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Abstract 

Some of the algorithms developed within the 

artificial neural-networks tradition can be easily 

adopted to wireless sensor network platforms and will 

meet the requirements for sensor networks like: simple 

parallel distributed computation, distributed storage 

and data robustness. As a result of the dimensionality 

reduction obtained simply from the outputs of the 

neural-networks clustering algorithms, lower 

communication costs and energy savings can also be 

obtained. 

In this paper we will present two possible 

implementations of the ART and FuzzyART neural-

networks algorithms, which are unsupervised learning 

methods for categorization of the sensory inputs. They 

are tested on a data obtained from a set of several 

motes, equipped with several sensors each. Results 

from simulations of purposefully faulty sensors show 

the data robustness of these architectures. The 

proposed neural-networks classifiers have distributed 

short and long-term memory of the sensory inputs and 

can function as security alert when unusual sensor 

inputs are detected. 

1. Introduction 

Sensor networks place several requirements on a 

distributed storage infrastructure. These systems are 

highly data-driven and are deployed to observe, 

analyze and understand the physical world. A fully 

centralized data collection strategy is infeasible given 

the energy constraints on sensor node communication, 

and is also inefficient given that sensor data has 

significant redundancy both in time and in space. In 

cases when the application demands compressed 

summaries of large spatio-temporal sensor data and 

similarity queries, such as detecting correlations and 

finding similar patterns, the use of a neural-network 

algorithm is a reasonable choice. 

The development of the wireless sensor networks is 

accompanied by several algorithms for data processing 

which are modified regression techniques from the 

field of multidimensional data series analysis in other 

scientific fields, with examples like nearest neighbor 

search, principal component analysis and 

multidimensional scaling (e.g. [9]). We argue that 

some of the algorithms well developed within the 

neural-networks tradition for over 40 years, are well 

suited to fit into the requirements imposed to sensor 

networks for: simple parallel distributed computation, 

distributed storage, data robustness and auto-

classification of sensor readings. 

Auto-classification of the sensor readings is 

important in sensor networks since the data obtained 

with them is with high dimensionality and very 

immense, which could easily overwhelm the 

processing and storage capacity of a centralized 

database system. On the other hand, the data obtained 

by the sensor networks are often self-correlated over 

time, over space and over different sensor inputs, due 

to the nature of the phenomena being sensed which is 

often slowly changing, due to the redundant sensor 

nodes dispersed near each other, and due to the fact 

that often the sensor readings are correlated over 

different modalities sensed at one node (e.g. sound and 

light from cars in traffic control application). 

 Neural-networks algorithms, on the other hand, use 

simple computations and do not represent big burden 

to memory. Up to date, the only application of neural-

networks algorithms for data processing in the field of 

sensor networks is the work of Catterall et al. [5] where 

they have slightly modified the Kohonen Self 

Organizing Maps model. Even this application was 

presented to a different kind of audience at a 

conference for Artificial Life. This has additionally 

motivated us to bring closer the work done in the field 
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of Artificial Neural Networks to the community of 

researchers working in the field of Sensor Networks, 

since some of the problems for the processing of the 

sensory input data are similar. 

Unsupervised learning Artificial Neural Networks 

typically perform dimensionality reduction or pattern 

clustering. They are able to discover both regularities 

and irregularities in the redundant input data by 

iterative process of adjusting weights of 

interconnections between a large numbers of simple 

computational units (called artificial neurons). As a 

result of the dimensionality reduction obtained easily 

from the outputs of these algorithms, lower 

communication costs and thus bigger energy savings 

can also be obtained. A neural network algorithm can 

be implemented in the tiny platform of Smart-It units, 

which are kind of sensor nodes or motes. 

In the paper we will review first the ART1 [1] and 

FuzzyART [2] models. Later some related work will be 

considered and after that our proposal of two different 

kinds of architectures for incorporating the Artificial 

Neural Networks into the small Smart-It units’ network 

will be given. Shortly we will present the hardware 

platform that has been originally used to obtain the 

data that we later used to test our proposal and we will 

give some results of the classifications of the data 

within both architectures. We will also give results 

from the simulations where we have purposefully made 

one of the input sensors malfunctioning in order to 

show the data robustness of our approach. Finally we 

will give some discussions and directions for future 

work. 

