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ABSTRACT

Quasigroups are simple algebraic structures whose appli-

cation in cryptography is increasing rapidly, however not

all quasigroups are suitable for cryptographic purposes. In

this paper we investigate how a change of one bit in an

input binary string affects the strings obtained by applying

E-transformation as a multilevel encryptor based on linear

quasigroups of order 4. We define a Boolean presentation of

quasigroups and we show that for quasigroups of order 4 their

Boolean presentations are of degree at most 2. We also give

some properties for linear quasigroups and show that using

these properties the number of linear quasigroups of order 4

can be easily computed.

I. INTRODUCTION

Quasigroups are simple algebraic structures whose prop-

erties and especially their large number enable them to be

applicable in many areas, including cryptography, coding

theory, telecommunications etc. Even though their application

in cryptography is increasing rapidly, not all quasigroups are

suitable for cryptographic purposes.

The quasigroups of order 2n can be represented as vector

valued Boolean functions f : {0, 1}
2n
→ {0, 1}

n
[1]. Using

this representation, they can be classified as linear, semilinear

and nonlinear quasigroups. Different quasigroup string trans-

formations based on binary quasigroups have been defined

for encryption and decryption, among them e-transformation

and d-transformation, as defined in [3]. e-transformation is

used as a single level encryption function, whereas multilevel

encryption can be achieved by applying E-transformation as a

composition of consecutive e-transformations. Based on such

transformations several cryptographic primitives and codes

have been designed, see [4], [5].

In this paper we analyse how a change of one bit in a

given input binary string affects the binary strings obtained

by applying E-transformation as a multilevel encryptor based

on linear quasigroups of order 4. Our analysis shows that

the changes in the transformed strings do not depend on the

input binary string. Furthermore, a change of one bit in the

input binary string which is encrypted using E-transformation

results with presence of patterns in the encrypted strings. We

also give some properties for linear quasigroups, using which

we are able to easily compute the number of linear quasigroups

of order 4.

II. BOOLEAN PRESENTATIONS OF QUASIGROUPS AND THE

CLASS OF LINEAR QUASIGROUPS

A quasigroup (Q, ∗) is a groupoid satysfying the law

(∀u, v ∈ Q) (∃!x, y ∈ Q) (x ∗ u = v ∧ u ∗ y = v) ,

i.e. the equations x ∗ u = v, u ∗ y = v have unique solutions

x, y for each given u, v ∈ Q. If (Q, ∗) is a quasigroup, then

∗ is called a quasigroup operation.

For any finite binary quasigroup (Q, ∗) given by its multi-

plication table, a Latin square consisting of the matrix formed

by the main body of the table can be associated, since each

row and column of the matrix is a permutation of Q.

Let (Q, ∗) be a finite quasigroup of order 2n. Then the

elements of Q can be represented in a one-to-one way by n-

tuples of bits (b1, b2, . . . , bn), bi ∈ {0, 1}. If for a, b, c ∈ Q we

have a ∗ b = c, then for the corresponding bit representations

of a, b, c we have that

(a1, a2, . . . , an) ∗ (b1, b2, . . . , bn) = (c1, c2, . . . , cn),

where ci = ci(a1, a2, . . . , an, b1, b2, . . . , bn) : {0, 1}2n →
{0, 1} are Boolean functions on 2n variables. Since the

quasigroup operation ∗ is uniquely determined by the Boolean

functions ci, we say that the n-tuple < c1, c2, . . . , cn > of

Boolean functions is a Boolean presentation of the quasigroup

(Q, ∗).
Note that every Boolean function f(x1, . . . , xk) can be

uniquely given in its algebraic normal form (ANF), i.e.,

as a polynomial in the Galois field GF (2) as follows:

f(x1, . . . , xk) =
∑

I⊆{0,1}n

αIx
I , where αI ∈ {0, 1} and xI =

xixj . . . xt for I = {i, j, . . . , t}. A Boolean function is said to

be of degree d if its ANF is of degree d.

Given a Boolean presentation < c1, c2, . . . , cn > of a

quasigroup (Q, ∗), for any fixed bits α1, α2, . . . , αn we have

that < c1+α1, c2+α2, . . . , cn+αn > is a Boolean presentation

of a quasigroup, too. Let (Q, ∗̃) denote a quasigroup of order

2n with Boolean presentation < c1, c2, . . . , cn > such that the

free coefficient of each ci is equal to 0. Then we say that

(Q, ∗̃) is in standard form.

