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Abstract. We consider unrecoverable homogeneous multi-state systems with
graduate failures, where each component can work at M + 1 linearly ordered
levels of performance. The underlying process of failure for each component
is a homogeneous Markov process such that the level of performance of one
component can change only for one level lower than the observed one, and the
failures are independent for different components. We derive the probability
distribution of the random vector X, representing the state of the system at
the moment of failure and use it for testing the hypothesis of equal transition
intensities. Under the assumption that these intensities are equal, we derive
the method of moments estimators for probabilities of failure in a given state
vector and the intensity of failure. At the end we calculate the reliability
function for such systems.
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1. Introduction

The statistical approach towards reliability usually is based on determination of
probability model that can give the best description of the work of the whole
system without consideration of its structure [2]. Nevertheless, in the literature
one can find a lot of papers in which, in analyzing the system reliability, it is taken
in consideration the components of the system and their interaction. But, usually
they are binary systems or systems consisting of binary components [1], [3], [7],
while the multi-state systems are less analyzed. Analysis of multi-state systems
is mainly based on expressing the reliability of the system using the reliability
for certain level of the components without the consideration of the time as a
dimension in the working process of the system [6] and [7]. In these papers only
the influence of the structure of the system on its reliability is considered. Some
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of the rare attempts to analyze the reliability of the multi-state systems based
on the working process of the system are the papers [4] and [5], where the target
are monotone homogeneous recoverable systems. If the work of the multi-state
system is considered as a continuous process through the time, then the calculation
of the reliability function becomes very complex even in the simplest systems.
Determination of some relationships between the unknown parameters can be used
to simplify the calculation of the reliability function.

2. Basic definitions

Consider a multi-state system with n components, such that each component can
be in one of the M + 1 levels, where M is the level of a perfect state of the com-
ponent and 0 is the level of its total failure. The coordinate xi of the state vector
x = (x1, x2, . . . , xn) represents the state of the i-th component of the system, for
0 ≤ xi ≤ M and 1 ≤ i ≤ n. Let S = {x|0 ≤ xi ≤ M, 1 ≤ i ≤ n} be the state
set of the system. The state vector for which all components are in a perfect state
M is denoted by M. All vectors in S that define a working state of the system
are called path vectors and the vectors in S for which the system does not work
are called cut vectors. Let P be the set of all path vectors and C the set of all cut
vectors.

Define an ordering of the set S by x ≤ y iff ∀i 1 ≤ i ≤ n, xi ≤ yi. We assume
that if x is a path vector, then all vectors greater than x are path vectors, and
any vector smaller than some cut vector is also a cut vector. This means that if
the system is in a working state x, it will work in all states greater than x and
if it does not work in some state, then it does not work in all states smaller than
this one. This kind of systems are known as monotone multi-state systems (MMS).
In this paper we regard MMS systems that consist of components with graduate
failure, i.e. the process of failure is moving one ”step” at a time, by changing
one component by one level down at each move. Moreover we assume that the
components can not be repaired during the work of the system, i.e. we consider
unrecoverable systems. We give the following definitions:

Definition 2.1. A vector x is a minimal path vector iff it is a path vector and all
vectors smaller than x are cut vectors. A vector x is a minimal cut vector iff it is
a cut vector and all vectors greater than x are path vectors.

The set of all minimal path vectors, P, is called a minimal path set and the
set of all minimal cut vectors, C, is called a minimal cut set.

Definition 2.2. A vector y is a fatal vector iff it is a cut vector and there is a
path vector x such that x − y = ei, where ei is the unit n-vector with 1 as i-th
component, and 0 elsewhere.

The set of all fatal vectors is called a fatal set, denoted by Cf .
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Example. For 3-component system with M = (2, 2, 2), P = {(1, 1, 1)} and C =
{(0, 2, 2), (2, 0, 2), (2, 2, 0)}, the set Cf = {(0, 2, 2), (2, 0, 2), (2, 2, 0), (2, 1, 0), (1, 2, 0),
(1, 1, 0), (0, 1, 2), (0, 2, 1), (0, 1, 1), (1, 0, 2), (2, 0, 1), (1, 0, 1)}.

The sequence: x = a0,a1, . . . ,ak = y where aj = aj−1 − ei for some i = 1, n

is called a path from the state x to the state y, denoted by γa0,a1,...,ak . Let Γ(x)
be the set of all paths from M to x and Γ(x,y), the set of all paths from x to y.

