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ABSTRACT 

One of the most significant problems in the analysis of the 

reliability of multi-state transportation systems is to find the 

minimal path and minimal cut vectors. For that purpose 

there are proposed several algorithms that use the minimal 

path and cut sets of such systems. In this paper we give an 

approach to determine the minimal cut vectors. This 

approach directly finds all minimal cut sets. Also we will give 

an optimization of the basic idea, as a result of which, we will 

not get a candidates for minimal path sets, which actually are 

not a minimal cut sets. 

I. INTRODUCTION 

Traditionally, network reliability has been analyzed from a 

binary perspective, which assumes that the system and its 

components can be in either two states: completely 

functioning or failed. However, binary state theory does not 

fully describe some systems, as telecommunication systems, 

transportation systems, water distribution, and gas and oil 

production [1], since the elements of these systems usually 

operate in any of several intermediate states. So, its 

reliability is analyzed using multi-state reliability theory. One 

way to calculate their reliability is by using the minimal path 

or minimal cut vectors. In [1] - [4] are proposed algorithms 

for obtaining such vectors. They assumed that the minimal 

path or cut sets are known. Thus opens the question of 

obtaining the minimal path and cut sets for such system. 

The problem of obtaining the minimal path sets of a network 

is easily solvable, but it is not the case for the minimal cut 

vectors. An algorithm for obtaining the minimal cut sets is 

given in [6], but this technique works only in the case of a 

directed network.  A procedure for obtaining the minimal cut 

vectors for multi-state system from the corresponding 

minimal path vectors is given in [5], and it can be applied in 

the binary case. But this algorithm has a fairly high 

complexity. In this study we develop techniques for 

obtaining the minimal cut sets of an undirected network. 

II. GENERAL 

Let we have a two-terminal undirected network G(V, E), 

where V is the set of nodes, and E is a set of links. Let s be 

the source node and t be the sink node. The cut set is 

defined as a set of links, such that, if there no flow through 

these links, then there no flow from the source to the sink. 

The cut set C is a minimal cut set if there is not another cut 

set C’, such that C’C. For an undirected network the 

following proposition is clear. 

 

Proposition 1 Let G(V, E) be an undirected connected 

network with source node s and sink node t. Then C is a cut 

set if and only if by removing the links from C, the graph G(V, 

E) is divided into two subgraphs G1(V1, E1) and  G2(V2, E2), 

such that V1V2 = , V1V2=V, the source s  V1  and the 

sink t  V2 . 

 

We are interesting in minimal cut sets. The following 

proposition specifies the minimal cut sets. 

 

Proposition 2 Let G(V, E) be an undirected connected 

network with source node s and sink node t. If the graph G(V, 

E) is divided into two connected subgraphs G1(V1, E1) and  

G2(V2, E2), such that V1V2 = , V1V2=V, the source s V1 

and the sink tV2, then C = E/(E1  E2) is a minimal cut set. 
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Proof: From the Proposition 1 it is clear that C is a cut set. 

We only need to prove that C is a minimal cut set.  

Suppose the opposite, i.e. C is not a minimal. That means 

that there is a cut set C’, such that C’ C. Also it is clear that 

C = {{u, v}| uV1 and vV2}. We will proof that there is a path 

from s to t in the graph G
’
(V, E/C

’
). Since C

’
 C there is a link 

{u, v} E/C
’
 such that u V1 and vV2. V1 is connected, so 

there is a path p1 from s to u, and since V2 is connected there 

is a path p2 from v to t. Now the path p1{u, v}p2 is a path from 

s to t, which is a contradiction with the proposition that  C
’
 is 

a cut set.                                                                                                                                                         

Example 1:   Let us regard a network shown on Figure 1. 

 

Figure 1 

 

Figure 2 shows the set C = {(s, c), (c, b), (b, e), (e, d), (d, t)} 

which is a minimal cut set. 

 

 

Figure 2 

III. DESCRIPTION OF THE ALGORITHM 

In the following section we give a new algorithm for 

obtaining minimal cut set. The idea of the algorithm is to 

obtain as less as possible candidates which are cut sets, but 

not a minimal cut sets.  

