
Error-Correcting Codes with Cryptographic

Algorithms

Aleksandra Popovska-Mitrovikj, Smile Markovski, and Verica Bakeva, Member, IEEE

Abstract — Error-correcting codes based on quasigroups

are defined elsewhere. These codes are a combination of

cryptographic algorithms and error correcting codes. In a

paper of ours we succeed to improve the speed of the

decoding process by defining new algorithm for coding and

decoding, named “cut-decoding algorithm”. Here, a new

modification of the cut-decoding algorithm is considered in

order to obtain further improvements of the code

performances. We present several experimental results

obtained with different decoding algorithms for these codes.

Keywords — bit-error probability, cryptcoding, error-

correcting code, packet-error probability, quasigroup,

quasigroup transformation, random code.

I. INTRODUCTION

HE Random Codes Based on Quasigroups (RCBQ)

are defined in [1]. These codes have several

parameters and they are a combination of cryptographic

algorithms and error correcting codes. Therefore, RCBQ

allow not only correction of certain amount of errors in the

input data, but also they provide an information security.

In [2] we have investigated the influence of the code

parameters to the code performances and in [3] we have

proposed a cut-decoding algorithm such that the modified

decoding process is 4.5 times faster than the original one

for code (72,288). In cut-decoding algorithm we use two

transformations of the redundant message with different

parameters, and the candidates for the decoded message

are obtained by using intersection of the corresponding

sequences. On this way we obtained a significant

reduction in the number of elements in the sets of

candidates for decoded message. These results give us an

idea to use intersections of more decoding candidate sets

in order to obtain greater improvement of the speed of

decoding process. Therefore, we make modifications of

the cut-decoding algorithm where we use four

transformations of the redundant message and we obtain

greater improvement of the code performances.

The RCBQ are designed using algorithms for

encryption/decryption from the implementation of TASC

(Totally Asynchronous Stream Ciphers) by quasigroup

string transformations [4]. These cryptographic algorithms

use the alphabet Q and a quasigroup operation * on Q

together with its parastrophe \. In the next section we will

give briefly description of these codes using quasigroups,

This research was partially supported by Faculty of Computer Science

and Engineering at the University "Ss Cyril and Methodius" in Skopje

Aleksandra Popovska-Mitrovikj, Smile Markovski and Verica Bakeva

are with the Faculty of Computer Science and Engineering, University

"Ss Cyril and Methodius" - Skopje, P.O. Box 393, R. of Macedonia

(phone: +389-71-277093; e-mails: {aleksandra.popovska.mitrovikj,

smile.markovski, verica.bakeva}@finki.ukim.mk

but from the definition of the algorithms it is clear that in

their design can be used other algorithms for encryption

and decryption.

II. DESCRIPTION OF RCBQ

A. Description of coding with standard algorithm and

cut-decoding algorithm

Let M = m1m2…ml be a block of Nblock= la bits where

mi∈Q and Q is an alphabet of a-bit symbols. First, we add

a redundancy as zero symbols and produce message L=L(1)

L(2)... L(s) = L1L2...Lm of N bits, where L(i) are sub-blocks of

r symbols from Q and Li∈Q (so, sr = m). After erasing the

redundant zeros from each L(i), the message L will produce

the original message M. In this way we obtain an (Nblock,

N) code with rate R= Nblock /N. The codeword is produced

after applying the encryption algorithm of TASC (given in

Fig. 1) on the message L. For that aim, previously, a key

k=k1k2…kn∈Qn should be chosen. The obtained codeword

of M is C=C1C2...Cm, where Ci∈Q.

Encryption Decryption

Input: Key k = k1k2…kn and

message L =L1L2…Lm

Output: message (codeword) C

= C1C2...Cm

Input: The pair

(a1 a2… as, k1k2…kn)

Output: The pair

(c1 c2… cs, K1K2…Kn)

For j = 1 to m

 X ≠ Lj;

 T ≠ 0;

 For i = 1 to n

 X ≠ ki * X;

 T ≠ T ∆ X;

 ki ≠ X;

 kn ≠ T;

Output: Cj ≠ X

For i = 1 to n

 Ki ≠ ki;

For j = 0 to s −1

 X, T ≠ aj+1;

 temp ≠ Kn;

 For i = n down to 2

 X ≠ temp \ X;

 T ≠ T ∆ X;

 temp ≠ Ki−1;

 Ki−1 ≠ X;

 X ≠ temp \ X;

 Kn ≠ T;

 cj+1 ≠ X;

Output:(c1c2… cs, K1K2…Kn)

Fig. 1. TASC algorithm for encryption and decryption.