For each state vector x we define a vector x̃ and a number nx by:

x̃ = M − x, nx =
n∑

i=1

x̃i. (2.1)

The number nx represents the length of the path from M to x, i.e. the number
of visited states from M to x. Each path is uniquely determined by a vector, via
the mapping ϕx : Γ(x) → {1, 2, . . . , n}nx defined by

ϕx(γM=a0,a1,...,anx=x) = v, where vj = i iff aj−1 − aj = ei. (2.2)

Note that the j-th coordinate of the vector v represents the component that
degrades in the j-th step. The set ϕ(Γ(x)) is the set of all vectors in N

nx

n with the
property, x̃i of its coordinates are equal to i. We denote the set ϕ(Γ(x)) by Vx and
ϕ(γ) = vγ .

Example. Let M = (3, 3, 3), x = (3, 2, 1) and the path γ from M to x is γ :
(3, 3, 3), (3, 2, 3), (3, 2, 2), (3, 2, 1), then ϕ(γ) = (2, 3, 3).

The system starts at the perfect state and at the moment of failure it is in
some state from the set Cf . We suppose that we can observe the time of failure
of the system and its state vector at that moment, but the path to this state is
unknown.

Let px,y be the transition probability from a state x to a state y and λi,j , i =

1, n, j = 1,Mi, be the one step transition intensity from state j to state j − 1 of
the i-th component. Then,

px,x−ei
=

λi,xi∑

1≤j≤n, xj 6=0

λj,xj

. (2.3)

By px = pM,x we will note the probability of all possible paths to state x.
Note that if x is a cut vector which is not a fatal vector, then px = 0. For all other
state vectors x, px > 0.

Let X be the random vector representing the state of the system at the
moment of failure. As mentioned earlier, when the system fails, it is found in some
of the elements of the set Cf . The probability that the system is in a state c ∈ Cf

at the moment of failure, P (X = c), is equal to pc.

Definition 2.3. The probability distribution of the random variable X on the set
Cf is called failure distribution.
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Let c ∈ Cf and γ = γM,a1,...,anc=c be a path from M to c. Then, the proba-
bility that the system will fail throw the path γ, p̃γ is:

p̃γ =

nc∏

j=1

paj ,aj+1 . (2.4)

Now, for pc we have:

pc =
∑

γ∈Γ(c)

p̃γ . (2.5)

The formula derived can be used in order to test the hypothesis of equal
transition intensities.

3. Testing hypothesis of equal transition intensities

Suppose that we have N independent systems for which we look at their state at
the moment of failure, which is some state from the set Cf . By fc we denote the
observed frequency of the systems that fail in a given state c. If |Cf | = m, then

∑

c∈Cf

(Npc − fc)
2

Npc

∼ χ2
m−1. (3.1)

Therefore, using χ2 test we can test the hypothesis that the intensities of the
system are equal. In order to use this test, we have to derive the failure distribution
of the system in which all of the one step transition intensities of the components
are equal, i.e. ∀i = 1, n and ∀j = 1,M, λi,j = λ, for λ ∈ R

+. Let kx be the number
of zero coordinates of the vector state x, then from (2.3) we have:

px,x−ei
=

λ

(n − kx)λ
=

1

(n − kx)
. (3.2)

Note that in this type of systems the one step transition probabilies do not
depend on the intensities.

Suppose that the set Cf is known and c ∈ Cf . For pc we have:

pc =
∑

x∈P,x=c+ei

pxpx,c. (3.3)

Next we will find the probability px for all x ∈ S. Since the one level transition
probabilities do not depend on λ, px does not depend on λ also. We consider two
types of state vectors: the first one, when all coordinates of the vector are different
from zero and the second one, when some of them are equal to zero.

When all coordinates of the vector x are different from zero, all the paths
to this vector have equal probabilities, otherwise, from (3.2) it follows that the
probabilities are not equal. We will illustrate this by the following example.
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Example. Let M = (3, 3, 3) and x = (2, 2, 0). Look at the paths: γ1 : (3, 3, 3),
(3, 3, 2), (3, 2, 2), (3, 2, 1), (3, 2, 0), (2, 2, 0) and γ2: (3, 3, 3), (3, 3, 2), (3, 2, 2), (3, 2, 1),

(2, 2, 1), (2, 2, 0). The probability p̃γ1
=
(

1
3

)3 1
2 and the probability p̃γ2

=
(

1
3

)4
.

