
The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

©2010 Institute of Informatics.

MINIMAL CUT SETS FOR TRANSPORTATION SYSTEM

Marija Mihova Nataša Maksimova

Institute of Informatics,

Faculty of Natural Sciencies

and Mathematics

Faculty of informatics,

University “Goce Delčev”

Skopje, Macedonia Štip, Macedonia

ABSTRACT

One of the most significant problems in the analysis of the

reliability of multi-state transportation systems is to find the

minimal path and minimal cut vectors. For that purpose

there are proposed several algorithms that use the minimal

path and cut sets of such systems. In this paper we give an

approach to determine the minimal cut vectors. This

approach directly finds all minimal cut sets. Also we will give

an optimization of the basic idea, as a result of which, we will

not get a candidates for minimal path sets, which actually are

not a minimal cut sets.

I. INTRODUCTION

Traditionally, network reliability has been analyzed from a

binary perspective, which assumes that the system and its

components can be in either two states: completely

functioning or failed. However, binary state theory does not

fully describe some systems, as telecommunication systems,

transportation systems, water distribution, and gas and oil

production [1], since the elements of these systems usually

operate in any of several intermediate states. So, its

reliability is analyzed using multi-state reliability theory. One

way to calculate their reliability is by using the minimal path

or minimal cut vectors. In [1] - [4] are proposed algorithms

for obtaining such vectors. They assumed that the minimal

path or cut sets are known. Thus opens the question of

obtaining the minimal path and cut sets for such system.

The problem of obtaining the minimal path sets of a network

is easily solvable, but it is not the case for the minimal cut

vectors. An algorithm for obtaining the minimal cut sets is

given in [6], but this technique works only in the case of a

directed network. A procedure for obtaining the minimal cut

vectors for multi-state system from the corresponding

minimal path vectors is given in [5], and it can be applied in

the binary case. But this algorithm has a fairly high

complexity. In this study we develop techniques for

obtaining the minimal cut sets of an undirected network.

II. GENERAL

Let we have a two-terminal undirected network G(V, E),

where V is the set of nodes, and E is a set of links. Let s be

the source node and t be the sink node. The cut set is

defined as a set of links, such that, if there no flow through

these links, then there no flow from the source to the sink.

The cut set C is a minimal cut set if there is not another cut

set C’, such that C’C. For an undirected network the

following proposition is clear.

Proposition 1 Let G(V, E) be an undirected connected

network with source node s and sink node t. Then C is a cut

set if and only if by removing the links from C, the graph G(V,

E) is divided into two subgraphs G1(V1, E1) and G2(V2, E2),

such that V1V2 = , V1V2=V, the source s  V1 and the

sink t  V2 .

We are interesting in minimal cut sets. The following

proposition specifies the minimal cut sets.

Proposition 2 Let G(V, E) be an undirected connected

network with source node s and sink node t. If the graph G(V,

E) is divided into two connected subgraphs G1(V1, E1) and

G2(V2, E2), such that V1V2 = , V1V2=V, the source s V1

and the sink tV2, then C = E/(E1  E2) is a minimal cut set.

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

Proof: From the Proposition 1 it is clear that C is a cut set.

We only need to prove that C is a minimal cut set.

Suppose the opposite, i.e. C is not a minimal. That means

that there is a cut set C’, such that C’ C. Also it is clear that

C = {{u, v}| uV1 and vV2}. We will proof that there is a path

from s to t in the graph G
’
(V, E/C

’
). Since C

’
 C there is a link

{u, v} E/C
’
 such that u V1 and vV2. V1 is connected, so

there is a path p1 from s to u, and since V2 is connected there

is a path p2 from v to t. Now the path p1{u, v}p2 is a path from

s to t, which is a contradiction with the proposition that C
’
 is

a cut set. 

Example 1: Let us regard a network shown on Figure 1.

Figure 1

Figure 2 shows the set C = {(s, c), (c, b), (b, e), (e, d), (d, t)}

which is a minimal cut set.

Figure 2

III. DESCRIPTION OF THE ALGORITHM

In the following section we give a new algorithm for

obtaining minimal cut set. The idea of the algorithm is to

obtain as less as possible candidates which are cut sets, but

not a minimal cut sets.