In the cut-decoding algorithm, instead of using a (Nblock,

N) code with rate R, we use together two (Nblock, N/2)

codes with rate 2R for coding/decoding a same message of

Nblock bits. Namely, for coding we apply two times the

encryption algorithm, given in Fig. 1, on the same

redundant message L using different parameters (different

keys or quasigroups). In this way we obtain the codeword

of the message as concatenation of the two codewords of

N/2 bits.

T

21st Telecommunications forum TELFOR 2013 Serbia, Belgrade, November 26-28, 2013.

978-1-4799-1420-3/13/$31.00 ©2013 IEEE 327

B. Description of decoding with standard algorithm

and cut-decoding algorithm

After transmission through a noise channel (for our

experiments we use binary symmetric channel), the

codeword C will be received as message D = D(1)D(2)...D(s)

= D1D2...Dm, where D(i) are blocks of r symbols from Q

and Di ∈Q. The decoding process consists of four steps:

(i) procedure for generating the sets with predefined

Hamming distance, (ii) inverse coding algorithm, (iii)

procedure for generating decoding candidate sets and (iv)

decoding rule.

The probability that ≤ t bits in D(i) are not correctly

transmitted is

where p is

probability of bit-error in a binary symmetric channel. Let

Bmax be an integer such that 1−P(p; Bmax) ≤ qB and

Hi = {α | α ∈Q

∑ =

−⋅−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

t

k

kark pp
k

ar
tpP

0
,)1();(

 r, H(D(i), α) ≤ Bmax}, for i =1, 2, …, s, where

H(D(i), α) is the Hamming distance between D(i) and α.

The decoding candidate sets S0, S1,…, Ss are defined

iteratively. Let S0 = (k1k2…kn; l), where l is the empty

sequence. Let Si -1 be defined for i ≥ 1. Then Si is the set of

all pairs (δ, w1w2…wr a i) obtained by using the sets Si−1

and Hi as follows (wj are bits). For each element α ∈ Hi

and each (β, w1w2…wr a (i− 1))∈ Si−1, we apply the inverse

coding algorithm (i.e. algorithm for decryption given in

Fig. 1) with input (α, β). If the output is the pair (γ, δ) and

if both sequences γ and L(i) have the redundant zeros in the

same positions, then the pair (δ, w1w2…wr a (i - 1) c1c2...cr a)

≡(δ, w1 w2…wr a i) is an element of Si.

The decoding of the received message D is given by the

following rule: If the set Ss contains only one element

(d1…dn, w1w2…wr a s) then L = w1 w2…wr a s is the decoded

(redundant) message (then we say we have a successful

decoding). In the case when the set Ss contains more than

one element, we say that the decoding of D is unsuccessful

(of type more-candidate-error). In the case when Sj = ∅

for some j ∈ {1, …, s}, the process will be stopped (we

say that a null-error appears).

Theorem 1 ([1]) The packet-error probability (PER) of

these codes is q = 1−(1−qB)s.

In the cut-decoding algorithm, after transmitting

through a noise channel, we divide the outgoing message

D = D(1)D(2)...D(s) in two messages D1 = D(1)D(2)...D(s/2) and

D2 = D(s/2+1)D(s/2+2)...D(s) with equal lengths and we decode

them parallel with the corresponding parameters. In this

method of decoding we make modification in the

procedure for generating decoding candidate sets. In this

algorithm we generate these sets in the following way.

Step 1. Let S0
(1)

 = (k1
(1)k2

(1)…kn
(1); l) and S0

(2)
 =

(k1
(2)k2

(2)…kn
(2); l) where l is the empty sequence, and let

k1
(1)k2

(1)…kn
(1) and k1

(2)k2
(2)…kn

(2) be the initial keys used

for obtaining the two codewords.

Step 2. Let and be defined for i ≥ 1.
)1(
1−iS)2(

1−iS

Step 3. Let two decoding candidate sets and

be obtained in the both decoding processes, on the same

way as in the standard algorithm of RCBQ.

)1(
iS)2(

iS

Step 4. Let V1 = {w1w2…wr a i | (δ, w1w2…wr a i) ∈ },

V2 = {w1w2…wr a i | (δ, w1w2…wr a i) ∈ } and

V = V1 ∩ V2.

)1(
iS

)2(
iS

Step 5. For each (δ, w1w2…wr a i) ∈ , if

w1w2…wr a i ∉ V then ← \{(δ, w1 w2…wr a i)}.

