
SOME NEW RESULTS FOR RANDOM CODES BASED ON QUASIGROUPS

Aleksandra Popovska-Mitrovikj∗ Smile Markovski∗ Verica Bakeva∗

UKIM, Faculty of Computer Science and Engineering

{aleksandra.popovska.mitrovikj, smile.markovski, verica.bakeva}@finki.ukim.mk

Abstract

In this paper we continue with our work on Random
codes based on quasigroups. Here, some modifications
of the encoding algorithm, where quasigroups of order 4
and order 256 are used, instead of quasigroups of order
16. We made simulations for binary symmetric channel,
for different quasigroups and different lengths of messages
and we find the packet-error probability (PER) and the
bit-error probability (BER). Also, we propose a method
for reducing the more-candidate-errors.

Key words: error-correcting code, random code,
packet-error probability, bit-error probability, quasi-
group.

I. Introduction

Here we consider the codes defined in [5] and we inves-
tigate the performances of these codes using quasigroups
of order 4 and order 256 in the processes of coding and
decoding. For that aim we have modified the standard al-
gorithm defined for nibbles to be used for 2-bit letters and
bytes. We have made several experiments with the stan-
dard method of decoding, but also with the cut-decoding
algorithm defined in [1]. A new method for reducing the
more-candidate-errors is defined and some improvements
are obtained.
The notions of quasigroups and quasigroup string

transformations are given in the previous paper of
ours [2]. Here, we are using the same terminology and
notations as there. We will repeat only the encoding and
decoding algorithms for more general case when a-bit
letters instead of nibbles are used.

A. Description of coding with standard algorithm

Let M = m1m2...mr be a block of Nblock bits, where
mi ∈ Q and Q is an alphabet of a-bit symbols. First,
we add redundancy as zero symbols and produce block
L = L(1)L(2)...L(s) = L1L2...Lm of N bits, where L(i)

are sub-blocks of r symbols from Q and Li ∈ Q. After
erasing the redundant zeros from each L(i), the message
L will produce the original message M . On this way
we obtain an (Nblock,N) code with rate R = Nblock/N .
The codeword is produced after applying the encryption
algorithm (given in Figure 1) on the block L. For that
aim, previously, a key k = k1k2 . . . kn ∈ Qn should be
chosen. The obtained codeword of M is C = C1C2...Cm,
where Ci ∈Q.

B. Description of decoding with standard algorithm

After transmission through a noise channel (for
our experiments we use binary symmetric channel),
the codeword C will be received as message D =
D(1)D(2)...D(s) = D1D2...Dm, where D(i) are blocks of
r symbols from Q and Di ∈ Q. The decoding process
consists of four steps: (i) procedure for generating the
sets with predefined Hamming distance, (ii) inverse cod-
ing algorithm, (iii) procedure for generating decoding
candidate sets and (iv) decoding rule.

Encryption Decryption

Input: Key k = k1k2 . . .kn Input: The pair
and L= L1L2 . . .Lm (a1a2 . . .as,k1k2 . . .kn)
Output: codeword Output: The pair
C = C1C2...Cm (c1c2 . . . cs,K1K2 . . .Kn)

For j = 1 to m For i= 1 to n

X← Lj ; Ki← ki;
T ← 0; For j = 0 to s− 1
For i= 1 to n X,T ← aj+1;
X← ki ∗X; temp←Kn;
T ← T ⊕X; For i= n to 2
ki←X; X← temp \X;

kn← T T ← T ⊕X;
Output: Cj ←X temp←Ki−1;

Ki−1←X;
X← temp \X;
Kn← T ;
cj+1←X;

Output:
(c1c2 . . . cs,K1K2 . . .Kn)

Figure1: Algorithm for encryption and decryption

The probability that ≤ t bits in D(i) are not correctly
transmitted is P (p; t) =

∑t

k=0

(

r·a

k

)

pk(1− p)r·a−k, where
p is probability of bit-error in a binary symmetric chan-
nel. Let Bmax be an integer such that 1−P (p;Bmax)≤
qB and Hi = {α|α ∈ Qr, H(D(i), α) ≤ Bmax}, for i =
1,2, . . . , s, where H(D(i),α) is the Hamming distance be-
tween D(i) and α.
The decoding candidate sets S0, S1, S2,. . . , Ss are de-

fined iteratively. Let S0 = (k1 . . . kn;λ), where λ is the
empty sequence. Let Si−1 be defined for i ≥ 1. Then Si

is the set of all pairs (δ,w1w2 . . .wr·a·i) obtained by using
the sets Si−1 and Hi as follows (wj are bits). For each
(β,w1w2 . . .wr·a·(i−1)) ∈ Si−1 and each element α ∈ Hi,
we apply the inverse coding algorithm (i.e. algorithm for
decryption given in Figure 1) with input (α,β). If the
output is the pair (γ,δ) and if both sequences γ and L(i)

have the redundant zeros in the same positions, then the
pair (δ,w1w2 . . .wr·a·(i−1)c1c2 . . . cr·a)≡ (δ,w1w2 . . .wr·a·i)
is an element of Si.

