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Abstract — Error-correcting codes based on quasigroups 

are defined elsewhere. These codes are a combination of 

cryptographic algorithms and error correcting codes. In a 

paper of ours we succeed to improve the speed of the 

decoding process by defining new algorithm for coding and 

decoding, named “cut-decoding algorithm”. Here, a new 

modification of the cut-decoding algorithm is considered in 

order to obtain further improvements of the code 

performances. We present several experimental results 

obtained with different decoding algorithms for these codes.  

Keywords — bit-error probability, cryptcoding, error-

correcting code, packet-error probability, quasigroup, 

quasigroup transformation, random code. 

I. INTRODUCTION 

HE Random Codes Based on Quasigroups (RCBQ) 

are defined in [1]. These codes have several 

parameters and they are a combination of cryptographic 

algorithms and error correcting codes. Therefore, RCBQ 

allow not only correction of certain amount of errors in the 

input data, but also they provide an information security. 

In [2] we have investigated the influence of the code 

parameters to the code performances and in [3] we have 

proposed a cut-decoding algorithm such that the modified 

decoding process is 4.5 times faster than the original one 

for code (72,288). In cut-decoding algorithm we use two 

transformations of the redundant message with different 

parameters, and the candidates for the decoded message 

are obtained by using intersection of the corresponding 

sequences. On this way we obtained a significant 

reduction in the number of elements in the sets of 

candidates for decoded message. These results give us an 

idea to use intersections of more decoding candidate sets 

in order to obtain greater improvement of the speed of 

decoding process. Therefore, we make modifications of 

the cut-decoding algorithm where we use four 

transformations of the redundant message and we obtain 

greater improvement of the code performances. 

The RCBQ are designed using algorithms for 

encryption/decryption from the implementation of TASC 

(Totally Asynchronous Stream Ciphers) by quasigroup 

string transformations [4]. These cryptographic algorithms 

use the alphabet Q and a quasigroup operation * on Q 

together with its parastrophe \. In the next section we will 

give briefly description of these codes using quasigroups, 
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but from the definition of the algorithms it is clear that in 

their design can be used other algorithms for encryption 

and decryption. 

II. DESCRIPTION OF RCBQ 

A. Description of coding with standard algorithm and 

cut-decoding algorithm 

Let M = m1m2…ml be a block of Nblock= la bits where 

mi∈Q and Q is an alphabet of a-bit symbols. First, we add 

a redundancy as zero symbols and produce message L=L(1) 

L(2)... L(s) = L1L2...Lm of N bits, where L(i) are sub-blocks of 

r symbols from Q and Li∈Q (so, sr = m). After erasing the 

redundant zeros from each L(i), the message L will produce 

the original message M. In this way we obtain an (Nblock, 

N) code with rate R= Nblock /N. The codeword is produced 

after applying the encryption algorithm of TASC (given in 

Fig. 1) on the message L. For that aim, previously, a key 

k=k1k2…kn∈Qn should be chosen. The obtained codeword 

of M is C=C1C2...Cm, where Ci∈Q. 
 

Encryption Decryption 

Input: Key k = k1k2…kn and 

message L =L1L2…Lm

Output: message (codeword) C 

= C1C2...Cm

Input: The pair  

(a1 a2… as, k1k2…kn)  

Output: The pair  

(c1 c2… cs, K1K2…Kn) 

For j = 1 to m 

   X ≠ Lj; 

   T ≠ 0; 

   For i = 1 to n 

      X ≠ ki * X; 

      T ≠ T ∆ X; 

       ki ≠ X; 

   kn ≠ T; 

Output: Cj ≠ X 

For i = 1 to n 

   Ki ≠ ki; 

For j = 0 to s −1 

   X, T  ≠ aj+1; 

    temp ≠ Kn; 

   For i = n down to 2 

         X ≠ temp \ X; 

         T ≠ T ∆ X; 

         temp ≠ Ki−1; 

         Ki−1 ≠ X; 

    X ≠ temp \ X; 

    Kn ≠ T; 

    cj+1 ≠ X; 

Output:(c1c2… cs, K1K2…Kn) 

Fig. 1. TASC algorithm for encryption and decryption. 