Algorithm 1

Input: The set of nodes V and the set of links E, where the

source s=1 and the sink t=|V|.

Output: The set of all minimal cut sets.

Step1: A = {{{{s, a} | {s, a}  E}, {a | {s, a}  E}}, {s}}

Step2: CutSet = {{s, a} | {s, a}  E}

Step3: Until A  0, take an element from the set A, B = {B1,

B2, B3} and remove it from A.

 Step 3.1: For each element b  B2, bt, create

 B3 = B3  {b}

 B2 = {B2 \ {b}}  {a | {a, b}  B1}

 B1 = {B1\ {{a, b} | {a, b}  B1}} {{a, b}| {a, b} B1}

 CutSet = CutSet  {B1}

 A = A{{B1, B2, B3}}

Step 4: Delete all Y  CutSet, such that there is a set X

CutSet and X  Y.

Step 5: Print CutSet.

Lemma 1 In each iteration of Step 3.1 the graphs G1(B3, {{u,

v}| u, v B3}) and G2(V/B3, {{u, v)| u, v  V/B3}) separate the

graph G into two unconnected components, such that s

belong in G1 and t belong in G2.

Proof: It is clear that B3  V/B3 = V and B3  V/B3 =, so the

graphs G1 and G2 separate graph G into two unconnected

components. Because, in the Step 1 we initialize B3 ={s}, and

in each entry in Step 3.1 we are adding only one element in

the set B2, follows that sG1. On the other side, we never

add the sink into B3, so t  B3. This implies that s and t belong

to different components. 

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

Theorem 1 For an input graph G(V, E) with a source s and

sink t, the elements of the set CutSet are cut sets.

Proof: Initially we have that CutSet = {B1}, B1 = {{s, a} | {s, a}

 E}, so before entry into the loop in Step 3.1, CutSet is

consist of cut sets for the graph G. We are going to prove

that the assertion “B1 is a cut set” is an invariant of the loop

in Step 3.1. Actually we will prove that

 B1 = {{u, v}| u  B3, v  V/B3} (1)

 is an invariant of the loop in Step 3.1.

Let us assume that before entry into the loop, B1 is a cut set,

precisely that B1 = {{u, v}| u  B3, v  V/B3}. Let B3
’
= B3  {b},

B2
’
= {B2 \ {b}}  {a | {a, b}  B1} and B1

’
= {B1 \ {{a, b} | {a, b}

 B1}}  {{a, b} | {a, b}  B1}. From the Lemma 1 follows

that the graphs G1
’
(B3

’
, {{u, v}| u, v  B3

’
}) and G2

’
(V/B3

’
, {{u,

v}| u, v  V/B3
’
}) separate the graph G into two components,

such that s  B3
’
 and t V/B3

’
. To prove that B1

’
 is cut set, we

should to prove that B1
’
= {{u, v}| u  B3

’
, v  V/ B3

’
}, i.e.

{{u, v}| u  B3
’
, v  V/ B3

’
} ={B1\ {{a, b} | {a, b}  B1}}  {{a,

b} | {a, b}  B1} (2)

Let {u
’
, v

’
} {{u, v}| u  B3

’
, v  V/ B3

’
}  u

’
 B3

’
  v

’
 V/ B3

’

 u
’
 B3  {b}  v

’
  V/ {B3  {b}}  (u

’
 B3  u

’
 {b})  (v

’

 V/ {B3  {b}})  (u
’
 B3  v

’
  V/ {B3  {b} }  (u

’
 = b  v

’
 

V/ (B3  {b}).