Also, for each (δ, w1 w2…wr a i) ∈ , if w1w2…wr a i∉ V

then ← \{(δ, w1 w2…wr a i)}.

)1(
iS

)1(
iS)1(

iS

)2(
iS

)2(
iS)2(

iS

(We note that in the next iteration the both processes

use the corresponding reduced sets and .)
)1(

iS)2(
iS

Step 6. If i < s/2 then increase i and go back to Step 3.

If, after the last iteration, the reduced sets and

 have only one element with same second component

w1…wr a s / 2 , then L = w1…wr a s / 2 and we have successful

decoding. If, after the last iteration, the reduced sets have

more than one element we have more-candidate-error. If

we obtain = ∅, ≠ ∅ or = ∅, ≠ ∅ in

some iteration then the decoding of the message continues

only with the nonempty set by using the standard RCBQ

decoding algorithm. In the case when = = ∅ in

some iteration, then the process will be stopped (null-error

appears).

)1(
2/sS

)2(
2/sS

)1(
iS)2(

iS)2(
iS)1(

iS

)1(
iS)2(

iS

With the cut-decoding algorithm, we noticed a

significant reduction of the number of elements in the sets

S and we achieve big improvement of the decoding speed

(4.5 times faster for code (72,288)). The problem in the

cut-decoding algorithm is that for obtaining code with rate

R we need a pattern for code with rate 2R. But, it is hard

to make good pattern for larger rates, since the number of

redundant zeros in these patterns is smaller. Therefore,

with this decoding method we obtain worse results in the

number of unsuccessful decodings of type more-

candidate-error, but the number of unsuccessful

decodings with null-error is smaller. To resolve the

problem of greater number of more-candidate-errors we

propose one heuristic in the decoding rule for elimination

of this type of errors. Namely, from the experiments we

can see that when the decoding process ends with more

elements in the last reduced decoding candidate sets,

almost always in these sets is contained the correct

message. So, in this case we can randomly select a

message from the one of the sets in the last iteration and it

can be taken as the decoded message. If the selected

message is the correct one, then the bit-error is 0, so the

bit-error probability (BER) will also be reduced. In the

experiments we have made (with this modification) we got

that in around half of the cases, the correct message is

selected.

III. NEW 4-SETS-CUT-DECODING ALGORITHM

In this paper we propose a new modification of the cut-

decoding algorithm where we use cuts of four decoding

328

candidate sets. In this modification of cut-decoding

algorithm instead of using a (Nblock, N) code with rate R,

we use together four (Nblock, N/4) codes with rate 4R, that

encode/decode a same message of Nblock bits. So, in the

process of coding we apply the encryption algorithm,

given in Fig. 1, on the same redundant message L four

times using different parameters (different keys or

quasigroups) and we obtain the codeword of the message

as concatenation of the four codewords of N/4 bits. After

transmitting through a noise channel, we divide the

outgoing message D = D(1)D(2)...D(s) in four messages D1 =

D(1)D(2)...D(s/4), D2 = D(s/4+1)D(s/4+2)...D(s/2), D3 =

D(s/2+1)D(s/2+2)...D(3s/4) and D4 = D(3s/4+1)D(3s/4+2)...D(s) with

equal lengths and we decode them parallel with the

corresponding parameters.

Similarly, as in the cut-decoding algorithm with two

sets, we reduce the decoding candidate sets obtained in the

four decoding processes (in all iterations of the decoding

process). In the initial experiments with this modification,

for reduction we have used intersection of all four

decoding candidate sets. But, in these experiments, we

have seen that when the decoding process ends with null-

error, i.e., when all four reduced sets are empty, very

often the correct message is in three of the four non-

reduced sets. Therefore, we introduced heuristic, i.e., an

additional step in the algorithm, for the cases when the

intersection of all four sets is empty. So, in the new 4-

Sets-Cut-Decoding algorithm for RCBQ we generate

decoding candidate sets in the following way.

Step 1. Let S0
(1)

 = (k1
(1)…kn

(1); l),…, S0
(4)

 = (k1
(4)…kn

(4);

l) where l is the empty sequence, k1
(1)…kn

(1),…,

k1
(4)…kn

(4) are the initials keys used for obtaining the four

codewords.

Step 2. Let ,…, be defined for i ≥ 1.
)1(
1−iS)4(

1−iS

Step 3. Let four decoding candidate sets

be obtained in the four decoding processes, on the same

way as in the standard algorithm of RCBQ.