2. ART and FuzzyART algorithms 

Several models of unsupervised Artificial Neural 

Networks have been proposed like Multi-layer 

Perceptron (MLP), Self-Organizing Maps (SOMs), and 

Adaptive Resonance Theory (ART) ([7] and [8]). Out 

of these, we have chosen the ART models for 

implementation in the field of sensor networks because 

they do not constrain the number of different 

categories in which the input data will be clustered and 

they do not require them in advance. Although the later 

extensions of MLP and SOMs involve the principle of 

incrementally growing structure, their topological 

self-organization is possible only with so called off-

line learning cycle separate from the classification 

cycle. Having two separate cycles is inconvenient in 

the presence of potentially unlimited stream of input 

data with no reliable method of choosing the suitably 

representative subset for a learning cycle. ART 

algorithms offer another example of self-organization 

of data but they can adapt structure quickly in the so 

called fast-learning mode explained later. 

Adaptive Resonance Theory (ART) has been 

developed by Grossberg and Carpenter for pattern 

recognition primarily. Models of unsupervised learning 

include ART1 [1] for binary input patterns and 

FuzzyART [2] for analog input patterns. 

ART networks develop stable recognition codes by 

self-organization in response to arbitrary sequences of 

input patterns. They were designed to solve the so 

called stability-plasticity dilemma: how to continue to 

learn from new events without forgetting previously 

learned information. ART networks model several 

features such as robustness to variations in intensity), 

detection of signals mixed with noise, and both short- 

and long-term memory to accommodate variable rates 

of change in the environment. There are several 

variations of ART-based networks: ART1 (three-layer 

network with binary inputs), Fuzzy ART (with analog 

inputs, representing neuro-fuzzy hybrids which inherit 

all key features of ART), their supervised versions 

ARTMAP and FuzzyARTMAP and many others. 

ARTMAP models [3], for example, combine two 

unsupervised modules to carry out supervised learning. 

 

Figure 1. Architecture of the ART network. 

In Figure 1 typical representation of an ART 

Artificial Neural Network is given. Winning F2 

category nodes are selected by the attentional 

subsystem. Category search is controlled by the 

orienting subsystem. If the degree of category match at 

the F1 layer is lower than the so called vigilance level 

ρ, a reset signal will be triggered, which will deactivate 

the current winning F2 node for the period of 

presentation of the current input. 

An ART network is built up of three layers: the 

input layer (F0), the comparison layer (F1) and the 

recognition layer (F2) with N, N and M neurons, 

respectively. The input layer stores the input pattern, 

and each neuron in the input layer is connected to its 

corresponding node in the comparison layer via one-to-

one, non-modifiable links. Nodes in the F2 layer 

represent input categories. The F1 and F2 layers 

interact with each other through weighted bottom-up 

and top-down connections that are modified when the 

network learns. There are additional gain control 

signals in the network (not shown in Figure 1) that 

regulate its operation, which will not be detailed here. 
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The learning process of the network can be 

described as follows: At each presentation of a 

non-zero binary input pattern x (xj ∈{0, 1}; j = 1, 2, …, 

N), the network attempts to classify it into one of its 

existing categories based on its similarity to the stored 

prototype of each category node. More precisely, for 

each node i in the F2 layer, the bottom-up activation Ti 

is calculated, which can be expressed as 

 

i

i

iT
w

xw

+
=

β

∩  i = 1, …, M (1) 

where | · | is the norm operator (for a vector u it is: ∑ =
≡

N

j ju
1

u ), wi is the (binary) weight vector or 

prototype of category i, and β > 0 is a parameter. Then 

the F2 node I that has the highest bottom-up activation, 

i.e.   TI = max{Ti | i = 1, …, M}, is selected (realizing 

so called winner-takes-all competition). The weight 

vector of the winning node (wI) will then be compared 

to the current input at the comparison layer. If they are 

similar enough, i.e. if they satisfy the matching 

condition: 