 

Algorithm 1 

 

Input: The set of nodes V and the set of links E, where the 

source s=1 and the sink t=|V|. 

 

Output: The set of all minimal cut sets. 

 

Step1: A = {{{{s, a} | {s, a}  E}, {a | {s, a}  E}}, {s}} 

Step2: CutSet = {{s, a} | {s, a}  E} 

Step3: Until A  0, take an element from the set A, B = {B1, 

B2, B3} and remove it from A. 

   Step 3.1: For each element b  B2, bt, create 

        B3 = B3  {b}  

        B2 = {B2 \ {b}}   {a | {a, b}  B1} 

        B1 = {B1\ {{a, b} | {a, b}  B1}} {{a, b}| {a, b} B1} 

        CutSet = CutSet  {B1} 

       A  = A{{B1, B2, B3}}  

Step 4: Delete all Y  CutSet, such that there is a set X 

CutSet and X  Y. 

Step 5: Print CutSet. 

 

Lemma 1 In each iteration of Step 3.1 the graphs G1(B3, {{u, 

v}| u, v B3}) and G2(V/B3, {{u, v)| u, v  V/B3}) separate the 

graph G into two unconnected components, such that s 

belong in G1 and  t belong in G2.  

 

Proof: It is clear that B3  V/B3 = V and B3  V/B3 =, so the 

graphs G1 and G2 separate graph G into two unconnected 

components.  Because, in the Step 1 we initialize B3 ={s}, and 

in each entry in Step 3.1 we are adding only one element in 

the set B2, follows that sG1. On the other side, we never 

add the sink into B3, so t  B3. This implies that s and t belong 

to different components.                                                               
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Theorem 1 For an input graph G(V, E) with a source s and 

sink t, the elements of the set CutSet are cut sets.  

 

Proof: Initially we have that CutSet = {B1}, B1 = {{s, a} | {s, a} 

 E}, so before entry into the loop in Step 3.1, CutSet is 

consist of cut sets for the graph G. We are going to prove 

that the assertion “B1 is a cut set” is an invariant of the loop 

in Step 3.1.  Actually we will prove that 

    B1 = {{u, v}| u  B3, v  V/B3}                      (1) 

 is an invariant of the loop in Step 3.1. 

Let us assume that before entry into the loop, B1 is a cut set, 

precisely that B1 = {{u, v}| u  B3, v  V/B3}. Let B3
’
= B3  {b}, 

B2
’
= {B2 \ {b}}   {a | {a, b}  B1} and B1

’ 
= {B1 \ {{a, b} | {a, b} 

 B1}}   {{a, b} |  {a, b}   B1}. From the Lemma 1 follows 

that the graphs G1
’
(B3

’
, {{u, v}| u, v  B3

’
} ) and  G2

’
(V/B3

’
, {{u, 

v}| u, v  V/B3
’
} ) separate the graph G into two components, 

such that s  B3
’ 
 and  t V/B3

’
. To prove that B1

’
 is cut set, we 

should to prove that B1
’ 
= {{u, v}| u  B3

’
, v  V/ B3

’
}, i.e.  

{{u, v}| u  B3
’
, v  V/ B3

’
} ={B1\ {{a, b} | {a, b}  B1}}   {{a, 

b} | {a, b}  B1}                                                          (2) 

Let {u
’
, v

’
} {{u, v}| u  B3

’
, v  V/ B3

’
}  u

’
 B3

’
  v

’
 V/ B3

’
  

 u
’
 B3  {b}  v

’
  V/ {B3  {b}}  (u

’
 B3   u

’
  {b})  (v

’
 

 V/ {B3  {b}})  (u
’
 B3   v

’
  V/ {B3  {b} }  (u

’
 = b  v

’
  

V/ (B3  {b}). 