)4()1(,, ii SS K

Step 4. Let V1 = {w1w2…wr a i | (δ, w1w2…wr a i)

∈ },…, V4 = {w1w2…wr a i | (δ, w1w2…wr a i) ∈ }

and V = V1 ∩ V2 ∩ V3 ∩ V4.

)1(
iS)4(

iS

If V = ∅ then V = (V1 ∩ V2 ∩ V3) (V1 ∩ V2 ∩ V4)

(V1 ∩ V3 ∩ V4) (V2 ∩ V3 ∩ V4) .

∪ ∪
∪

Step 5. For each j = 1, 2, 3, 4 and for each (δ, w1

w2…wr a i)∈ , if w1 w2…wr a i ∉ V then ← \

{(δ, w1 w2…wr a i)}.

)(j
iS)(j

iS)(j
iS

(Note that in the next iteration the four processes use

the corresponding reduced sets , , , .)
)1(

iS)2(
iS)3(

iS)4(
iS

Step 6. If i < s/4 then increase i and go back to Step 3.

If, after the last iteration, all reduced sets , ,

, have only one element with same second

component w1 w2…wr a s / 4 , then L = w1 w2…wr a s / 4 is the

decoded (redundant) message and we have successful

decoding. If, after the last iteration, the reduced sets ,

, , have more than one element we have

more-candidate-error. In this case we apply the same

heuristic as in the cut-decoding algorithm (we randomly

select a message from the reduced sets in the last

iteration). If we obtain = = = = ∅ in

some iteration, then the process will be stopped (null-error

appears). But, if we obtain only one (or two) empty

decoding candidate set (in Step 3) then the decoding

continues with the three (or two) nonempty sets. If, in

some iteration, we obtain only one nonempty set then the

decoding continues with the nonempty set using the

standard RCBQ decoding algorithm.

)1(
4/sS)2(

4/sS

)3(
4/sS)4(

4/sS

)1(
4/sS

)2(
4/sS)3(

4/sS)4(
4/sS

)1(
4/sS)2(

4/sS)3(
4/sS)4(

4/sS

IV. EXPERIMENTAL RESULTS

In this section we give the experimental results for the

probabilities for packet-error (PER) obtained with the new

4-Sets-Cut-Decoding algorithm and we compare them

with the results obtained with the standard decoding

algorithm and the cut-decoding algorithm with two sets.

Also, we will compare the decoding speeds obtained from

the experiments for all algorithms.

In previous papers of ours [2], [3], we have given

experimental results for the code (72,288) with rate ¼

obtained with the standard and the cut-decoding

algorithm. But, for obtaining the code (k, n) with rate R in

the proposed 4-Sets-Cut-Decoding algorithm, we use four

(k, n/4) codes with rate 4R. Therefore, for code with rate

¼ we do not have redundancy (if R = ¼ then n = k, i.e., the

length of the codeword is equal to the length of the

message). So, we made experiments for code (72,576)

with rate R = 1/8. In these experiments we used alphabet

Q={0, 1,…, 9, a, b, c, d, e, f} of nibbles with the

quasigroup operations * and \ on Q given in [2] and

blocks of 4 nibbles in the decoding process.

We obtained the best results for code (72,576) with the

standard decoding algorithm for the pattern: 1100 1000

0000 0000 0000 0000 1100 1000 0000 0000 0000 0000

1100 1000 0000 0000 0000 0000 1100 1000 0000 0000

0000 0000 1100 1000 0000 0000 0000 0000 1100 1000

0000 0000 0000 0000 and the initial key of 10 symbols.

(Here, 1 denotes the place of a message symbol, and 0 is

the redundant symbol of a zero bits.) With cut-decoding

algorithm with 2 sets, we obtained the best results with the

redundancy pattern: 1100 1100 1000 0000 1100 1000

1000 0000 1100 1100 1000 0000 1100 1000 1000 0000

0000 0000, for rate ¼ and two different keys of 10

symbols. In the experiments with the new 4-Sets-Cut-

Decoding algorithm we used the pattern: 1100 1110 1100

1100 1110 1100 1100 1100 0000 for rate ½ and four

different keys of 10 symbols. In all experiments we used

the same quasigroup on Q.