Theorem 1: To each quasigroup < c1, c2, . . . , cn > of order

2n in standard form, 2n − 1 different quasigroups < c1 +
α1, c2 + α2, . . . , cn + αn > of order 2n can be associated.

In the sequel we consider only quasigroups of order 4 and

we represent the elements of those quasigroups by pairs (x, y)

c©2012 Faculty of Computer Science and Engineering
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of bits. Then their Boolean presentations are of form < f, g >

with ANF

f (a, b, c, d) =α0 + αaa+ αbb+ αcc+ αdd+ αabab

+ αacac+ αadad+ αbcbc+ αbdbd

+ αcdcd+ αabcabc+ αabdabd

+ αacdacd+ αbcdbcd+ αabcdabcd,

(1)

g (a, b, c, d) =β0 + βaa+ βbb+ βcc+ βdd+ βabab

+ βacac+ βadad+ βbcbc+ βbdbd

+ βcdcd+ βabcabc+ βabdabd

+ βacdacd+ βbcdbcd+ βabcdabcd,

(2)

where αi, βi ∈ {0, 1} for each index i.

Theorem 2: Each quasigroup of order 4 has Boolean pre-

sentation < f, g > with Boolean functions f, g of degree 2:

f(a, b, c, d) = α0 + αaa+ αbb+ αcc+ αdd

+ αacac+ αadad+ αbcbc+ αbdbd,

g(a, b, c, d) = β0 + βaa+ βbb+ βcc+ βdd

+βacac+ βadad+ βbcbc+ βbdbd.

(3)

Proof: The algebraic normal forms of f and g given in

(1) and (2) can be written in the following equivalent forms:

f (a, b, c, d) =f1 (c, d) + af2 (c, d) + bf3 (c, d)

+ abf4 (c, d) ,
(4)

f (a, b, c, d) =f
′

1 (a, b) + cf
′

2 (a, b) + df
′

3 (a, b)

+ cdf
′

4 (a, b) ,
(5)

g (a, b, c, d) =g1 (c, d) + ag2 (c, d) + bg3 (c, d)

+ abg4 (c, d) ,
(6)

g (a, b, c, d) =g
′

1 (a, b) + cg
′

2 (a, b) + dg
′

3 (a, b)

+ cdg
′

4 (a, b) ,
(7)

where fi, f
′
i , gi, g

′
i : {0, 1}

2
→ {0, 1} are Boolean functions,

for each i = 1, 2, 3, 4.

Let cx, dx be given arbitrary values of c, d and let

fi (cx, dx) = ki and gi (cx, dx) = mi for i = 1, 2, 3, 4, where

ki,mi ∈ {0, 1}. Then, from (4) and (6) it follows that

f (a, b, cx, dx) = k1 + ak2 + bk3 + abk4,

g (a, b, cx, dx) = m1 + am2 + bm3 + abm4.

Let xi = f (ai, bi, cx, dx) , yi = g (ai, bi, cx, dx), for i =
1, 2, 3, 4. There are four possible cases to consider:

(a1, b1) = (0, 0) ⇒ x1 = k1, y1 = m1,

(a2, b2) = (0, 1) ⇒ x2 = k1 + k3, y2 = m1 +m3,

(a3, b3) = (1, 0) ⇒ x3 = k1 + k2, y3 = m1 +m2,

(a4, b4) = (1, 1) ⇒ x4 = k1 + k2 + k3 + k4,

y4 = m1 +m2 +m3 +m4.

Since the elements (x1, y1), (x2, y2), (x3, y3), (x4, y4)
are from one column of the corresponding Latin square

of the quasigroup (it is the column for (cx, dx)),

we have that {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} =
{(0, 0), (0, 1), (1, 0), (1, 1)}. So, there are two 0s and two 1s

among x1, x2, x3, x4 and there are two 0s and two 1s among

y1, y2, y3, y4.

Case 1. Let x4 = 0. Then there must be two 1s and one 0
among x1, x2, x3, so 0 = x1+x2+x3 = 0 = k1+(k1 + k3)+
(k1 + k2) = k1 + k2 + k3. Now, from the equality x4 =
k1+ k2+ k3+ k4, by replacing x4 = 0 and k1+ k2+ k3 = 0,

we get k4 = 0.