I case: u
’
 B3   v

’
  V/ {B3  {b}}   u

’
 B3   v

’
  B3  {b}  

u
’
 B3   (v

’
  B3  v

’
 = b )   u

’
 B3   v

’
 V/B3  v

’
  b   

(u
’
 B3   v

’ 
 V/B3 )  (u

’
 B3  v

’
  b)  (u

’
, v

’ 
)  B1  (u

’
, v

’
)  

 {{a, b} | {a, b}  B1}}  {u
’
, v’}  {B1\ {{a, b} | {a, b}  B1}} 

                    

II case: u
’
 = b  v

’
  V/ {B3  {b}}  u

’
 = b  v

’
  V/ B3   v

’
  b 

. u
’
, v

’ 
 V/ B3  v

’
  b  u

’
 = b. Because of B1= {{u, v}| u  

B3, v  V/B3} , u
’
, v

’ 
 V/ B3 if and only if { u

’
, v

’ 
}  B1. i.e. {u

’
, 

v
’
}  {{a, b} | {a, b}  B1}.                                                                                  

From case I and case II follows that (2) is true.                       

  

In order to prove that the Algorithm 1 provides all minimal 

cut sets we need the following proposition: 

 

Proposition 3 Let G(V, E) is a connected graph with |V| > 1. 

Then there is at least two nodes x, y  V, such that graphs G
’
 

(V/{x}, E / {{x, u}| {x, u}  E}) and G
’
 

’
 (V/{x}, E / {{y, u}| {y, 

u}E}) are connected graphs. 

 

Theorem 2 The Algorithm 1 provides all minimal cut sets for 

an input graph G (V, E).  

 

Proof: First we will prove that each set of nodes B3, such that 

s belongs to it and G1(B3, {{u, v}| u, v  B3}) is connected, is 

received at last ones. It is clear that the only such set with 

only one node is {s}, (G1({s}, )). We suppose that there are 

obtained all sets B3, |B3|=k, such that s  B3 and the 

subgraph G1(B3, {{u, v}| u, v  B3}) is connected, for k=1, 2,…, 

n-1.   

Let Y be the set of nodes of G such that |Y|= n, s  Y, and the 

graph G
’
1(Y, {{u, v}| u, v  Y}) is connected.  From the 

Proposition 3 we have that there is node bs, such that the 

graph G
’’

1(Y’, {{u, v}| u, v  Y’}), where Y = Y 
’ 
 {b} is a 

connected graph with s  Y’.
 
 Since |Y’| = n – 1, from the 

inductive assumption we have that Y’ is obtained by the 

Algorithm 1. Now, because there is a edge {u, b} E, u  Y’, it 

is clear that Y = Y 
’ 
 {b} is obtain by the Algorithm 1.  

At the end, since each minimal cut set divides the graph into 

two connected components and all such components are 

obtained by the Algorithm 1, is following that all minimal cut 

sets are obtained.                                                           

 

A disadvantage of the Algorithm 1 is the fact that it is 

possible to obtain the same cut set many times. For that 

reason, we are going to propose an optimization of the 

previous algorithm. In order to do that, we add another set 

F.  In this set F we keep all nodes bB2, for which we have 

found nodes c, such that {b, c}  E and {b, c} are not links 

from some cut set obtained before. In order to avoid 

duplication of the same combination of nodes in the next 

iterations, we remove these nodes from the set B2. With this 

we get improvement, so that the third component of the set 

A is obtained in one way only, and because of that, each 

element in A is obtained in one way only, i.e. each cut set is 
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obtained only once. Because of that, the third component 

from the set A is not necessary to be kept.  

 

The improved algorithm is: 

 

Algorithm 2 

 

Input: The set of nodes V and the set of links E, where the 

source s=1 and the sink t=|V|. 

 

Output: The set of all minimal cut sets. 

 

Step 1: A = {{{{s, a} | {s, a}  E}, {a | {s, a}  E}}} 

Step 2: CutSet = {{{s, a} | {s, a}  E}} 

Step 3: While A do steps 3.1 to 3.3.1.4.  