 

In the cut-decoding algorithm, instead of using a (Nblock, 

N) code with rate R, we use together two (Nblock, N/2) 

codes with rate 2R for coding/decoding a same message of 

Nblock bits. Namely, for coding we apply two times the 

encryption algorithm, given in Fig. 1, on the same 

redundant message L using different parameters (different 

keys or quasigroups). In this way we obtain the codeword 

of the message as concatenation of the two codewords of 

N/2 bits. 

T 
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B. Description of decoding with standard algorithm 

and cut-decoding algorithm 

After transmission through a noise channel (for our 

experiments we use binary symmetric channel), the 

codeword C will be received as message D = D(1)D(2)...D(s) 

= D1D2...Dm, where D(i) are blocks of r symbols from Q 

and Di ∈Q. The decoding process consists of four steps: 

(i) procedure for generating the sets with predefined 

Hamming distance, (ii) inverse coding algorithm, (iii) 

procedure for generating decoding candidate sets and (iv) 

decoding rule.  

The probability that ≤ t bits in D(i) are not correctly 

transmitted is 
 
where p is 

probability of bit-error in a binary symmetric channel. Let 

Bmax be an integer such that 1−P(p; Bmax) ≤ qB and            

Hi = {α | α ∈Q
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 r, H(D(i), α) ≤ Bmax}, for i =1, 2, …, s, where 

H(D(i), α) is the Hamming distance between D(i) and α. 

The decoding candidate sets S0, S1,…, Ss are defined 

iteratively. Let S0 = (k1k2…kn; l), where l is the empty 

sequence. Let Si -1 be defined for i ≥ 1. Then Si is the set of 

all pairs (δ, w1w2…wr a i ) obtained by using the sets Si−1 

and Hi as follows (wj are bits). For each element α ∈ Hi 

and each (β, w1w2…wr a ( i− 1 ) )∈ Si−1, we apply the inverse 

coding algorithm (i.e. algorithm for decryption given in 

Fig. 1) with input (α, β). If the output is the pair (γ, δ) and 

if both sequences γ and L(i) have the redundant zeros in the 

same positions, then the pair (δ, w1w2…wr a ( i - 1 )  c1c2...cr a ) 

≡(δ, w1 w2…wr a i ) is an element of Si. 

The decoding of the received message D is given by the 

following rule: If the set Ss contains only one element 

(d1…dn, w1w2…wr a s ) then L = w1 w2…wr a s  is the decoded 

(redundant) message (then we say we have a successful 

decoding). In the case when the set Ss contains more than 

one element, we say that the decoding of D is unsuccessful 

(of type more-candidate-error). In the case when Sj = ∅ 

for some j ∈ {1, …, s}, the process will be stopped (we 

say that a null-error appears).  

Theorem 1 ([1]) The packet-error probability (PER) of 

these codes is q = 1−( 1−qB)s. 

In the cut-decoding algorithm, after transmitting 

through a noise channel, we divide the outgoing message 

D = D(1)D(2)...D(s) in two messages D1 = D(1)D(2)...D(s/2) and 

D2 = D(s/2+1)D(s/2+2)...D(s) with equal lengths and we decode 

them parallel with the corresponding parameters. In this 

method of decoding we make modification in the 

procedure for generating decoding candidate sets. In this 

algorithm we generate these sets in the following way. 

Step 1. Let S0
(1)

 = (k1
(1)k2

(1)…kn
(1); l) and S0

(2)
 = 

(k1
(2)k2

(2)…kn
(2); l) where l is the empty sequence, and let 

k1
(1)k2

(1)…kn
(1) and k1

(2)k2
(2)…kn

(2)  be the initial keys used 

for obtaining the two codewords. 

Step 2. Let  and be defined for i ≥ 1. 
)1(
1−iS )2(

1−iS

Step 3. Let two decoding candidate sets  and  

be obtained in the both decoding processes, on the same 

way as in the standard algorithm of RCBQ. 

)1(
iS )2(

iS

Step 4. Let V1 = {w1w2…wr a i | (δ, w1w2…wr a i ) ∈ }, 

V2 = {w1w2…wr a i | (δ, w1w2…wr a i ) ∈ } and                

V = V1 ∩ V2. 

)1(
iS

)2(
iS

Step 5. For each (δ, w1w2…wr a i ) ∈ , if  

w1w2…wr a i  ∉ V then ← \{(δ, w1 w2…wr a i )}. 