I case: u
’
 B3  v

’
  V/ {B3  {b}}  u

’
 B3  v

’
  B3  {b} 

u
’
 B3  (v

’
  B3  v

’
 = b)  u

’
 B3  v

’
 V/B3  v

’
  b 

(u
’
 B3  v

’
 V/B3)  (u

’
 B3 v

’
  b)  (u

’
, v

’
)  B1  (u

’
, v

’
)

 {{a, b} | {a, b}  B1}}  {u
’
, v’}  {B1\ {{a, b} | {a, b}  B1}}

II case: u
’
 = b  v

’
  V/ {B3  {b}}  u

’
 = b  v

’
  V/ B3  v

’
  b

. u
’
, v

’
 V/ B3  v

’
  b  u

’
 = b. Because of B1= {{u, v}| u 

B3, v  V/B3} , u
’
, v

’
 V/ B3 if and only if { u

’
, v

’
}  B1. i.e. {u

’
,

v
’
}  {{a, b} | {a, b}  B1}.

From case I and case II follows that (2) is true. 

In order to prove that the Algorithm 1 provides all minimal

cut sets we need the following proposition:

Proposition 3 Let G(V, E) is a connected graph with |V| > 1.

Then there is at least two nodes x, y  V, such that graphs G
’

(V/{x}, E / {{x, u}| {x, u}  E}) and G
’

’
 (V/{x}, E / {{y, u}| {y,

u}E}) are connected graphs.

Theorem 2 The Algorithm 1 provides all minimal cut sets for

an input graph G (V, E).

Proof: First we will prove that each set of nodes B3, such that

s belongs to it and G1(B3, {{u, v}| u, v  B3}) is connected, is

received at last ones. It is clear that the only such set with

only one node is {s}, (G1({s}, )). We suppose that there are

obtained all sets B3, |B3|=k, such that s  B3 and the

subgraph G1(B3, {{u, v}| u, v  B3}) is connected, for k=1, 2,…,

n-1.

Let Y be the set of nodes of G such that |Y|= n, s  Y, and the

graph G
’
1(Y, {{u, v}| u, v  Y}) is connected. From the

Proposition 3 we have that there is node bs, such that the

graph G
’’

1(Y’, {{u, v}| u, v  Y’}), where Y = Y
’
 {b} is a

connected graph with s  Y’.

 Since |Y’| = n – 1, from the

inductive assumption we have that Y’ is obtained by the

Algorithm 1. Now, because there is a edge {u, b} E, u  Y’, it

is clear that Y = Y
’
 {b} is obtain by the Algorithm 1.

At the end, since each minimal cut set divides the graph into

two connected components and all such components are

obtained by the Algorithm 1, is following that all minimal cut

sets are obtained. 

A disadvantage of the Algorithm 1 is the fact that it is

possible to obtain the same cut set many times. For that

reason, we are going to propose an optimization of the

previous algorithm. In order to do that, we add another set

F. In this set F we keep all nodes bB2, for which we have

found nodes c, such that {b, c}  E and {b, c} are not links

from some cut set obtained before. In order to avoid

duplication of the same combination of nodes in the next

iterations, we remove these nodes from the set B2. With this

we get improvement, so that the third component of the set

A is obtained in one way only, and because of that, each

element in A is obtained in one way only, i.e. each cut set is

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

obtained only once. Because of that, the third component

from the set A is not necessary to be kept.

The improved algorithm is:

Algorithm 2

Input: The set of nodes V and the set of links E, where the

source s=1 and the sink t=|V|.

Output: The set of all minimal cut sets.

Step 1: A = {{{{s, a} | {s, a}  E}, {a | {s, a}  E}}}

Step 2: CutSet = {{{s, a} | {s, a}  E}}

Step 3: While A do steps 3.1 to 3.3.1.4.

 Step 3.1: B = A[1], A = A\{B}

 Step 3.2: Z = B[2]; n = Length (Z); F = 

 Step 3.3: For i = 1 to n do

 Step 3.3.1: If Z[i]  t then

 Step 3.3.1.1: b = Z[i]; F = F{b};

Step 3.3.1.2: D = {B[1] \ {{a, b} | {a, b}  B[1]}} 

{{a, b} | {a, b}  B[1]}, CutSet = CutSet  {D}

 Step 3.3.1.3: H = {Z  {a | {a, b}  B[1]}} \ F

 Step 3.3.1.4: A = A  {{D, H}}

Step 4: Delete all Y  CutSet, such that there is a set X

CutSet and X  Y.

Step 5: Print CutSet.