 Step 3.1: B = A[1], A = A\{B} 

 Step 3.2: Z = B[2]; n = Length (Z); F =  

 Step 3.3: For i = 1 to n do 

         Step 3.3.1: If  Z[i]  t then  

  Step 3.3.1.1: b = Z[i]; F = F{b}; 

Step 3.3.1.2: D = {B[1] \ {{a, b} | {a, b}  B[1]}}   

{{a, b} | {a, b}  B[1]}, CutSet = CutSet  {D} 

              Step 3.3.1.3: H = {Z  {a | {a, b}  B[1]}} \ F 

              Step 3.3.1.4: A = A  {{D, H}} 

Step 4: Delete all Y  CutSet, such that there is a set X 

CutSet and X  Y. 

Step 5: Print CutSet. 

IV. STEP-BY-STEP ILLUSTRATION 

 In this section we will illustrate the work of the Algorithm 2.  

 

Example 2: Let we have the network in the Figure 1.  

In the step 1 A = {{{{s, a}, {s, b}, {s, c}}, {a, b, c}}} and CutSet = 

{{s, a}, {s, b}, {s, c}}. 

From the set A, we found the set B = {{{s, a}, {s, b}, {s, c}}, {a, 

b, c}} and the new A is A = A\B =. Figure 3 shows the cut set 

{{s, a}, {s, b}, {s, c}}.  

 

 

Figure 3 

 

In this time Z = {a, b, c}, n = 3   and F =  . 

For each element from Z, we obtain another cut set. 

Z [1] = a, F = {a} 

D = {{s, b}, {s, c}, {a, b},{a, d}} –cut set 

H = {b, c, d} 

A = {{{s, b}, {s, c}, {a, b}, {a, d}}, {b, c, d}}}.  

Figure 4 shows the cut set {{s, b}, {s, c}, {a, b}, {a, d}}. 

 

 

Figure 4 

 

 Z [2] = b, F ={a, b} 
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D ={{s, a},{s, c},{b, a},{b, d},{b, c},{b, e}}-cut set 

H ={c, d, e} 

A = {{{s, b}, {s, c},{a, b},{a, d}},{b, c, d}}, {{{s, a},{s, c},{b, a},{b, 

d},{b, c},{b, e}}},{c, d, e}}} 

Figure 5 shows the cut set {{s, a}, {s, c}, {b, a}, {b, d}, {b, c}, {b, 

e}} 

 

 

Figure 5 

  

Z[3] = c. F = {a, b, c} 

D = {{s, a},{s, b},{b, c},{c, e},{c, f}}-cut set  

H={e, f} 

A={{{s, b}, {s, c}, {a, b}, {a, d}}, {b, c, d}}, {{{s, a}, {s, c}, {b, a}, 

{b, d}, {b, c}, {b, e}}}, {c, d, e}}}, {{{s, a},{s, b},{b, c},{c, e},{c, f}}, 

{e, f}}.  

Figure 6 shows the cut set {{s, a},{s, b},{b, c},{c, e},{c, f}} 

 

 

Figure 6 

 

The algorithm continues in the same manner, until all cut 

sets are produced. At the end, all derived cut sets that are 

not minimal are deleted. 

V. OPTIMIZATION OF  THE BASIC ALGORITHM 

By the preceding algorithm there are obtained candidates for 

minimal cut sets, which are not minimal cut sets. In order to 

avoid that appearance, we will analyze how that sets are 

obtained.  

Example 3: Let us regard the cut set {{{s, a}, {s, c}, {b, c}, {b, 

a}, {b, d}, {b, e}}, {c, d, e}}}  A, Figure 5.  Using this set there 

are obtained few new candidates for a minimal cut set. 

Z[1] = d, F = {a, b, c, d} 

D = {{s, a},{s, c},{b, a},{b, c},{b, e},{a, d}, {d, e}, {d, t}} – cut set. 

H = {e} 

The set {{s, a},{s, c},{b, a},{b, c},{b, e},{a, d}, {d, e}, {d, t}},{e}} is 

not minimal cut set, because the set {{s, c}, {c, b}, {b, e}, {e, 

d}, {d, t}} is a smaller cut set. 