Also, for each (δ, w1 w2…wr a i ) ∈ , if w1w2…wr a i∉ V  

then ← \{(δ, w1 w2…wr a i )}. 

)1(
iS

)1(
iS )1(

iS

)2(
iS

)2(
iS )2(

iS

(We note that in the next iteration the both processes 

use the corresponding reduced sets and .) 
)1(

iS )2(
iS

Step 6. If i < s/2 then increase i and go back to Step 3.  

 

If, after the last iteration, the reduced sets  and 

 have only one element with same second component 

w1…wr a s / 2 , then L = w1…wr a s / 2  and we have successful 

decoding. If, after the last iteration, the reduced sets have 

more than one element we have more-candidate-error. If 

we obtain  = ∅, ≠ ∅  or = ∅, ≠ ∅ in 

some iteration then the decoding of the message continues 

only with the nonempty set by using the standard RCBQ 

decoding algorithm. In the case when = = ∅  in 

some iteration, then the process will be stopped (null-error 

appears). 

)1(
2/sS

)2(
2/sS

)1(
iS )2(

iS )2(
iS )1(

iS

)1(
iS )2(

iS

With the cut-decoding algorithm, we noticed a 

significant reduction of the number of elements in the sets 

S and we achieve big improvement of the decoding speed 

(4.5 times faster for code (72,288)). The problem in the 

cut-decoding algorithm is that for obtaining code with rate 

R we need a pattern for code with rate 2R. But, it is hard 

to make good pattern for larger rates, since the number of 

redundant zeros in these patterns is smaller. Therefore, 

with this decoding method we obtain worse results in the 

number of unsuccessful decodings of type more-

candidate-error, but the number of unsuccessful 

decodings with null-error is smaller. To resolve the 

problem of greater number of more-candidate-errors we 

propose one heuristic in the decoding rule for elimination 

of this type of errors. Namely, from the experiments we 

can see that when the decoding process ends with more 

elements in the last reduced decoding candidate sets, 

almost always in these sets is contained the correct 

message. So, in this case we can randomly select a 

message from the one of the sets in the last iteration and it 

can be taken as the decoded message. If the selected 

message is the correct one, then the bit-error is 0, so the 

bit-error probability (BER) will also be reduced. In the 

experiments we have made (with this modification) we got 

that in around half of the cases, the correct message is 

selected. 

III.  NEW 4-SETS-CUT-DECODING ALGORITHM 

In this paper we propose a new modification of the cut-

decoding algorithm where we use cuts of four decoding 
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candidate sets. In this modification of cut-decoding 

algorithm instead of using a (Nblock, N) code with rate R, 

we use together four (Nblock, N/4) codes with rate 4R, that 

encode/decode a same message of Nblock bits. So, in the 

process of coding we apply the encryption algorithm, 

given in Fig. 1, on the same redundant message L four 

times using different parameters (different keys or 

quasigroups) and we obtain the codeword of the message 

as concatenation of the four codewords of N/4 bits. After 

transmitting through a noise channel, we divide the 

outgoing message D = D(1)D(2)...D(s) in four messages D1 = 

D(1)D(2)...D(s/4), D2 = D(s/4+1)D(s/4+2)...D(s/2), D3 = 

D(s/2+1)D(s/2+2)...D(3s/4) and D4 = D(3s/4+1)D(3s/4+2)...D(s) with 

equal lengths and we decode them parallel with the 

corresponding parameters. 

Similarly, as in the cut-decoding algorithm with two 

sets, we reduce the decoding candidate sets obtained in the 

four decoding processes (in all iterations of the decoding 

process). In the initial experiments with this modification, 

for reduction we have used intersection of all four 

decoding candidate sets. But, in these experiments, we 

have seen that when the decoding process ends with null-

error, i.e., when all four reduced sets are empty, very 

often the correct message is in three of the four non-

reduced sets. Therefore, we introduced heuristic, i.e., an 

additional step in the algorithm, for the cases when the 

intersection of all four sets is empty. So, in the new 4-

Sets-Cut-Decoding algorithm for RCBQ we generate 

decoding candidate sets in the following way. 