Case 2. Let x4 = 1. Then there must be two 0s and one 1
among x1, x2, x3,so 1 = x1 + x2 + x3 = k1 + (k1 + k3) +
(k1 + k2) = k1+k2+k3. By replacing x4 = 1 and k1+k2+
k3 = 1 in the equality x4 = k1 + k2 + k3 + k4, we get again

k4 = 0.

We conclude that f4 (cx, dx) = k4 = 0. Since (cx, dx) was

chosen arbitrarily, we have that f4 (c, d) = 0 for all (c, d) ∈ Q.

It can be shown in the same way that g4 (c, d) = 0,

f ′4 (c, d) = 0 and g′4 (c, d) = 0. This completes the proof of

the theorem.

According to the degree of the polynomials f and g in the

Boolean presentations < f, g >, the quasigroups of order 4

can be classified as follows:

1) Linear quasigroups. Both f and g are linear polynomials,

f(a, b, c, d) = α0 + αaa+ αbb+ αcc+ αdd,

g(a, b, c, d) = β0 + βaa+ βbb+ βcc+ βdd.
(8)

2) Semilinear quasigroups. One of the functions f or g is

linear and the other is quadratic.

3) Quadratic quasigroups. Both f and g are quadratic

polynomials.

At the end of this section we consider linear quasigroups.

The standard form of a linear quasigroup < f, g > is given

by the functions

f(a, b, c, d) = αaa+ αbb+ αcc+ αdd,

g(a, b, c, d) = βaa+ βbb+ βcc+ βdd.
(9)

By Theorem 1 we have that 3 other linear quasigroups of order

4 are associated to each standard one.

The Cayley table of a standard quasigroup (Q, ∗̃) is shown

in Fig. 1. Note: The row and the column for (1, 1) are inten-

tionally left out due to space limitations, but their elements are

simply sums of the other three elements in the corresponding

row and column.

Fig. 1. The Cayley table of (Q, ∗̃)

From the quasigroup properties of (Q, ∗̃) it follows that

there must be one 0 and two 1s among αc, αd, αc + αd and

one 0 and two 1s among βc, βd, βc + βd, which yields the

following proposition:

c©2012 Faculty of Computer Science and Engineering
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Proposition 1: If we are given a linear quasigroup of order

4, then none of the following statements holds:

(a) αc = αd = 0 or βc = βd = 0,

(b) αc = βc = 0 or αd = βd = 0,

(c) (αc, αd) = (βc, βd).

The same is valid for αa, αb, βa, βb as well.

Theorem 3: The number of linear quasigroups of order 4 is

144.

Proof: In a standard linear quasigroup of order 4 (Q, ∗̃)
we have (0, 0) ∗̃ (0, 0) = (0, 0). Then among αc, αd, αc + αd

there must be one 0 and two 1s, which can be chosen in
(
3
1

)

different ways. Using Proposition 1, in those elements where

the first bit is 0, the second bit must be 1, whereas in the

elements where the first bit is 1, the second bit can be either

0 either 1, yielding 2 possible ways of choosing the second

bit. Hence, the number of ways of choosing αc, αd, αc + αd

and βc, βd, βc + βd is
(
3
1

)
· 2. Similarly, αa, αb, αa + αb and

βa, βb, βa+βb can be chosen in
(
3
1

)
·2 different ways as well.

Therefore, the number of standard linear quasigroups of

order 4 is (
(
3
1

)
· 2)2 and since by Theorem 1 there are

3 other linear quasigroups associated to the standard one,

the total number of linear quasigroups of order 4 will be

(
(
3
1

)
· 2)2 · 4 = 144.

III. QUASIGROUP STRING TRANSFORMATIONS

Using quasigroups several quasigroup string transforma-

tions can be defined, see [2], [3]. Consider a quasi-

group (Q, ∗) of order 4 where Q = {0, 1}
2

is given

as a set of 2-bit elements. Let Q+ be the set of all fi-

nite strings formed by the elements of Q. The elements

of Q+ will be denoted x1x2x3x4...x2n−1x2n rather than

((x1, x2) , (x3, x4) , ..., (x2n−1, x2n)), where (xi, xi+1) ∈ Q,

i = 1, 3, 5, ..., 2n− 1, for n ≥ 1.