IV. STEP-BY-STEP ILLUSTRATION

 In this section we will illustrate the work of the Algorithm 2.

Example 2: Let we have the network in the Figure 1.

In the step 1 A = {{{{s, a}, {s, b}, {s, c}}, {a, b, c}}} and CutSet =

{{s, a}, {s, b}, {s, c}}.

From the set A, we found the set B = {{{s, a}, {s, b}, {s, c}}, {a,

b, c}} and the new A is A = A\B =. Figure 3 shows the cut set

{{s, a}, {s, b}, {s, c}}.

Figure 3

In this time Z = {a, b, c}, n = 3 and F = .

For each element from Z, we obtain another cut set.

Z [1] = a, F = {a}

D = {{s, b}, {s, c}, {a, b},{a, d}} –cut set

H = {b, c, d}

A = {{{s, b}, {s, c}, {a, b}, {a, d}}, {b, c, d}}}.

Figure 4 shows the cut set {{s, b}, {s, c}, {a, b}, {a, d}}.

Figure 4

 Z [2] = b, F ={a, b}

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

D ={{s, a},{s, c},{b, a},{b, d},{b, c},{b, e}}-cut set

H ={c, d, e}

A = {{{s, b}, {s, c},{a, b},{a, d}},{b, c, d}}, {{{s, a},{s, c},{b, a},{b,

d},{b, c},{b, e}}},{c, d, e}}}

Figure 5 shows the cut set {{s, a}, {s, c}, {b, a}, {b, d}, {b, c}, {b,

e}}

Figure 5

Z[3] = c. F = {a, b, c}

D = {{s, a},{s, b},{b, c},{c, e},{c, f}}-cut set

H={e, f}

A={{{s, b}, {s, c}, {a, b}, {a, d}}, {b, c, d}}, {{{s, a}, {s, c}, {b, a},

{b, d}, {b, c}, {b, e}}}, {c, d, e}}}, {{{s, a},{s, b},{b, c},{c, e},{c, f}},

{e, f}}.

Figure 6 shows the cut set {{s, a},{s, b},{b, c},{c, e},{c, f}}

Figure 6

The algorithm continues in the same manner, until all cut

sets are produced. At the end, all derived cut sets that are

not minimal are deleted.

V. OPTIMIZATION OF THE BASIC ALGORITHM

By the preceding algorithm there are obtained candidates for

minimal cut sets, which are not minimal cut sets. In order to

avoid that appearance, we will analyze how that sets are

obtained.

Example 3: Let us regard the cut set {{{s, a}, {s, c}, {b, c}, {b,

a}, {b, d}, {b, e}}, {c, d, e}}}  A, Figure 5. Using this set there

are obtained few new candidates for a minimal cut set.

Z[1] = d, F = {a, b, c, d}

D = {{s, a},{s, c},{b, a},{b, c},{b, e},{a, d}, {d, e}, {d, t}} – cut set.

H = {e}

The set {{s, a},{s, c},{b, a},{b, c},{b, e},{a, d}, {d, e}, {d, t}},{e}} is

not minimal cut set, because the set {{s, c}, {c, b}, {b, e}, {e,

d}, {d, t}} is a smaller cut set.

For these reasons, in the Step 4 of the Algorithm 2 given in

the previous part, we need to remove all candidates for

minimal cut vectors, which are not minimal ones. It can be

done with a minimum of ln(N) comparisons between sets,

where N is the number of the elements in the CutSet, just

before the Step 4. In order to remove that testing, we will

make a modification of the algorithm. Note that in the

already proposed algorithms, like in [6], there are always

candidates for minimal cut sets that are not minimal.

From the Proposition 2 we have that when the obtained cut

set is not a minimal cut set, the graph G(V,E) is divided into

more than two connected components, as it is shown in

Figure 7.

The cut set {{s, a}, {s, c}, {b, a}, {b, c}, {b, e}, {a, d}, {d, e}, {d,

t}} is not a minimal cut set and it divides the graph G (V, E)

into three components, Figure 7.