Theorem 3.1. If, in a given MMS system, all coordinates of the vector x are dif-
ferent from zero, then

px =
nx!

nnx

∏n
i=1 x̃i!

. (3.4)

When the vector x has zero coordinates then

px = A(x)

b(1)∑

j1=a(1)

b(2)∑

j2=a(2)

. . .

b(kx)∑

jkx
=a(kx)

kx∏

s=1

B(s, js). (3.5)

where

A(x) =
kx!

(n − kx)nx

(nx − kxM)!∏
xi 6=0 x̃i!

;

B(s, js) =

(
js − (s − 1)M − 1

M − 1

)(
n − s

n − s + 1

)js

;

a(1) = M ;

a(s) = max(sM, js−1 + 1), s > 1;

b(s) = nx − (kx − s).

(3.6)

Proof. When all the coordinates of the vector x are different from zero, then all
the paths have probability

(
1
n

)nx

. So, all we need is to find the number of paths,

i.e |Vx|. This number is equal to
(
Pn

i=1
❡xi)!◗

n
i=1
❡xi!

. Consequently, we obtain (3.4):

px =
(
∑n

i=1 x̃i)!

nnx

∏n
i=1 x̃i!

=
nx!

nnx

∏n
i=1 x̃i!

.

Now consider the case when the vector x has coordinates equal to 0. The
probability of a path depends on the steps in which the components enter at the
level of total failure. Let γ be a path from M to x. If the i-th coordinate of the
vector x is equal to 0, then exactly M coordinates of the vector vγ have value i.
So, if x has kx coordinates equal to 0, then there are exactly kx groups of M equal
value coordinates in the vector vγ . In fact if the coordinates which are equal to
0 in the vector x are: i1, i2, . . . , ikx

, then the numbers i1, i2, . . . , ikx
are found M

times in the vector vγ . We are interested in the M -th appearance of each one.

Let the M -th appearance of the number is, s = 1, kx in the vector vγ be at the
js-th place i.e. as the js-th coordinate. We can reorder the numbers i1, i2, . . . , ikx

such that j1 ≤ j2 ≤ . . . ≤ jkx
. There are kx! ways of ordering of these numbers.

The number of ways for obtaining the vector v such that the M -th appearance of
the value is is at the js-th place is equal to
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(
j1 − 1
M − 1

)(
j2 − M − 1

M − 1

)
. . .

(
jkx

− (kx − 1)M − 1
M − 1

)
(nx − kxM)!∏

xi 6=0 x̃i!

=
(nx − kxM)!∏

xi 6=0 x̃i!

kx∏

s=1

(
js − (s − 1)M − 1

M − 1

)
.

(3.7)
There of the following inequalities must be satisfied:

M ≤ j1 ≤ nc − (kx − 1)
max(sM, js−1 + 1) ≤ js ≤ nx − (kx − s), s > 1

(3.8)

The probability p̃γ is:

p̃γ =

(
1

n

)j1 ( 1

n − 1

)j2−j1

· · ·

(
1

n − (kx − 1)

)jkx−1−jkx−2
(

1

n − kx

)nx−jkx

=

(
1

n − kx

)nx
kx∏

s=1

(
n − s

n − s + 1

)js

(3.9)
Using (3.7), (3.8), (3.9) and the fact that the numbers i1, i2, . . . , ikx

can be ordered
in kx! number of ways, we have:

px = A(x)

b(1)∑

j1=a(1)

b(2)∑

j2=a(2)

. . .

b(kx)∑

jkx
=a(kx)

kx∏

s=1

B(s, js),

where A(x), B(s, js), a(1), a(s) and b(s) are given by (3.6). �

Equation (3.5) can be written as:

px = A(x)

b(1)∑

j1=a(1)

B(1, j1)

b(2)∑

j2=a(2)

B(2, j2) . . .

b(kx)∑

jkx
=a(kx)

B(kx, jkx
).