For each (a, b) ∈ Q we define a transformation e∗,(a,b) :
Q+ → Q+ based on the quasigroup operation ∗ with leader

(a, b) ∈ Q as follows:

Let (xi, xi+1) ∈ Q for i = 1, 3, .., 2n − 1, i.e., γ =
x1x2x3x4...x2n−1x2n is a given string from Q+. Then

e∗,(a,b) (γ) = e∗,(a,b) (x1x2x3x4...x2n−1x2n)

= x′1x
′
2x
′
3x
′
4...x

′
2n−1x

′
2n ,

(10)

where

(x′1, x
′
2) = (a, b) ∗ (x1, x2)(

x′i, x
′
i+1

)
=

(
x′i−2, x

′
i−1

)
∗ (xi, xi+1) , i = 3, ..., 2n− 1 .

The function e∗,(a,b) is called e-transformation of Q+ based

on the quasigroup operation ∗ with leader l = (a, b) ∈ Q, and

its graphical representation is shown on Fig. 2. (It is used as

an encryption function for designing cryptographic primitives

such as stream ciphers, block ciphers, hash functions, pseudo

random number generators, etc.)

Consecutive e-transformations based on ∗ can be applied

on a given string formed by the elements of Q, as a compo-

sition of e-transformations using the same or different leaders

for each transformation. This composition of k mappings

Fig. 2. Graphical representation of e-transformation

Ek = e∗,l1 ◦ e∗,l2 ◦ · · · ◦ e∗,lk , where li ∈ Q, i = 1, . . . , k,

are the k leaders (not necessarily distinct), is said to be

E-transformation of Q+. These multiple levels of mapping

ensure lower resemblance of the output string to that of the

input string. (In applications, this makes it harder to decrypt

the data.)

Let γ = x1x2x3x4...x2n−1x2n ∈ Q+ be a given input bi-

nary string. In our analysis we will consider E-transformations

in which an arbitrary leader is used for each of the transfor-

mation levels, as presented graphically on Fig. 3:

E1 (γ) = e∗,(a,b) (γ) = x′1x
′
2...x

′
2n−1x

′
2n

E2 (γ) = e∗,(c,d) (E1 (γ)) = x′′1x
′′
2 ...x

′′
2n−1x

′′
2n

E3 (γ) = e∗,(r,s) (E2 (γ)) = x′′′1 x′′′2 ...x′′′2n−1x
′′′
2n etc.

Fig. 3. Graphical representation of E-transformation

IV. BIT CHANGES IN THE QUASIGROUP OPERANDS AND

THEIR EFFECT ON THE QUASIGROUP OPERATION RESULT

Let γ be an input binary string. In order to investigate how a

change of one bit in γ affects the encrypted strings E (γ), we

first analyze how the bit changes in the quasigroup operands

affect the result of the quasigroup operation ∗.
Let (a, b) , (x, y) ∈ Q. Then from Theorem 2 we have

(a, b) ∗ (x, y) = (f (a, b, x, y) , g (a, b, x, y)) , (11)

where < f, g > is the Boolean presentation of the quasigroup

(Q, ∗). The Boolean functions f and g are given by the

equalities (3).

Now, let ∆a,∆b,∆x,∆y ∈ {0, 1} be the potential bit

changes in a, b, x, y, respectively. A value ∆z = 1 denotes

that a change in the value of z certainly occurs, whereas a

value ∆z = 0 denotes that there is no change at all in the

value of z.

Let us denote

hf = f (a+∆a, b+∆b, x+∆x, y +∆y) ,

hg = g (a+∆a, b+∆b, x+∆x, y +∆y) .
(12)
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Then we have

hf = α0 + αa (a+∆a) + αb (b+∆b)

+ αx (x+∆x) + αy (y +∆y)

+ αax (a+∆a) (x+∆x)

+ αay (a+∆a) (y +∆y)

+ αbx (b+∆b) (x+∆x)

+ αby (b+∆b) (y +∆y)

= f (a, b, x, y) + ∆f,

(13)

and, similarly,

hg = g (a, b, x, y) + ∆g, (14)

where ∆f,∆g are Boolean functions given by

∆f =αa∆a+ αb∆b+ αx∆x+ αy∆y

+ αax (a∆x+ x∆a+∆a∆x)

+ αay (a∆y + y∆a+∆a∆y)

+ αbx (b∆x+ x∆b+∆b∆x)

+ αby (b∆y + y∆b+∆b∆y) ,

(15)

∆g =βa∆a+ βb∆b+ βx∆x+ βy∆y

+ βax (a∆x+ x∆a+∆a∆x)

+ βay (a∆y + y∆a+∆a∆y)

+ βbx (b∆x+ x∆b+∆b∆x)

+ βby (b∆y + y∆b+∆b∆y) .