Experimental results for packet-error probabilities for

Bmax = 4 and different values of bit-error probability p of

binary symmetric channel are presented in Fig. 2. In this

figure the PERs are the packet-error probabilities obtained

with the standard algorithm, PERc with the cut-decoding

329

algorithm with 2 sets and PERc4 the packet-error

probabilities obtained with 4-Sets-Cut-Decoding

algorithm. For all considered algorithms we made

experiments until we get PER > 0.1.

Fig. 2. Experimental results for packet-error

probabilities for Bmax = 4 for code (72, 576)

From the results obtained for PER given in the Fig. 2

we can derive the following conclusions. Using the cut-

decoding algorithm with 2 sets instead of the standard

algorithm we obtain great improvement of the

probabilities for packet-error (for p > 0.04, PERc are

approximately twice smaller than PERs). Also, analyzing

the average times of the experiments we can conclude that

for Bmax = 4, the cut-decoding algorithm is more than 2

times faster than the standard algorithm. From the values

for PERc4 we can see that with this new modification we

obtain better results for PER for all values of p compared

with the values obtained with the standard and the cut-

decoding with 2 sets. Also, this algorithm is 1.4 times

faster than the cut-decoding with 2 sets and more than 3

times faster than the standard algorithm.

Also, we made experiments for the same codes using

Bmax = 5 in the decoding process and in Fig. 3 we present

the obtained results for packet-error probabilities for

different values of bit-error probability p of binary

symmetric channel.

Fig. 3. Experimental results for packet-error

probabilities for Bmax = 5 for code (72, 576)

From the values for PERs and PERc in Fig. 3 we can

conclude that using the cut-decoding algorithm with 2 sets

for rate 1/8 we obtain better results than with the standard

algorithm. On the other side, in terms of the decoding

speed, for p < 0.06 the cut-decoding algorithm is 5.2 times

faster than the standard one, but for p ≥ 0.06, in some

experiments with cut-decoding algorithm, we obtained a

very large cardinality of the decoding candidate sets (after

some iteration), so the decoding speed decreases (but it is

still better than the speed obtained with standard

algorithm). From the results in Fig. 3 we can see that with

the 4-Sets-Cut-Decoding algorithm, we obtain better

values for PER for all values of p (for p ≥ 0.07, PERc4 is

more than 3 times smaller than PERc and for all p PERc4

is more than 4 times smaller than PERs). Also, this

algorithm is more than 6 times faster than the standard

algorithm and from 1.16 to 5.6 times (for different values

of p) faster than the cut-decoding with 2 sets.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11

p

P
E
R

PERs PERc PERc4

In this paper we do not present the results obtained for

bit-error probabilities (BER), but for this probabilities we

can derive the same conclusions as for PER (since, for all

algorithms and for all p, BER is approximately PER/2).

V. CONCLUSION

In this paper, in order to improve the decoding speed of

random codes based on quasigroups we have defined new

4-Sets-Cut-Decoding algorithm. With this algorithm we

obtained greater reduction of the cardinality of decoding

candidate sets in all iterations. Also, we have introduced

an additional heuristic (when decoding ends with null-

error) in the proposed decoding algorithm, and we

obtained improving of the packet-error and bit-error

probabilities. Several experiments for different decoding

algorithms for code (72,576) were presented and

compared. From the comparison we can conclude that for

this code with the new 4-Sets-Cut-Decoding algorithm we

obtain great improvement of the decoding speed and much

better values for packet-error and bit-error probabilities.

REFERENCES

[1] D. Gligoroski, S. Markovski, Lj. Kocarev, “Error-correcting codes

based on quasigroups,” in Proc. 16th International Conference on

Computer Communications and Networks (ICCCN 2007), 2007,

pp.165-172.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13

p

P
E
R

PERs PERc PERc4

[2] A. Popovska-Mitrovikj, S. Markovski, V. Bakeva, “Performances

of error-correcting codes based on quasigroups,” in ICT-

Innovations 2009, D. Davcev, J.M. Gomez, Eds., Springer, 2009,

pp. 377-389.

[3] A. Popovska-Mitrovikj, S. Markovski, V. Bakeva,, “Increasing the

decoding speed of random codes based on quasigroups,” in Web

Proc. ICT Innovations2012, ISSN 1857-7288, Ohrid, 2012, pp. 93-

102.

[4] D. Gligoroski, S. Markovski, Lj. Kocarev, “Totally asynchronous

stream ciphers + Redundancy = Cryptcoding,” in Proc. of the 2007

International Conference on Security and management, SAM 2007

S. Aissi, H.R. Arabnia , Eds., CSREA Press, Las Vegas, 2007, pp.

446 – 451.

330