For these reasons, in the Step 4 of the Algorithm 2 given in 

the previous part, we need to remove all candidates for 

minimal cut vectors, which are not minimal ones. It can be 

done with a minimum of ln(N) comparisons between sets, 

where N is the number of the elements in the CutSet, just 

before the Step 4. In order to remove that testing, we will 

make a modification of the algorithm. Note that in the 

already proposed algorithms, like in [6], there are always 

candidates for minimal cut sets that are not minimal. 

From the Proposition 2 we have that when the obtained cut 

set is not a minimal cut set, the graph G(V,E) is divided into 

more than two connected components, as it is shown in 

Figure 7.  

The cut set {{s, a}, {s, c}, {b, a}, {b, c}, {b, e}, {a, d}, {d, e}, {d, 

t}} is not a minimal cut set and it divides the graph G (V, E) 

into three components, Figure 7.  

 

 

Figure 7 
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The idea of the new algorithm is to check whether by 

removing the links from the new candidate for the minimal 

cut set, the obtained subgraph is composed of two 

connected components, such that, the source is in one of 

them, and the sink in the other.  So, from Proposition 1, we 

need to check that the graphs (B3, {{u, v}| u, v B3}} and 

(V/B3, {{u, v}| u, v V/B3}} are connected graphs.  

 

Proposition 4 In each iteration of Step 3.1 the graph G(B3, 

{{u, v}| u, v B3}) is connected graph. 

 

Proof: Initially we have that B3 = {s}, from this it is clear that 

before entering in the loop in Step 3.1, the graph G(B3, {{u, 

v}| u, v B3}) is a connected graph. We are going to prove 

that assertion “G(B3,{{u, v}| u, v B3}) is a connected graph” 

is invariant of the loop in the Step 3.1. 

Assume that before entering the loop in Step 3.1, G(B3, {{u, 

v}| u, v B3}) is a connected graph. We need to prove that 

the graph G
’
(B3

’
,{{u, v}| u, v B3

’
}) is a connected graph.  

Let B3
’ 
= B3  {b} and B2

’
= {B2 \ {b}}   {a | {a, b}  B1}. From b 

 B2, follows that b is connected with at least one element of 

B3, so G
’
(B3  {b}, {{u, v}| u, v B3  {b}}) is a connected 

graph.                                                                       

 

It remains to check that the graph (V/B3, {{u, v}| u, v V/B3}) 

is connected. For that reason, at the beginning we construct 

a tree with root in the sink. In the Step 3.3.1.1 from 

Algorithm 2, when we choose a new node b we check 

whether it is a leaf in the tree.  

- When the node b is leaf, then it is clear that the subgraph 

has the required property. So, we construct another tree by 

removing that leaf, and we continue from Step 3.3.1.2 to 

Step 3.3.1.4 from Algorithm 2. 

- When the node b is not a leaf, then we remove it from the 

tree and we check whether the nodes that are descendants 

of that node are connected with another node of the rest of 

the tree. If all nodes are connected with another node of the 

rest of the tree, then the obtained set is a minimal cut set, so 

we construct a new tree and we continue from Step 3.3.1.2 

to Step 3.3.1.4 from Algorithm 2. If at least one node is not 

connected with the rest of the tree, then the set is not a 

minimal cut set, and we take another element from A. 

Note that when all links of the graph are important, i.e. the 

graph as a system is a coherent system, the appropriate 

minimal cut set which is subset of some cut set, which is 

obtained by the algorithm will be obtained on the another 

way. This means that if the graph is coherent, then whenever 

we obtain a candidate for the minimal cut set, which is not a 

minimal cut set, the appropriate set may not be added in A. 

 

Now, we give the new improved algorithm. 

 

Algorithm 3 

 

Input: The set of nodes V and the set of links E, where the 

source s=1 and the sink t=|V|. 

 

Output: The set of all minimal cut sets. 

 

Step 1: A = {{{{s, a} | {s, a}  E}, {a | {s, a}  E}}, T}, T is a tree 

with root in a sink. 