(16)

Therefore, using (13) and (14), we have

(hf , hg) = (a+∆a, b+∆b) ∗ (x+∆x, y +∆y)

= (f (a, b, x, y) + ∆f, g (a, b, x, y) + ∆g)

= (f (a, b, x, y) , g (a, b, x, y)) + (∆f,∆g)

= (a, b) ∗ (x, y) + ∆(a,b)∗(x,y) .

(17)

If (Q, ∗) is a linear quasigroup, then its Boolean presenta-

tion < f, g > is given by the equalities (8) and therefore we

get

∆f = αa∆a+ αb∆b+ αx∆x+ αy∆y,

∆g = βa∆a+ βb∆b+ βx∆x+ βy∆y.
(18)

Thus, the changes in the result of the quasigroup operation

which occur due to bit changes in the quasigroup operands

take the following form

∆(a,b)∗(x,y) =(αa∆a+ αb∆b+ αx∆x+ αy∆y,

βa∆a+ βb∆b+ βx∆x+ βy∆y) .
(19)

It can be noticed from (19) that

∆(a,b)∗(x,y) = (∆a,∆b) ∗ (∆x,∆y)− (α0, β0) ,

hence for each linear quasigroup operation ∗, a quasigroup

operation in standard form over the bit changes

∆(a,b)∗(x,y) = (∆a,∆b) ∗̃ (∆x,∆y)

is obtained.

Therefore, the next theorem clearly holds.

Theorem 4: Let (Q, ∗) be a linear quasigroup of order 4.

If bit changes occur in the initial quasigroup operands, then

the changes in the result of the quasigroup operation ∗ do

not depend on the operands, they depend only on the actual

bit changes in the operands as well as the definition of the

quasigroup operation.

This theorem indicates that the linear quasigroups of order

4 obviously have no real practical value for cryptographic

purposes.

V. TRACING BIT CHANGES IN STRINGS ENCRYPTED BY

LINEAR QUASIGROUPS OF ORDER 4

Using the results acquired in the previous sections, we

can now describe how a change of one bit in a given input

binary string affects the binary strings obtained by consecutive

encryption of the input string using E-transformation based on

linear quasigroups of order 4.

Theorem 5: Let (Q, ∗) be a linear quasigroup of order 4

and let γ ∈ Q+ be a given input binary string which is to be

encrypted using E-transformation as a multilevel encryptor.

Let us assume that there is a change of one bit in the first

2-bit element of γ. Then, the resulting sequence of changes in

the encrypted string in each level of encryption is of the form

sp...p, where s and p are binary sequences with length |s| and

|p|, respectively. Moreover, if the k-th level of sequence of

changes has the form sp...p, then the sequence of changes in

the k + 1-th level of encryption will have the form s′p′...p′,

where |s′| ≤ |s|+ 6 |p|, and |p′| = i |p|, for i = 2, 4, 6, 8.

Proof: Before the change of one bit occurs in the first

2-bit element of the binary string γ = x1x2...x2n−1x2n, the

sequence of changes is ∆γ = 0000...00︸ ︷︷ ︸
2n

. After a change of

one bit in (x1, x2), the first 2-bit element of ∆γ will be

(∆x1,∆x2) = (0, 1) or (∆x1,∆x2) = (1, 0). In the first

level of encryption we apply e-transformation with an arbitrary

leader (a, b) ∈ Q, no bit change happens in the leader, so

(∆a,∆b) = (0, 0). However, a (∆a1,∆b1) 6= (0, 0) exists

such that (0, 0) ∗ (∆x1,∆x2) ≡ (∆a1,∆b1) ∗ (0, 0), therefore

for k = 1 we can consider a starting sequence of changes

∆γ = 0000...00︸ ︷︷ ︸
2n

and a leader (∆a1,∆b1) 6= (0, 0):

E1 (∆γ) = e∗,(∆a1,∆b1) (∆γ) = ∆x′1∆x′2...∆x′2n−1∆x′2n ,

Since (∆a1,∆b1) 6= (0, 0), none of the 2-bit elements in

the encrypted string E1 (∆γ) can equal (0, 0).
Therefore, there are several possible cases to consider:

1) If (∆x′3,∆x′4) = (∆x′1,∆x′2), then we get the pattern

p = ∆x′1∆x′2, so |p| = 2 and |s| = 0. This implies that

the string E1 (∆γ) has the form p...p, where |p| = 2.

