. One of the Smart-It
units can be chosen to be a Clusterhead collecting and
classifying only the classifications obtained at other units.
Since the clusters at each unit can be represented with
integer values, the neural-network implementation at the
Clusterhead is ART1 with binary inputs.

Figure 4 One Clusterhead collecting and classifying the
data after they are once classified at the lower level

With this architecture a great dimensionality reduction
can be achieved depending on the number of sensor inputs
in each unit (in our case it’s a 6-to-1 reduction). In the
same time communication savings benefit from the fact
that the cluster number is a small binary number unlike
raw sensory readings which can be several bytes long real
numbers converted from the analog inputs.

If the number of sensors in each unit is n, the
Clusterhead collects data from k units, and the number of
different categories in each unit can be represented by c-
byte integer, while the sensor readings are real numbers
represented with r bytes, then the communication saving
can be calculated as:

c

rn

ck

rkn ⋅=
⋅

⋅⋅

Since the communication is the biggest consumer of
the energy in the units, this leads to bigger energy savings
as well.
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Another benefit from this architecture is the fact that
we can view the classifications at the Clusterhead as an
indication of the spatio-temporal correlations of the input
data.

4. Hardware platform

The platform for the experiments, from which the data
analyzed in this paper were obtained, is a collection of
‘Smart-Its’ (see [6], for more details). One Smart-It unit
embodies a sensor module, and a communication module,
which are interconnected. The core of sensor module is a
PIC 16F877 microcontroller clocked at 20 MHz, which
offers 384 bytes of data memory and 8Kx14 bits of
memory. The sensor module consists of a light sensor, a
microphone, 2 accelerometers, a thermometer and a
pressure sensor. An RF stack provides wireless
communication, at a maximum rate of 125 kbps, which
only supports broadcast.

5. Experimental results

The data used in these experiments were provided
courtesy of Catterall et al. and the data files are available
for download at this website:
www.comp.lancs.ac.uk/~catterae/alife2002/. All results
presented here were produced using datasets containing
real-world data. The five datasets (one for each Smart-It)
are visualized by time series plots in Figure 5. Note that,
although the sensor data are very similar (as the units are
physically close to each other), they are not exactly the
same.

All the experiments were conducted with complement
coding of the input vector and fast learning mode. Figure
6 shows one possible classification of these input data in
an architecture presented in Figure 2 with sensitivity
threshold level Θ=0.93.

Smart-It 1

0

100

Sound Temp. Light Pressure AccX AccY

Smart-It 2

0

100

Smart-It 3

0

100

Smart-It 4

0

100

Smart-It 5

0

100

0 200 400 600 800 1000 1200 1400 1600

Figure 5 Datasets with sensor values from each of the
Smart-It units during several states of the environment
(‘contexts’).
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Figure 6 One possible classification of the input data

For testing the data robustness of the models, we have
synthetically made one of the sensors at a time defective
in way that it gives either a zero constant signal or a
random measurement signal. Training was done with
sensitivity threshold set to 0.93, while testing was done
with sensitivity threshold set to 0.90. In Figure 7 the
effects of the representative sensor errors are shown
(sensor numbered 12 and sensor numbered 17, out of 30),
where with the ovals are highlighted the regions where the
classifications differ from the case when all sensors are
functioning correctly. For example, in Regions 1 and 2,
the classification of the case when the sensor number 12
gives random values differs from the regular case. In
Region 2, the cases when the 17th sensor gives random or
zero values also results in different classifications.

0
2

4
6

8
10

12
14

16
18
20

0 200 400 600 800 1000 1200 1400 1600

No_Error Random_12 Zero_17 Random_17

Figure 7. Different classifications when some of the
sensors are defective giving zero or random values.

Second architecture (Figure 3) provides different
degrees of granularity of the input data, namely for
different values of the sensitivity threshold Θ (ranging
from 0.93 up to 0.99 in our experiments) we get different
number of output categories (from 20 up to 370) for the
1700 samples taken as a learning dataset.

0
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200

250

300
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0 200 400 600 800 1000 1200 1400 1600

ρ=0.93 ρ=0.95 ρ=0.97 ρ=0.98 ρ=0.99

Figure 8 Redundant Clusterheads collecting data at
different levels of details

Reg. 2

Reg. 1
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For the third architecture (Figure 4) we have also
conducted experiments with the original data and with the
synthetically made erroneous data. In Figure 9 we give the
results of the classifications of the Clusterhead collecting
only the classifications from the other Smart-It units. The
training was done with sensitivity threshold of 0.88, while
the testing with 0.70. The results show no significant
difference among the classifications when all sensors are
functioning correctly or when some of the sensors give
only zero or random signal (in our case sensors number 12
and 17).

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

No_Errors s12_zero s12_random s17_zero s17_random

Figure 9 Results of the classifications show significant
data robustness of the third architecture with one
Clusterhead collecting only clustering outputs from the
other units.

6. Conclusion

In this paper we have demonstrated a possible
adaptation of one popular model of Artificial Neural
Networks algorithm (ART model) in the field of wireless
sensor networks. The positive features of the ART class
algorithms such as simple parallel-distributed
computation, distributed storage, data robustness and
auto-classification of sensor readings are demonstrated
within three different proposed architectures.

One of the proposed architectures with one Clusterhead
collecting only clustering outputs from the other units
provides a big dimensionality reduction and in the same
time additional communication saving, since only
classification IDs (small binaries) are passed to the
Clusterhead instead of all input samples.

Results from the simulated deliberately erroneous
sensors, where we imitate defective sensors giving only
zero or random output, show that the model is robust to
small variations in the input.

For future work we are also considering to apply the
supervised learning versions of the ART algorithms,
namely ARTMAP, FuzzyARTMAP and dARTMAP [5]
where along with the sensor input vector, a vector of
corresponding “right-answers” is obtained by the user (so

called teacher), or possibly automatically from another
system.
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