This representation is useful for obtaining the algorithm for calculating pc, for a
given fatal vector c. The algorithm is given by:

1. Put the number of components n and the maximum working level M ;
2. Define a function comb(x) =

∏
xi 6=0(M − xi)!;

3. Define a function nx, given by (2.1);
4. Define a function kx, number of zero coordinates of the state vector x;

5. Define a function A(x) =
kx!

(n − kx)nx

(nx − kxM)!

comb(x)
, given by (3.6);

6. Define B(s, j) =

(
j − (s − 1)M − 1

M − 1

)(
n − s

n − s + 1

)j

, given by (3.6);
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7. Define L(x, s, j) =





B(s, j), s = kx,

B(s, j)

nx−kx+s+1∑

u=Max((s+1)M,j+1)

L(x, s + 1, u), s < kx;

8. px =





A(x), kx = 0,

A(x)

nx−kx+1∑

u=M

L(x, 1, u), kx 6= 0;

9. Define the set Dc of all vectors c + ei ∈ S \ Cf ;

10. pc =
∑

x∈P,x=c+ei

px

n − kx

.

Next some experimental results are presented. We performed the test on two
types of simulated systems: with equal intensities and with different intensities.
The results are given below:

Example. Nine groups of 1000 3-component system with M = (3, 3, 3), C =
{(3, 0, 1), (1, 2, 1), (0, 1, 3), (1, 3, 0), (3, 1, 0), (0, 3, 1), (1, 0, 3)} and all failure intensi-
ties equal to 1 are simulated. The fatal set of this system is Cf = {(0,1,2), (0,1,3),
(0,2,1), (0,3,1), (1,0,2), (1,0,3), (1,1,1), (1,2,0), (1,2,1), (1,3,0), (2,0,1), (2,1,0),
(3,0,1), (3,1,0)}. In Table 1 the values of the χ2-statistics, (3.1), and the signifi-
cant levels of acceptance, obtained from those experiments are given. It is obvious
that the hypotheses that all parameters are equal has been accepted in all cases.

exp 1 2 3 4 5 6 7 8 9

χ2
13 10.38 23.17 13.71 8.01 11.17 14.67 13.28 21.87 3.3
p 0.66 0.04 0.4 0.84 0.6 0.33 0.43 0.06 0.996

Table 1

Example. Two types of systems with M and C as in the previous example are
simulated. In the first type of system, the failure intensities q1,3 = 0.5 and q1;2 = 1.5
and the other are equal to 1. In the second, q1;3 = q2;3 = q3;3 = 2, and the other
intensities are equal to 1. There are simulated 5 groups of 1000 systems of both
type. Table 2 gives the value of the χ2-statistics given by (3.1). The significant
level of acceptance is always close to 0 and the hypothesis is not accepted.

exp 1 2 3 4 5

First system: χ2
13 208.19 188.32 176.21 235.458 254.78

Second system: χ2
13 97.7 108.19 73.03 81.99 63.84

Table 2
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4. Failure intensity estimator

Suppose that we have indications that all of the intensities of the system are equal,
i.e qi,j = q, ∀i, j (by using the test we explained earlier or in some other manner).
Now we estimate this parameter. In this section we will give an estimator of the
intensity of failure q, using the method of moments.

Theorem 4.1. Let t1, t2, . . . , tN be a random sample of failure times of the MMS
system in which all transition intensities are equal. Then the estimator by method
of moments of intensity q is given by:

q̂ =
N

∑N
i=1 ti

∑

c∈Γ

∑

x∈S\Cf ,x=c+ei

1

n − kx

(
Dx +

px

n − kx

)
, (4.1)

where

Dx =


 nxpx

n − kx

− A(x)

b(1)∑

j1=a(1)

b(2)∑

j2=a(2)

. . .

b(kx)∑

jkx
=a(kx)

kx∑

s=1

js

∏kx

s=1 B(s, js)

(n − s)(n − s + 1)




and A(x), B(s, js), a(s) and b(s) are given by (3.6) and px is given by (3.5).

Proof. First we define five random variables, T the time to failure of the system,
G the path to failure and Tγ the time of failure through the path γ, Ux,y, the
transition time from the state x to the state y, and Ux = UM,x. Let F (t) =
P (T < t), f(t) = F ′(t), Fγ(t) = P (Tγ < t) = P (T < t|G = γ) and Fγ(t) = F ′

γ(t).
Then:

F (t) = P (T < t) = P



⋃

γ∈Γ

(T < t,G = γ)


 =

∑

γ∈Γ

P (T < t,G = γ)

=
∑

γ∈Γ

P (T < t|G = γ)p̃γ =
∑

γ∈Γ

P (Tγ < t)p̃γ =
∑

γ∈Γ

F ′
γ(t)p̃γ .