2) If (∆x′3,∆x′4) 6= (∆x′1,∆x′2), then:

a) If (∆x′5,∆x′6) = (x′1, x
′
2), then we get the pattern p =

∆x′1∆x′2∆x′3∆x′4, so |p| = 4 and |s| = 0. Hence,

E1 (∆γ) has the form p...p, where |p| = 4.

b) If (∆x′5,∆x′6) = (∆x′3,∆x′4), then we get the pattern

p = ∆x′3∆x′4, i.e. |p| = 2. Before the pattern occurs

there is a sequence s = ∆x′1∆x′2 with length 2.
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Therefore, E1 (∆γ) gets the form sp...p, where |s| = 2
and |p| = 2.

c) If (∆x′5,∆x′6) 6= (∆x′1,∆x′2) and (∆x′5,∆x′6) 6=
(∆x′3,∆x′4), then

i) If (∆x′7,∆x′8) = (∆x′1,∆x′2), then we obtain

the pattern p = ∆x′1∆x′2∆x′3∆x′4∆x′5∆x′6, so

|p| = 6 and |s| = 0. Therefore, the encrypted string

E1 (∆γ) has the form p...p, where |p| = 6.

ii) If (∆x′7,∆x′8) = (∆x′3,∆x′4), then after the se-

quence s = ∆x′1∆x′2 of length 2, we get a pattern

p = ∆x′3∆x′4∆x′5∆x′6 of length 4. This means that

E1 (∆γ) takes the form sp...p, where |s| = 2 and

|p| = 4.

iii) If (∆x′7,∆x′8) = (∆x′5,∆x′6), then the encrypted

string consists a sequence s = ∆x′1∆x′2∆x′3∆x′4
and afterwards a repeating pattern p = ∆x′5∆x′6.

Therefore, the E1 (∆γ) gets the form sp...p, where

|s| = 4 and |p| = 2.

The above analysis yields that for k = 1, the string E1 (∆γ)
obtained when applying e-transformation as a single level

encryptor over the input sequence of changes ∆γ is of form

sp...p, where |s| = 0, 2, 4 and |p| = 2, 4, 6.

For k > 1, an arbitrary leader is used without any bit

changes, thus the consecutive e-transformations of the initial

sequence of changes ∆γ are applied for a leader (0, 0):

Ek (∆γ) = e∗,(0,0) (Ek−1 (∆γ)) , for k > 1 .

Let us assume that the statement in the theorem holds for

k, k > 1, i.e. Ek (∆γ) has the form skpk...pk, where |sk| ≤
|sk−1| + 6 |pk−1| and |pk| = i |pk−1|, for i = 2, 4, 6, 8. Then

for k + 1 we will get that Ek+1 (∆γ) = sk+1pk+1...pk+1,

where |sk+1| ≤ |sk| + 6 |pk| and |pk+1| = i |pk| for i =
2, 4, 6, 8. This result can be obtained in a similar way as before

for k = 1, the only difference being that here (0, 0) might

occur as a 2-bit element of Ek (∆γ).
Following this theorem, we are able to predict how the

change of one bit in a given input binary string will affect

the strings transformed by linear quasigroups of order 4. The

bit change in the input string causes occurence of patterns with

known form and length in the transformed strings, asserting

the conclusion that the linear quasigroups are not suitable for

cryprographic purposes in practical applications.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we investigated how a change of one bit in a

given input binary string affects the strings obtained by apply-

ing E-transformation based on linear quasigroups of order 4.

Our investigation showed that patterns with known form and

length occur, making the linear quasigroups not suitable for

cryptographic purposes. In addition, we also described some

properties for linear quasigroups of order 4 and using them

we were able to easily compute their number.

The ideas presented in this paper can be further extended

for exploiting the properies of semilinear and quadratic quasi-

groups of order 4, as well as for their generalization on

quasigroups of order 2n.
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