Step 1. Let S0
(1)

 = (k1
(1)…kn

(1); l),…, S0
(4)

 = (k1
(4)…kn

(4); 

l) where l is the empty sequence, k1
(1)…kn

(1),…, 

k1
(4)…kn

(4)  are the initials keys used for obtaining the four 

codewords. 

Step 2. Let ,…, be defined for i ≥ 1. 
)1(
1−iS )4(

1−iS

Step 3. Let four decoding candidate sets  

be obtained in the four decoding processes, on the same 

way as in the standard algorithm of RCBQ. 

)4()1( ,, ii SS K

Step 4. Let V1 = {w1w2…wr a i | (δ, w1w2…wr a i ) 

∈ },…, V4 = {w1w2…wr a i | (δ, w1w2…wr a i ) ∈ } 

and V = V1 ∩ V2 ∩ V3 ∩ V4. 

)1(
iS )4(

iS

If V = ∅ then V = (V1 ∩ V2 ∩ V3) (V1 ∩ V2 ∩ V4)  

(V1 ∩ V3 ∩ V4)  (V2 ∩ V3 ∩ V4) . 

∪ ∪
∪

Step 5. For each j = 1, 2, 3, 4 and for each (δ, w1 

w2…wr a i )∈ , if w1 w2…wr a i  ∉ V then ← \ 

{(δ, w1 w2…wr a i )}.  

)( j
iS )( j

iS )( j
iS

(Note that in the next iteration the four processes use 

the corresponding reduced sets , , , .) 
)1(

iS )2(
iS )3(

iS )4(
iS

Step 6. If  i < s/4 then increase i and go back to Step 3. 

 

If, after the last iteration, all reduced sets , , 

,  have only one element with same second 

component w1 w2…wr a s / 4 , then L = w1 w2…wr a s / 4  is the 

decoded (redundant) message and we have successful 

decoding. If, after the last iteration, the reduced sets , 

, ,  have more than one element we have 

more-candidate-error. In this case we apply the same 

heuristic as in the cut-decoding algorithm (we randomly 

select a message from the reduced sets in the last 

iteration). If we obtain = = = = ∅ in 

some iteration, then the process will be stopped (null-error 

appears). But, if we obtain only one (or two) empty 

decoding candidate set (in Step 3) then the decoding 

continues with the three (or two) nonempty sets. If, in 

some iteration, we obtain only one nonempty set then the 

decoding continues with the nonempty set using the 

standard RCBQ decoding algorithm. 

)1(
4/sS )2(

4/sS

)3(
4/sS )4(

4/sS

)1(
4/sS

)2(
4/sS )3(

4/sS )4(
4/sS

)1(
4/sS )2(

4/sS )3(
4/sS )4(

4/sS

IV. EXPERIMENTAL RESULTS 

In this section we give the experimental results for the 

probabilities for packet-error (PER) obtained with the new 

4-Sets-Cut-Decoding algorithm and we compare them 

with the results obtained with the standard decoding 

algorithm and the cut-decoding algorithm with two sets. 

Also, we will compare the decoding speeds obtained from 

the experiments for all algorithms. 

In previous papers of ours [2], [3], we have given 

experimental results for the code (72,288) with rate ¼ 

obtained with the standard and the cut-decoding 

algorithm. But, for obtaining the code (k, n) with rate R in 

the proposed 4-Sets-Cut-Decoding algorithm, we use four     

(k, n/4) codes with rate 4R. Therefore, for code with rate 

¼ we do not have redundancy (if R = ¼ then n = k, i.e., the 

length of the codeword is equal to the length of the 

message). So, we made experiments for code (72,576) 

with rate R = 1/8. In these experiments we used alphabet    

Q={0, 1,…, 9, a, b, c, d, e, f} of nibbles with the 

quasigroup operations * and \ on Q given in [2] and 

blocks of 4 nibbles in the decoding process. 

We obtained the best results for code (72,576) with the 

standard decoding algorithm for the pattern: 1100 1000 

0000 0000 0000 0000 1100 1000 0000 0000 0000 0000 

1100 1000 0000 0000 0000 0000 1100 1000 0000 0000 

0000 0000 1100 1000 0000 0000 0000 0000 1100 1000 

0000 0000 0000 0000 and the initial key of 10 symbols. 