178

The 10th Conference for Informatics and Information Technology (CIIT 2013)



The decoding of the received codeword D is given by
the following rule: If the set Ss contains only one el-
ement (d1 . . . dn, w1 . . . wr·a·s) then L = w1 . . . wr·a·s. In
this case, we say that we have a successful decoding. In
the case when the set Ss contains more than one ele-
ment, we say that the decoding of D is unsuccessful (of
type more-candidate-errors). In the case when Sj = ∅
for some j ∈ {1, . . . , s}, the process will be stopped (null-
error appears). We conclude that for some i ≤ j, D(i)

contains more than Bmax errors, resulting with Ci /∈Hi.

Theorem 1: [5] The packet-error probability of these
codes is q = 1− (1− qB)

s.

C. Description of cut-decoding algorithm

In [1] we defined a new cut-decoding algorithm. In
this algorithm, for coding we apply two transformations
on the same redundant message using different parame-
ters and obtain the codeword C as concatenation of two
produced codewords. Therefore, we use two codes with
rate 1/2 in order to obtain a code with rate 1/4. In the
decoding process, we divide the received message D on
two messages with same length and we apply the stan-
dard decoding algorithm on both sub-messages. After
each iteration we obtain the decoding candidate set with
elimination of all elements in the first decoding candi-
date set whose second part does not matches with the
second part of an element in the second set, and vice
versa. With this algorithm we obtained improvement in
the speed of decoding and the values of PER and BER
for code (72,288) using nibbles.

II. Experiments with quasigroups of order 4
and order 256

In [2], we investigated the performances for code
(72,288) with rate R=1/4, for binary symmetric chan-
nel. There we made experiments using alphabet Q =
{0, 1, . . . 9, a, b, c, d, e, f} of nibbles and different quasi-
groups of order 16. The best results we obtained for
quasigroup given in [2], the key of 10 nibbles and the
pattern of redundancy: 1100 1100 1000 0000 1100 1000
1000 0000 1100 1100 1000 0000 1100 1000 1000 0000 0000
0000. In [1] we proposed a new cut-decoding algorithm in
order to improve the decoding speed and decrease packet-
error and bit-error probabilities of these codes.

Now, we made experiments with the random codes
based on quasigroups (with standard algorithm and with
cut-decoding algorithm) in which we use quasigroups of
order 4 and order 256 instead of quasigroups of order
16. Then the messages and codewords are strings of 2-
bit symbols or 8-bit symbols, correspondingly. We have
made experiments with different patterns for redundancy,
different keys, different length of the blocks in the decod-
ing process and several quasigroups of order 4 and order
256.

Using image pattern, Dimitrova and Markovski give a
classification of quasigroups of order 4 in [6] as fractal and
non-fractal and in [3] authors give a classification of these

quasigroups as linear and nonlinear by Boolean represen-
tation. Using these classifications of quasigroups of order
4 in the experiments with messages of two-bit symbols,
we obtained the worst results using fractal quasigroups.
Namely, if we use fractal quasigroup then we have many
unsuccessful decoding with more-candidate-error even if
Bmax = 3. With non-fractal non-linear quasigroups and
non-fractal linear quasigroups the values for packet-error
probability (PER) and bit-error probability (BER) are
similar, with slightly better results for non-fractal lin-
ear quasigroup. Although the codes with nibbles and
the codes with 2-bit symbols are two different codes, we
obtained better results for Bmax = 3 in the experiments
with 2-bit symbols, compared with experiments with nib-
bles. But, for larger values of Bmax, we have much un-
successful decoding with more-candidate-error in all ex-
periments for codes with 2-bit symbols (with standard
algorithm and with cut-decoding algorithm). The best
results for code (72,288) using alphabet of 2-bit symbols
were obtained for the pattern: 111000 111000 110000
000000 111000 110000 110000 000000 110000 110000
000000 000000 111000 111000 110000 000000 111000
110000 110000 000000 110000 000000 000000 000000, key
k = 012301230123213023103210 and the quasigroup (1).