Figure 7

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

The idea of the new algorithm is to check whether by

removing the links from the new candidate for the minimal

cut set, the obtained subgraph is composed of two

connected components, such that, the source is in one of

them, and the sink in the other. So, from Proposition 1, we

need to check that the graphs (B3, {{u, v}| u, v B3}} and

(V/B3, {{u, v}| u, v V/B3}} are connected graphs.

Proposition 4 In each iteration of Step 3.1 the graph G(B3,

{{u, v}| u, v B3}) is connected graph.

Proof: Initially we have that B3 = {s}, from this it is clear that

before entering in the loop in Step 3.1, the graph G(B3, {{u,

v}| u, v B3}) is a connected graph. We are going to prove

that assertion “G(B3,{{u, v}| u, v B3}) is a connected graph”

is invariant of the loop in the Step 3.1.

Assume that before entering the loop in Step 3.1, G(B3, {{u,

v}| u, v B3}) is a connected graph. We need to prove that

the graph G
’
(B3

’
,{{u, v}| u, v B3

’
}) is a connected graph.

Let B3
’
= B3  {b} and B2

’
= {B2 \ {b}}  {a | {a, b}  B1}. From b

 B2, follows that b is connected with at least one element of

B3, so G
’
(B3  {b}, {{u, v}| u, v B3  {b}}) is a connected

graph. 

It remains to check that the graph (V/B3, {{u, v}| u, v V/B3})

is connected. For that reason, at the beginning we construct

a tree with root in the sink. In the Step 3.3.1.1 from

Algorithm 2, when we choose a new node b we check

whether it is a leaf in the tree.

- When the node b is leaf, then it is clear that the subgraph

has the required property. So, we construct another tree by

removing that leaf, and we continue from Step 3.3.1.2 to

Step 3.3.1.4 from Algorithm 2.

- When the node b is not a leaf, then we remove it from the

tree and we check whether the nodes that are descendants

of that node are connected with another node of the rest of

the tree. If all nodes are connected with another node of the

rest of the tree, then the obtained set is a minimal cut set, so

we construct a new tree and we continue from Step 3.3.1.2

to Step 3.3.1.4 from Algorithm 2. If at least one node is not

connected with the rest of the tree, then the set is not a

minimal cut set, and we take another element from A.

Note that when all links of the graph are important, i.e. the

graph as a system is a coherent system, the appropriate

minimal cut set which is subset of some cut set, which is

obtained by the algorithm will be obtained on the another

way. This means that if the graph is coherent, then whenever

we obtain a candidate for the minimal cut set, which is not a

minimal cut set, the appropriate set may not be added in A.

Now, we give the new improved algorithm.

Algorithm 3

Input: The set of nodes V and the set of links E, where the

source s=1 and the sink t=|V|.

Output: The set of all minimal cut sets.

Step 1: A = {{{{s, a} | {s, a}  E}, {a | {s, a}  E}}, T}, T is a tree

with root in a sink.

Step2: CutSet = {{s, a} | {s, a}  E}

Step3: Until A  0, take an element from the set A, B = {B1,

B2, T} and remove it from A.

Step 3.1: For each element b  B2, b t, check is b is a leaf

 If b is leaf then

 B2 = {B2 \ {b}}  {a | {a, b}  B1}

 B1= {B1\ {{a, b}| {a, b}  B1}} {{a, b}| {a, b}  B1}

 T=T / {b}

 CutSet = CutSet  {B1}

 else

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

 If each descendent nodes b’ of the node b are

connected with another node of the rest of the tree

than

 B2 = {B2 \ {b}}  {a | {a, b}  B1}

 B1= {B1\ {{a, b}| {a, b}  B1}} {{a, b}| {a, b}  B1}

 CutSet = CutSet  {B1}

 Add the new edges in the tree T that connect b’

with the rest of the tree, and remove the old

edges.

 else

If at least one node is not connected with the rest

of the tree then go to Step 2.1

 A = A{{B1, B2, T}}

Step 4: Print CutSet.

The following example illustrates the work of Algorithm 3.