(4.2)

and
f(t) = F ′(t) =

∑

γ∈Γ

F ′
γ(t)p̃γ =

∑

γ∈Γ

fγ(t)p̃γ . (4.3)

Using this, for the first moment we have

E(T ) =

∫ ∞

0

tf(t)dt =

∫ ∞

0

t
∑

γ∈Γ

fγ(t)p̃γ =
∑

γ∈Γ

∫ ∞

0

tfγ(t)p̃γ =
∑

γ∈Γ

E(Tγ)p̃γ .

(4.4)
The last equation can be written as

E(T ) =
∑

c∈Cf

∑

γ∈Γ(c)

E(Tγ)p̃γ =
∑

c∈Cf

E(Uc). (4.5)

Suppose that γ = γa0=M,a1,...,anc=c. Then

E(Tγ) = E

(
nx∑

i=1

Uai−1,ai

)
=

nx∑

i=1

E(Uai−1,ai). (4.6)
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Let W i
x be the random variable that represents the transition time of the i-th

component from the level xi to the level xi−1. W i
x has an exponential distribution

with parameter λ, for all i and all x, for which xi 6= 0. Therefore, since the
components work independently and Ux,x−ei

= min
i

W i
x we have that Ux,x−ei

has

an exponential distribution with parameter (n − kx)λ. Then

E(Uc) =
∑

γ∈Γ(c)

E(Tγ)p̃γ =
∑

x∈S\Cf ,x=c+ei

∑

γ∈Γ(x)

E(Tγ + Ux,c)p̃γpx,c

=
∑

x∈S\Cf ,x=c+ei

px,c



∑

γ∈Γ(c)

E(Tγ)p̃γ + E(Ux,c)
∑

γ∈Γ(c)

p̃γ




=
∑

x∈S\Cf ,x=c+ei

1

n − kx



∑

γ∈Γ(c)

E(Tγ)p̃γ +
1

(n − kx)λ
px


 .

(4.7)

When x has no zero coordinates:

E(Tγ) =

n∑

i=1

x̃i

nλ
=

1

λ
·
nx

n
. (4.8)

To obtain the expression for E(Tγ) in the case when there are zero coordinates
in x, we use the vector vγ . If the coordinates which are equal to 0 in the vector x

are: i1, i2, . . . , ikx
, the numbers i1, i2, . . . , ikx

are found M times in the vector vγ .

Suppose that the M -th appearance of the number is, s = i, kx in the vector vγ is
at the js-th position, then

E(Tγ) =
j1

nλ
+

j2 − j1

(n − 1)λ
+

j3 − j2

(n − 2)λ
+ . . . +

jkx
− jkx−1

(n − kx + 1)λ
+

nx − jkx

(n − kx)λ

=
1

λ

(
nx

n − kx

−

kx∑

i=1

ji

(n − i)(n − i + 1)

)
.

(4.9)

Now, for the state vector x ∈ P, we will find the sum

E(Ux) =
∑

γ∈Γ(x)

E(Tγ)p̃γ . (4.10)

When there are no zeros in the vector x, from (3.4) this sum is equal to:

E(Ux) =
nx

nλ

nx!

nnx

∏n
i=1 x̃i!

=
1

λ
·

nxnx!

nnx+1
∏n

i=1 x̃i!
(4.11)

When there are zeros in the vector x, the value of p̃γx
is given by the (3.9), and

because we can choose the order of failing of the components on the kx! different
ways with equal probabilities, using (3.7), (3.8) and (4.9) we obtain
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E(Ux) =
1

λ


 nxpx

n − kx

− A(x)

b(1)∑

j1=a(1)

b(2)∑

j2=a(2)

. . .

b(kx)∑

jkx
=a(kx)

kx∑

s=1

js

∏kx

s=1 B(s, js)

(n − s)(n − s + 1)




(4.12)
where A(x), B(s, js), a(s) and b(s) are given by (3.6) and px is given by (3.5).
Putting (4.11) and (4.12) in (4.7) and (4.5) we prove the theorem. �

In order to construct an algorithm, Dx can be written as

Dx =
nxpx

n − kx

− A(x)

kx∑

l=1

1

(n − l)(n − l + 1)
H(l), (4.13)

where

H(l) =

b(1)∑

j1=a(1)

B̃(l, 1, j1)

b(2)∑

j2=a(2)

B̃(l, 2, j2) . . .

b(kx)∑

jkx
=a(kx)

B̃(l, kx, jkx
), (4.14)

B̃(l, s, js) =

{
B(s, js), l 6= s,

jsB(s, js), l = s,

and A(x) is given by (3.6).