(Here, 1 denotes the place of a message symbol, and 0 is 

the redundant symbol of a zero bits.) With cut-decoding 

algorithm with 2 sets, we obtained the best results with the 

redundancy pattern: 1100 1100 1000 0000 1100 1000 

1000 0000 1100 1100 1000 0000 1100 1000 1000 0000 

0000 0000, for rate ¼ and two different keys of 10 

symbols. In the experiments with the new 4-Sets-Cut-

Decoding algorithm we used the pattern: 1100 1110 1100 

1100 1110 1100 1100 1100 0000 for rate ½ and four 

different keys of 10 symbols. In all experiments we used 

the same quasigroup on Q. 

Experimental results for packet-error probabilities for 

Bmax = 4 and different values of bit-error probability p of 

binary symmetric channel are presented in Fig. 2. In this 

figure the PERs are the packet-error probabilities obtained 

with the standard algorithm, PERc with the cut-decoding 
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algorithm with 2 sets and PERc4 the packet-error 

probabilities obtained with 4-Sets-Cut-Decoding 

algorithm. For all considered algorithms we made 

experiments until we get PER > 0.1.  

Fig. 2. Experimental results for packet-error 

probabilities for Bmax = 4 for code (72, 576)  

 

From the results obtained for PER given in the Fig. 2 

we can derive the following conclusions. Using the cut-

decoding algorithm with 2 sets instead of the standard 

algorithm we obtain great improvement of the 

probabilities for packet-error (for p > 0.04, PERc are 

approximately twice smaller than PERs). Also, analyzing 

the average times of the experiments we can conclude that 

for Bmax = 4, the cut-decoding algorithm is more than 2 

times faster than the standard algorithm. From the values 

for PERc4 we can see that with this new modification we 

obtain better results for PER for all values of p compared 

with the values obtained with the standard and the cut-

decoding with 2 sets. Also, this algorithm is 1.4 times 

faster than the cut-decoding with 2 sets and more than 3 

times faster than the standard algorithm.  

Also, we made experiments for the same codes using 

Bmax = 5 in the decoding process and in Fig. 3 we present 

the obtained results for packet-error probabilities for 

different values of bit-error probability p of binary 

symmetric channel. 

Fig. 3. Experimental results for packet-error 

probabilities for Bmax = 5 for code (72, 576) 

 

From the values for PERs and PERc in Fig. 3 we can 

conclude that using the cut-decoding algorithm with 2 sets 

for rate 1/8 we obtain better results than with the standard 

algorithm. On the other side, in terms of the decoding 

speed, for p < 0.06 the cut-decoding algorithm is 5.2 times 

faster than the standard one, but for p ≥ 0.06, in some 

experiments with cut-decoding algorithm, we obtained a 

very large cardinality of the decoding candidate sets (after 

some iteration), so the decoding speed decreases (but it is 

still better than the speed obtained with standard 

algorithm). From the results in Fig. 3 we can see that with 

the 4-Sets-Cut-Decoding algorithm, we obtain better 

values for PER for all values of  p (for p ≥ 0.07, PERc4 is 

more than 3 times smaller than PERc and for all p PERc4 

is more than 4 times smaller than PERs). Also, this 

algorithm is more than 6 times faster than the standard 

algorithm and from 1.16 to 5.6 times (for different values 

of  p)  faster than the cut-decoding with 2 sets. 
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In this paper we do not present the results obtained for 

bit-error probabilities (BER), but for this probabilities we 

can derive the same conclusions as for PER (since, for all 

algorithms and for all p, BER is approximately PER/2). 

V. CONCLUSION 

In this paper, in order to improve the decoding speed of 

random codes based on quasigroups we have defined new 

4-Sets-Cut-Decoding algorithm. With this algorithm we 

obtained greater reduction of the cardinality of decoding 

candidate sets in all iterations. Also, we have introduced 

an additional heuristic (when decoding ends with null-

error) in the proposed decoding algorithm, and we 

obtained improving of the packet-error and bit-error 

probabilities. Several experiments for different decoding 

algorithms for code (72,576) were presented and 

compared. From the comparison we can conclude that for 

this code with the new 4-Sets-Cut-Decoding algorithm we 

obtain great improvement of the decoding speed and much 

better values for packet-error and bit-error probabilities. 
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