 ρ≥
x

xw ∩I  (2) 

where ρ is a system parameter called vigilance 

(0 < ρ ≤ 1), then the F2 node I will capture the current 

input and the network learns by modifying wI: 

 old

I

old

I

new

I w)1()xw(w ηη −+= ∩  (3) 

where η is the learning rate (0 <  η  ≤ 1) (the case 

when  η =1 is called “fast learning”). All other weights 

in the network remain unchanged. 

If, however, the stored prototype wI does not match 

the input sufficiently, i.e. if the condition (2) is not 

met, the winning F2 node will be reset (by the reset 

signal in Figure 1) for the period of presentation of the 

current input. Then another F2 node (or category) is 

selected with the highest Ti, whose prototype will be 

matched against the input, and so on. This “hypothesis-

testing” cycle is repeated until the network either finds 

a stored category whose prototype matches the input 

well enough, or allocates a new F2 node in which case 

learning takes place according to (3). 

As a consequence of its stability-plasticity property, 

the network is capable of learning “on-line”, i.e. 

refining its learned categories in response to a stream 

of new input patterns, as opposed to being trained 

“off-line” on a finite training set. 

The number of developed categories can be 

controlled by the vigilance ρ: the higher the vigilance 

level, the larger number of more specific categories 

will be created. At its extreme, if ρ = 1, the network 

creates a new category for every unique input pattern. 

FuzzyART is an analog version of the ART1 

algorithm which takes analog inputs and classifies 

them in a similar way as ART1. The main ART1 

operations of category choice (1), match (2), and 

learning (3) translate into FuzzyART operations by 

replacing the ordinary set theory intersection operator 

∩ of ART1 with the fuzzy set theory conjunction MIN 

operator ∧. 

In FuzzyART (but as well in ART1), complement 

coding of the input vector prevents a type of category 

proliferation that could otherwise occur when weights 

erode. Complement coding doubles the dimensionality 

of an input vector b ≡ (b1, …, bN) by concatenating the 

vector b with its complement b
c
. The input to the 

FuzzyART network (F0 in Figure 1) is then a 2N-

dimensional vector: I=B≡(b, b
c
), where (b

c
)i ≡ (1- bi). If 

b represents input features, then complement coding 

allows a learned category representation to encode the 

degree to which each feature is consistently absent 

from the input vector, as well as the degree to which it 

is consistently present in the input vector, when that 

category is active. Because of its computational 

advantages, complement coding is used in nearly all 

ART applications, and we have used it in our models 

as well. 

The strengths of the ART models include its unique 

ability to solve a stability-plasticity dilemma, 

extremely short training times in the fast-learning 

mode, and an incrementally growing number of 

clusters based on the variations in the input data. The 

network runs entirely autonomously; it does not need 

any outside control, it can learn and classify at the 

same time, provides fast access to match results, and is 

designed to work with infinite stream of data. All these 

features make it an excellent choice for applications in 

wireless sensor networks. 

3. Related work 

As we mentioned in the introduction, Catterall et al. 

[5] have slightly modified the Kohonen Self 

Organizing Maps (SOMs) model. Kohonen SOMs and 

ART models are similar in a way that they are both 

prototype-based networks where they both create a set 

of prototypes and then compare an unknown input 

vector with the stored prototypes in order to implement 

the mapping or clustering. 

The advantages of SOMs over other Artificial 

Neural Network models include the ability to provide 

real-time nearest-neighbor response as well as 

topology-preserving mapping of the input data. Still, 

the limitations are extensive off-line learning and most 

importantly, the need of a predefined map size, i.e. a 

fixed number of output clusters or categories. In [5] a 

rather simple and straightforward implementation of 

the Kohonen neural-network architecture is used, 

where one cluster unit corresponds to one Smart-It 

hardware unit. 
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In many real-world situations, there is no a priori 

information on variability present in the data stream, so 

we can not determine in advance the required number 

of output clusters in which the input patterns will fit. 