In the algorithm for the estimation of λ̂ we use all functions defined in the
previous section, so we will give only the next steps.

1. Define a function A1(x) =
nxpx

n − kx

;

2. Define a function B̃(l, s, js) =

{
B(s, js), l 6= s,

jsB(s, js), l = s;

3. Define L(x, l, s, j) =





B̃(l, s, j), s = kx,

B̃(l, s, j)

nc−kc+s+1∑

u=Max((s+1)M,j+1)

L̃(c, l, s + 1, u), s < kc;

4. V1(x, l) =

nx−kx+1∑

u=M

L̃(x, l, 1, u) and V2(x) =

kx∑

l=1

1

(n − l)(n − l + 1)
V1(x, l);

5. D(x) =

{
A1(x), kx = 0,
A1(x) − A(x)V2(x), kx 6= 0;

6. E(c) =
∑

x∈S\Cf ,x=c+ei

1

n − kx

(
D(x) +

px

n − kx

)
, c ∈ Cf ;

7. λ̂ =
N

∑N
i=1 ti

∑

c∈Γ

E(c).
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5. Reliability function

In order to find the reliability function for this type of system we define a function

Hh1,h2,...,hs
(λ, t) = P (T1 + T2 + . . . + Ts < t), (5.1)

where hi are integers that satisfy h1 ≤ h2 ≤ . . . ≤ hs, T1 ∼ Gamma(h1, nλ) and
Ti ∼ Gamma(hi − hi−1, (n − i + 1)λ), i = 2, s.

Theorem 5.1. The reliability function of a MMS system in which all transition
intensities are equal is given by

R(t) = 1 −
∑

c∈Cf

∑

x∈S\Cf , x=c+ei

Dx(t), (5.2)

where

Dx(t) =





Hnc
(λ, t)

(
1

n

)nc (
∑n

i=1 x̃i)!∏n
i=1 x̃i!

, kx = 0,

A(x)

n − kx

b(1)∑

j1=a(1)

b(2)∑

j2=a(2)

. . .

b(kx)∑

jkx
=a(kx)

B(s, js)Hj1,j2,...,jkx
,nc

(λ, t), kx 6= 0,

and A(x), B(s, js), a(1), a(s) and b(s) are given by (3.6).

Proof. Refer to (4.2).

F (t) = P (T < t) =
∑

γ∈Γ

P (Tγ < t)p̃γ =
∑

c∈Cf

∑

γ∈Γ(c)

P (Tγ < t)p̃γ

=
∑

c∈Cf

∑

x∈S\Cf ,x=c+ei

∑

γ∈Γ(x)

P (Tγ + Tx,c < t)p̃γpx,c

=
∑

c∈Cf

∑

x∈S\Cf ,x=c+ei

Dx(t).

(5.3)

In the case when there are no zero coordinates in x, i.e. kx = 0, P (Tγx
+ Tx,c <

t) = Hnc
(λ, t), p̃γx

px,c =
(

1
n

)nc

and the number of paths to x is
(
Pn

i=1
❡xi)!◗

n
i=1
❡xi!

, so

Dx(t) = Hnc
(λ, t)

(
1

n

)nc (
∑n

i=1 x̃i)!∏n
i=1 x̃i!

.

Consider the case when x has some coordinates equal to 0. Let the path γx

be such that the total failure of its components are at the steps js, s = 1, kx. Now

P (Tγx
+ Tx,c < t) = Hj1,j2,...,jkx

,nc
(λ, t)

and from (3.9) we have that

p̃γx
px,c =

(
1

n − kx

)nc
kx∏

s=0

(
n − s

n − s + 1

)js

.
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Using the number of ways in which we can order the numbers js and the
number of paths for chosen numbers js, s = 1, kx, on similar way as in Theorem
3.1, we can obtain that

Dx(t) =
A(x)

n − kx

b(1)∑

j1=a(1)

b(2)∑

j2=a(2)

. . .

b(kx)∑

jkx
=a(kx)

B(s, js)Hj1,j2,...,jkx
,nc

(λ, t),

where A(x), B(s, js), a(1), a(s) and b(s) are given by (3.6). �
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