∗ 0 1 2 3
0 0 2 1 3
1 1 3 2 0
2 2 0 3 1
3 3 1 0 2

(1)

In Table 1 the best results for PER and BER for the
both codes (72,288) (with 2-bit symbols and nibbles) us-
ing standard algorithm for different values of bit-error
probability p of binary symmetric channel and Bmax = 3.
There, PER2 and BER2 are packet-error and bit-error
probabilities for the code with 2-bit symbols and PER4

and BER4 - for the code with nibbles.

Table1: Experimental results for packet-error and bit-error

probability for Bmax = 3

p PER2 PER4 BER2 BER4

0.02 0.00171 0.00475 0.00121 0.00209
0.03 0.00849 0.01843 0.00486 0.00849
0.04 0.02429 0.05559 0.01491 0.02629
0.05 0.05429 0.11758 0.03467 0.05488
0.06 0.09886 0.21314 0.05917 0.10655
0.07 0.15743 0.32971 0.09941 0.16738

From the Table 1 we can conclude that for Bmax = 3
the values of PER2 are approximately twice better than
the values of PER4. The same conclusion is true for the
values BER2 and BER4. The better results for num-
ber of null-errors for the code with 2-bit symbols follows
from the formula for theoretical packet-error probability
given in Theorem1, which provide only this type of er-
rors. But, in the experiments with the codes with 2-bit

179

The 10th Conference for Informatics and Information Technology (CIIT 2013)



symbols we obtained a few unsuccessful decodings with
more-candidate-error, even for Bmax = 3. Therefore, the
experimental probabilities for PER2 may be greater than
the theoretical PER given in the Theorem1.
Now, we made experiments for the code (72,288)

using 2-bit symbols with the cut-decoding algo-
rithm. In these experiments we use the quasigroup
(1), the keys k1 = 012301230123213023103210, k2 =
321023102130012301230123 and the pattern: 111100
111100 111000 111000 111100 111000 111000 111100
111000 111000 110000 000000. The obtained results for
PER and BER for different values of bit-error probabil-
ity p of binary symmetric channel and Bmax = 3 are pre-
sented in Table 2.

Table2: Experimental results for cut-decoding algorithm for

Bmax = 3

p PER2 BER2

0.02 0.00114 0.00059
0.03 0.00714 0.00354
0.04 0.02057 0.01232
0.05 0.04886 0.02965
0.06 0.09200 0.05493
0.07 0.15000 0.09566

Comparing the suitable probabilities in Table 1 and
Table 2 we can conclude that the cut-decoding algorithm
gives slightly better results than the standard decoding
algorithm for PER and BER for codes with 2-bit sym-
bols. Also, for these codes the decoding process using
cut-decoding algorithm is two times faster than the stan-
dard algorithm.
Further on, we made experiments with alphabet of

bytes (8-bit symbols) using different patterns, keys and
quasigroups of order 256. In these experiments, with
both decoding algorithms (standard and cut-decoding)
we obtained almost the same values for PER and BER
as for codes with alphabet of nibbles. In Table 3, we give
an example of it.

Table3: Experimental results for packet-error and bit-error

probability for code (72,288), p= 0.08 and Bmax = 4

algorithm PER4 PER8 BER4 BER8

standard 0.1131 0.1100 0.0649 0.0749
cut− decoding 0.1080 0.1029 0.0751 0.0838

III. Method for reducing the

more-candidate-errors

In our initial experiments with the cut-decoding algo-
rithm we obtained worse results in the number of un-
successful decoding of type more-candidate-error, but
the number of unsuccessful decoding with null-error was
smaller. To resolve this problem of greater number of
more-candidate-errors, in [1] we proposed one heuristic

in the decoding rule for elimination of this type of errors.
Namely, from the experiments we can see that when the
decoding process ends with more elements in the last set
Ss, the correct message is almost always in this set. So,
in these cases we randomly select a message from the
set Ss and we take it as the decoded message. In the
experiments which we made with this modification we
got that in around half of the cases the correct message
is selected. In [2] we proposed a method for decreasing
the number of null-errors by backtracking. Namely, if
we obtain Si = ∅ in the i-th iteration of the decoding
process then we cancel a few of iterations of the decod-
ing process and we reprocess all of them or part of them
with a larger value of Bmax. Now, we propose a simi-
lar modification with backtracking, in the cut-decoding
algorithm, for decreasing the number of more-candidate-
errors. If the decoding process ends with more elements
in the last set Ss then we cancel a few of iterations and
we reprocess the first of cancelled iterations using smaller
value of Bmax(the next iterations use the previous value
of Bmax). We have made experiments with this mod-
ification using the cut-decoding algorithm for the code
(72, 288) with nibbles. We obtain the best results, if
we cancel the last two iterations and using Bmax− 1 in
the first of the cancelled iterations. In Table 4 we com-
pare the values of PER and BER obtained without this
backtracking and values of PERback1

and BERback1
ob-

tained with backtracking. These results are obtained for
the pattern: 11001110110011001110110011 0011000000,
the keys k1 = 01234, k2 = 56789 and Bmax = 4.