Thus this straightforward implementation of the 

Kohonen neural network seems rather rudimentary and 

the only justification for it can be the mere possibility 

to apply some principles of Artificial Neural Networks 

for data processing in wireless sensor networks. 

4. Proposed architectures of sensor 

networks 

Two types of network architectures are proposed. 

The results of the classifications of a real-world data 

will be given later for both architectures. 

4.1. One Clusterhead collecting all sensor data 

First we have made this architecture to compare the 

work of Catterall et al. (which used Kohonen SOMs), 

in order to show that ART model can be used 

straightforwardly instead of SOMs. This model brings 

advantages in that we do not have to fix in advance the 

number of clusters (categories) that the network should 

learn to recognize. Here the Smart-It units send the 

sensory readings to one of them chosen to be a 

Clusterhead, where a FuzzyART network is 

implemented. 

 

Figure 2. Clusterhead collecting all sensor data from its 

cluster of units 

4.2. Clusterhead collecting only clustering 

outputs from the other units. 

Each Smart-It unit has FuzzyART implementations 

classifying only its sensor readings. One of the Smart-

It units can be chosen to be a Clusterhead collecting 

and classifying only the classifications obtained at 

other units. Since the clusters at each unit can be 

represented with integer values, the neural-network 

implementation at the Clusterhead is ART1 with binary 

inputs. 

With this architecture a great dimensionality 

reduction can be achieved depending on the number of 

sensor inputs in each unit (in our case it’s a 6-to-1 

reduction). In the same time communication savings 

benefit from the fact that the cluster number is a small 

binary number unlike raw sensory readings which can 

be several bytes long real numbers converted from the 

analog inputs. 

 

Figure 3. One Clusterhead collecting and classifying 

the data after they are once classified at the lower level 

If the number of sensors in each unit is n, the 

Clusterhead collects data from k units, and the number 

of different categories in each unit can be represented 

by c-byte integer, while the sensor readings are real 

numbers represented with r bytes, then the 

communication saving can be calculated as: 

c

rn

ck

rkn ⋅
=

⋅

⋅⋅  

Since the communication is the biggest consumer of 

the energy in the units, this leads to bigger energy 

savings as well. Another benefit is the fact that the 

classifications at the Clusterhead are sort of indications 

of the spatio-temporal correlations of the input data. 

5. Hardware platform 

The platform for the experiments, from which the 

data analyzed in this paper were obtained, is a 

collection of ‘Smart-Its’ (see [5], for more details). 

One Smart-It unit embodies a sensor module, and a 

communication module, which are interconnected. The 

core of sensor module is a PIC 16F877 microcontroller 

clocked at 20 MHz, which offers 384 bytes of data 

memory and 8Kx14 bits of memory. The sensor 

module consists of a light sensor, a microphone, 2 

accelerometers, a thermometer and a pressure sensor. 

An RF stack provides wireless communication, at a 

maximum rate of 125 kbps, which only supports 

broadcast. 

6. Experimental results 

The data used in these experiments were provided 

courtesy of Catterall et al
1
. All results presented here 

                                                           
1
 The data files are available for download at this 

website: 

http://www.comp.lancs.ac.uk/~catterae/alife2002/ 
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were produced using datasets containing real-world 

data. The five datasets (one for each Smart-It) are 

visualized by time series plots in Figure 5. Note that, 

although the sensor data are very similar (as the units 

are physically close to each other), they are not exactly 

the same. All the experiments were conducted with 

complement coding of the input vector and fast 

learning mode. Figure 6 shows one possible 

classification of these input data in an architecture 

presented in Figure 2 with vigilance level ρ=0.93. 
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Figure 4. Datasets with sensor values from each of the 

Smart-It units during several states of the environment 

(‘contexts’): Lights on (1-330), talking people nearby 

while lights remain on (331-400), lights turned off 

(401-800), talking people nearby while light remain 

turned off (801-1000), and heating on (1090-1400). 
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Figure 5. One possible classification of the input data 