Example 4:

1. When the node is a leaf

A = {{{{s, a}, {s, b}, {s, c}}, {a, b, c}}}

B3 ={s}, V/ B3 = {a, b, c, d, e, f}

 Figure 8 shows approprite tree {{t, {d, e, f}}, {d, {a, b}}, {e,

{c}}, {f, {}}, {a, {}}, {b, {}}, {c, {}}}.

Figure 8

Because, the node f is leaf, it can be removed from the tree.

It is obvious that the rest of the tree is connected.

2. When the node is not a leaf, but all its descendants are

connected with another node from the rest of the tree.

Let the started cut set is {{s, a}, {s, c}, {b, c}, {b, e}, {b, a}, {b,

d}}, {c, d, e} and we consider a node e. The appropriate tree

for this set is {t, {d, e, f}}, {d, {a}}, {e, {c}}, {f, {}}, {a, {}}, {c, {}}}}.

After removing of the node e we obtain the tree {t, {d, f}}, {d,

{a}}, {f, {}}, {a, {}}}, Figure 9.

Figure 9

The node c is descendant of e. This node is connected with f.

The new tree {t, {d, f}}, {d, {a}}, {f, {c}}, {a, {}}, {c, {}}} is shown

on Figure 10. The obtained minimal cut set is {{s, a}, {s, c}, {a,

b}, {b, c}, {b, d}, {c, e}, {e, f}, {e, d}, {e, t}.

Figure 10

3. When the node is not a leaf and at least one node is not

connected with the rest of the tree. Regard the set {{s, a}, {s,

c}, {b, c}, {b, e}, {b, a}, {b, d}}, {c, d, e} and let take the node d.

The 7
th

 International Conference for Informatics and Information Technology (CIIT 2010)

Appropriate tree for this set is {t, {d, e, f}}, {d, {a}}, {e, {c}}, {f,

{}}, {a, {}}, {c, {}}}}. After removing d, (the links {a, d} and {d,

t}) we obtain the tree {t, {e, f}}, {e, {c}}, {f, {}}, {c, {}}}}, Figure

11.

Figure 11.

The node a is descendant of the node d. This node is not

connected with e and f, i.e. it is not connected with a node

from the rest of the tree. So, this candidate for a minimal cut

set is not a minimal cut set.

VI. CONCLUSION

These paper present new algorithms for calculating a

minimal cut sets. With the first two proposed algorithms are

obtained candidates for minimal cut sets, which are actually

not the minimal cut sets. In order to avoid this, we make

optimisation of the basic algorithms. With the optimized

algorithm are obtained only the minimal cut set. The main

advantage on this algorithm compared with the other known

algorithm, is that we obtain only minimal cut sets, without

additional request to make control whether these cut sets

are minimal.

REFERENCES

[1] Ramirez-Marquez, J.E. and Coit, D. (2003), "Alternative Approach for

Analyzing Multistate Network Reliability” IERC Conference Proceedings 2003.

[2] Ramirez-Marquez, J.E., Coit, D. and Tortorella, M., "Multi-state Two-

terminal Reliability: A Generalized Cut-Set Approach", Rutgers University IE

Working Paper.

[3] Mihova,M., Synagina,N., "An algorithm for calculating multi-state

network reliability using minimal path vectors", The 6th international

conference for Informatics and In-formation Technology (CIIT 2008)

[4] Mihova M., Maksimova N., Popeska ·Z. "An algorithm for calculating

multi-state network reliability with arbitrary capacities of the links"- Fourth

International Bulgarian-Greek Conference Computer Science'2008 ,170-175

[5] М.Михова, “Моделирање на надежност на непоправливи повеќе-

состојбени системи со независни компоненти и хомогени маркови

транзиции,” докторска дисертација,Природно-математички

факултет, Скопје 2008

[6] Bethel A. Gebre ,Jose E. Ramirez-Marquez ,” Element substitution

algorithm for general two-terminal network reliability analyses”, IIE

Transactions, Volume 39, March 2007, 265 - 275

http://www.informaworld.com/smpp/title~db=all~content=t713772245
http://www.informaworld.com/smpp/title~db=all~content=t713772245
http://www.informaworld.com/smpp/title~db=all~content=t713772245~tab=issueslist~branches=39#v39