Table4: Experimental results for PER and BER with and

without backtracking

p PER PERback1
BER BERback1

0.02 0.00171 0.00029 0.00011 0.000004
0.03 0.00257 0.00086 0.00083 0.000507
0.04 0.00514 0.00343 0.00302 0.002531
0.05 0.01714 0.01543 0.01134 0.010845
0.06 0.02657 0.02600 0.01943 0.019317
0.07 0.06171 0.05971 0.04243 0.042075
0.08 0.10800 0.10543 0.07512 0.074948
0.09 0.15886 0.15743 0.11621 0.115833

Table5: Experimental results for PER and BER with

backtracking for both type of errors

p PERback1
BERback1

PERback2
BERback2

0.02 0.00029 0.000004 0.00029 0.000004
0.03 0.00086 0.000507 0.00029 0.000238
0.04 0.00343 0.002531 0.00314 0.001421
0.05 0.01543 0.010845 0.01200 0.005571
0.06 0.02600 0.019317 0.02000 0.008698
0.07 0.05971 0.042075 0.04486 0.020171
0.08 0.10543 0.074948 0.08114 0.034599
0.09 0.15743 0.115833 0.12486 0.054984

180

The 10th Conference for Informatics and Information Technology (CIIT 2013)



From the results in Table 4 we can see that we have
improvement of the values for PER and BER using
this modification for elimination of the more-candidate-
errors. Also, we have made experiments using the both
methods with backtracking, for null-errors and for more-
candidate-errors. In these experiments, if we obtain null-
error, i.e., empty set in some iteration of the decoding
process then we cancel two iterations and we reprocess
the first of cancelled iterations using Bmax+2 = 6, and if
the decoding process ends with more elements in the last
set Ss, then we go two iterations back and we reprocess
the (s−1)-th iteration with Bmax−1 = 3. Let denote by
PERback2

and BERback2
the probabilities of packet-error

and bit-error obtained in this case. In Table 5 we com-
pare PERback2

and BERback2
with the values PERback1

and BERback1
obtained with backtracking only for more-

candidate-errors. We can conclude that with the pro-
posed combination of the backtracking for both types of
errors we obtained improvement for the values of PER
and BER.

Acknowledgment

This work was partially financed by the Faculty of
Computer Science and Engineering at the ”Ss. Cyril and

Methodius University”, Skopje, Macedonia.

References

[1] A. Popovska-Mitrovikj, S. Markovski, V. Bakeva, In-
creasing the decoding speed of random codes based on quasi-
groups, S. Markovski, M. Gusev (Eds.): ICT Innovations 2012,
Web proceedings, ISSN 1857-7288, pp. 93–102.

[2] A. Popovska-Mitrovikj, S. Markovski, V.
Bakeva,Performances of error-correcting codes based on
quasigroups, D.Davcev, J.M.Gomez (Eds.): ICT-Innovations
2009, Springer (2009), 377 – 389

[3] D. Gligoroski, V. Dimitrova, S. Markovski, Quasigroups
as Boolean functions, their equation systems and Groebner
bases, Book: Groebner Bases, Coding, and Cryptography,
ISBN 978-3-540-93805-7, Springer 2009, pp. 415–420

[4] D. Gligoroski, S. Markovski, Lj. Kocarev, Totally asyn-
chronous stream ciphers + redundancy = cryptcoding, S. Aissi,
H.R. Arabnia (Eds.): Proc. Internat. Confer. Security and man-
agement, SAM 2007, Las Vegas, CSREA Press (2007) 446 – 451

[5] D. Gligoroski, S. Markovski, Lj. Kocarev, Error-
correcting codes based on quasigroups, Proc. 16th Intern. Con-
fer. Computer Communications and Networks (2007), 165 –
172

[6] V. Dimitrova, S. Markovski,Classification of quasigroups
by image patterns, Proc. of the Fifth International Confer-
ence for Informatics and Information Technology, Macedonia,
(2007), pp. 152 – 160.

[7] S. Markovski, D. Gligoroski, V. Bakeva, Quasigroup
string processing: Part 1, Maced. Acad. of Sci. and Arts, Sec.
Math. Tech. Scien. XX 1-2 (1999) 13 – 28

181

The 10th Conference for Informatics and Information Technology (CIIT 2013)