Step2: CutSet = {{s, a} | {s, a}  E} 

Step3: Until A  0, take an element from the set A, B = {B1, 

B2, T} and remove it from A. 

Step 3.1: For each element b  B2, b t, check is b is a leaf 

             If b is leaf then 

                 B2 = {B2 \ {b}}   {a | {a, b}  B1} 

                 B1= {B1\ {{a, b}| {a, b}  B1}} {{a, b}| {a, b}   B1} 

           T=T / {b} 

                 CutSet = CutSet  {B1} 

             else  
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 If each descendent nodes b’ of the node b are   

connected with another node of the rest of the tree 

than  

           B2 = {B2 \ {b}}   {a | {a, b}  B1} 

                 B1= {B1\ {{a, b}| {a, b}  B1}} {{a, b}| {a, b}     B1} 

                  CutSet = CutSet  {B1} 

 Add the new edges in the tree T that connect b’ 

with the rest of the tree, and remove the old 

edges.  

               else  

If at least one node is not connected with the rest 

of  the tree then go to Step 2.1 

      A  = A{{B1, B2, T}} 

Step 4: Print CutSet. 

 

The following example illustrates the work of Algorithm 3. 

 

Example 4:  

1. When the node is a leaf 

A = {{{{s, a}, {s, b}, {s, c}}, {a, b, c}}} 

B3 ={s}, V/ B3 = {a, b, c, d, e, f} 

 Figure 8  shows approprite tree {{t, {d, e, f}}, {d, {a, b}}, {e, 

{c}}, {f, {}}, {a, {}}, {b, {}}, {c, {}}}.  

 

 

Figure 8 

 

Because, the node f is leaf, it can be removed from the tree. 

It is obvious that the rest of the tree is connected. 

 

2. When the node is not a leaf, but all its descendants are 

connected with another node from the rest of the tree. 

Let the started cut set is {{s, a}, {s, c}, {b, c}, {b, e}, {b, a}, {b, 

d}}, {c, d, e} and we consider a node e. The appropriate tree 

for this set is {t, {d, e, f}}, {d, {a}}, {e, {c}}, {f, {}}, {a, {}}, {c, {}}}}. 

After removing of the node e we obtain the tree {t, {d, f}}, {d, 

{a}}, {f, {}}, {a, {}}}, Figure 9. 

 

 

Figure 9 

 

The node c is descendant of e. This node is connected with f.  

The new tree {t, {d, f}}, {d, {a}}, {f, {c}}, {a, {}}, {c, {}}} is shown 

on Figure 10. The obtained minimal cut set is {{s, a}, {s, c}, {a, 

b}, {b, c}, {b, d}, {c, e}, {e, f}, {e, d}, {e, t}. 

 

 

Figure 10 

 

3. When the node is not a leaf and at least one node is not 

connected with the rest of the tree. Regard  the set {{s, a}, {s, 

c}, {b, c}, {b, e}, {b, a}, {b, d}}, {c, d, e} and let take the node d. 
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Appropriate tree for this set is {t, {d, e, f}}, {d, {a}}, {e, {c}}, {f, 

{}}, {a, {}}, {c, {}}}}. After removing d, (the links {a, d} and {d, 

t}) we obtain the tree {t, {e, f}}, {e, {c}}, {f, {}}, {c, {}}}}, Figure 

11. 

 

 

Figure 11. 

 

The node a is descendant of the node d. This node is not 

connected with e and f, i.e. it is not connected with a node 

from the rest of the tree. So, this candidate for a minimal cut 

set is not a minimal cut set. 

 

VI. CONCLUSION 

These paper present new algorithms for calculating a 

minimal cut sets. With the first two proposed algorithms are 

obtained candidates for minimal cut sets, which are actually 

not the  minimal cut sets. In order to avoid this, we make 

optimisation of the basic algorithms. With the optimized 

algorithm are obtained only the minimal cut set. The main 

advantage on this algorithm compared with the other known 

algorithm, is that we obtain only minimal cut sets, without 

additional request to make control whether these cut sets 

are minimal.   
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