For testing the data robustness of the models, we 

have synthetically made one of the sensors at a time 

defective in way that it gives either a zero constant 

signal or a random measurement signal. Training was 

done with vigilance set to 0.93, while testing was done 

with vigilance set to 0.90. In Figure 6 the effects of the 

representative sensor errors are shown (sensor 

numbered 12 and sensor numbered 17, out of 30), 

where with the ovals are highlighted the regions where 

the classifications differ from the case when all sensors 

are functioning correctly. In Regions 1 and 2, the 

classification of the case when the sensor number 12 

gives random values differs from the regular case, 

while in Region 3, the defective sensor number 17 

results in different classification than the regular case. 

In Region 2, the cases when the 17
th

 sensor gives 

random or zero values also results in different 

classifications. 
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Figure 6. Different classifications when some of the 

sensors are defective giving zero or random values. 

For the second architecture (Figure 3) we have also 

conducted experiments with the original data and with 

the synthetically made erroneous data. In Figure 9 we 

give the results of the classifications of the Clusterhead 

collecting only the classifications from the other 

Smart-It units. The training was done with vigilance 

level of 0.88, while the testing with 0.70. The results 

show no significant difference among the 

classifications when all sensors are functioning 

correctly or when some of the sensors give only zero or 

random signal (in our case sensors number 12 and 17). 
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Figure 7. Results of the classifications show significant 

data robustness of the second architecture with one 

Clusterhead collecting only clustering outputs from the 

other units. 

7. Discussion 

The second proposed architecture (Figure 3) with 

one Clusterhead collecting only clustering outputs 

from the other units can be generalized to a 

hierarchical cascade classification scheme where small 

Smart-It units at the lowest level will be grouped in 

small groups having one Clusterhead. Then several 

Clusterheads can be grouped and their outputs can be 

classified using a binary input ART1 classifier at a 

Clusterhead one-level higher and so on, up to a level 

where the classification will be read by a human user 

or stored in a database, after achieving a huge 

dimensionality reduction (see Figure 8). 

Reg. 1 

Reg. 2 

Reg. 3



If at each level classifications from k units are 

clustered into one Clusterhead (represented with the 

same number of bytes), the dimensionality reduction 

after l levels will be: 

lk
c

rn
⋅

⋅  

For future work we are also considering to apply the 

supervised learning versions of the ART algorithms, 

namely ARTMAP, FuzzyARTMAP and dARTMAP 

[4] where along with the sensor input vector, a vector 

of corresponding “right-answers” is obtained by the 

user (so called teacher), or possibly automatically from 

another system. 

 

Figure 8. Hierarchical cascades of ART neural-network 

classifiers implemented in units of a sensor network 

After sufficient number of samples collected from 

the sensory inputs, the number of categories will reach 

saturation. Then each creation of a new category will 

mean that something unexpected or unusual has 

happened, which has never been detected before (see 

the highlighted part of Figure 9). This information 

could be used as an alarm signal for intrusion detection 

or some similar security concern, depending on the 

type of sensors used in the network. 
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Figure 9. Detection of an unusual event after sufficient 

training of the network with different input data 

8. Conclusion 

In this paper we have demonstrated a possible 

adaptation of one popular model of Artificial Neural 

Networks algorithm (ART model) in the field of 

wireless sensor networks. The positive features of the 

ART class algorithms such as simple parallel 

distributed computation, distributed storage, data 

robustness and auto-classification of sensor readings 

are demonstrated within two different proposed 

architectures. 

One of the proposed architectures with one 

Clusterhead collecting only clustering outputs from the 

other units, provides a big dimensionality reduction 

and in the same time additional communication saving, 

since only classification IDs (small binaries) are passed 

to the Clusterhead instead of all input samples. 

Results from the simulated deliberately erroneous 

sensors, where we imitate defective sensors giving 

only zero or random output, show that the model is 

robust to small variations in the input. 
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