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ABSTRACT 
  
Two infinite classes of strongly collision free hash functions “Edon-C” and “Edon-R” are defined in [GMB 2003]. 

Here we propose one more hash function of similar ‘Edon’ type called “Edon-F”. This hash function is based on the theory 
of quasigroups and the cryptographic properties of quasigroup string processing, i.e. by similar idea as the others ‘Edon’ 
type of hush functions are designed. The “Edon-F” hash function is designed in such a way to be much faster than “Edon-
C” and “Edon-R”, i.e. it is with linear complexity. The price for that is paid on the security level, in the sense that the length 
of the output message (the message digest) should be enough large.  
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1. PRELIMINARIES 

  

Given  sets M and N, a  function f : M ö N is said to be a one-way function if it is easy to 
compute the image f(m) of each m ∈ M (i.e. there is an  algorithm of polynomial complexity to 
compute f(m)), and it is computationally infeasible to find an origin m of  any given n ∈ N (i.e. for 
computing the origin of any n ∈ N  there are only algorithms of  exponential complexity). Let A be a 
finite set and let A+ denote the set of all finite strings over A. The elements of A+ will be denoted by 
a1a2...an where ai ∈ A. By Am is denoted the set of all elements of A+ with length m. A hash function is 
said to be any one-way function from the set A+ into Am  where m is some fixed positive integer. If we 
take the set A to be the set of ASCII code then |A| = 256 and any ASCII file can be considered as an 
element of A+. If h : A+öAm is a hash function then the image  h(x) is said to be the message digest of 
the message x. The integer m is called digest size of the hash function h.  

 A hash function h is useful for cryptographic purposes if it satisfies some additional properties. 
If x and y are two messages that differ at least in one bit then h(x) and  h(y) should differ in about a half 
of their bits. We say that a hash function h is weakly collision-free if for given message x it is 
computationally infeasible to find another message y (∫x) such that  h(x) =  h(y); h is said to be strongly 
collision-free if it is computationally infeasible to find two different messages x and y such that        
h(x) = h(y). Any strongly collision-free hash function is weakly collision too.  

 A quasigroup (Q, *) is a groupoid satisfying the law 

("u, v ∈ Q)($! x, y ∈ Q) u * x = v  &  y *  u = v. 
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This implies the cancellation laws  x * y = x *  z fl y = z,   y *  x = z *  x fl y = z and the equations         
a * x = b,  y * a = b  have unique solutions x, y for each a, b∈Q. In the quasigroup theory there are not 
known algorithms for solving some trivial quasigroup equations, like (x * a) * (b * x) = c, where x is an 
unknown, or system of quasigroup equations. So, the way for solving an equation or system of 
equations over a given quasigroup (Q, *) is by checking all of the possibilities. We will use this fact in 
proving the resistance collision property of the hash function “Edon-F”. On the other side, if we have a 
quasigroup equation containing only one appearance of an unknown x then there is a unique solution of 
that equation.  

 Here we propose a hash function which is strongly collision-free. It is called “Edon-F” hash 
function and it is designed using quasigroup operation on the set A. The idea of using quasigroups as 
cryptographical tools is elaborated in several papers ([MGB 1999], [MGB 2001], [MK 2000]). As it 
can be seen from the proposed design “Edon-F” is not only one hash function, but it is rather an infinite 
family of hash functions. Namely, for any digest size m, an “Edon-F” hash function can be constructed. 
For the construction we need a quasigroup of order |A| and in the sequel we take that * is a quasigroup 
operation on the set A. The number of quasigroup operations on a set A with enough large cardinality of 
A is a huge one. Thus, for |A|=256, there are more than 1058000 quasigroup operations. So, “Edon-F” can 
be used as a hash function with key as well, where the key is a quasigroup operation.  
   

2. “Edon-F” HASH FUNCTION 
The construction of  “Edon-F” hash function will be given in several steps. At first we will 

define a one-way function  f : AmöAm that will be enlarged to a hash function h : A+öAm. As above, 
A is a given finite set.  

Further on, we will use two auxiliary vectors U = (u1, u2, ..., um) and V = (v1, v2, ..., vm) that take 
their values from the set A. During the computational process the vectors will interchange their values. 
For starting of computations, we initialize the values of  V. We take arbitrary elements bi ∈ A and we 
put V to be the vector V := (b1, ..., bm).   

Let  a1a2...am be a given message of length m, where ai ∈ A. We compute the values of U as 
follows. At first, we compute  u1 and  u2  by  

            u1 := ((a1 * a2) * (a2 * a1)) * v1     (1) 
            u2 := (...((a1 * a2) * a3) * ...) * am) *v2.    (2) 

Then we compute the values ui for i = 3, 4, ..., m by the following recurrent process: 
   ui := (ai * ui-1) * (ai * vi),     (3) 
where ui-1 is the value obtained in the previous step and the values vi are taken from the vector V.  
  

After that, using the computed values of ui, we compute the new values of V by the rules of the 
same kind: 

            v1 := ((c1 * c2) * (c2 * c1)) * u1      
            v2 := (...((c1 * c2) * c3) * ...) * cm) * u2    (4)       
            vi  := (ci * vi-1) * (ci * ui),      i = 3, 4, ..., m 

where ci = ui * ai,  i = 1, 2, ..., m.  
Now we define the function  f : Am ö Am by  f(a1...am) = v1...vm. The function f  will be 

enlarged to a function h : A+öAm on the following way. At first, any message a = a1...ar ∈ A+ is 
padded to a message of length mk for some minimal positive integer k. Namely, we fix two different 
elements b, c ∈ A and we concatenate the string bc...c to a to obtain a string a1...arbc...c of desired 



length. So, we may assume that a has length mk for some k, and we present it as a concatenation of 
substrings of length m:  

a = a1...am||am+1...a2m||...||am(k-1)+1...amk. 

We define recursively the function f’  by:   f'(a1...am) = f(a1...am) and if          f'(am(i-1)+1...ami) = 
d1...dm is already computed, we compute 

f'(ami+1...am(i+1)) = f((d1 * ami+1)(d2 * ami+2)...(dm * am(i+1))). 

Finally,  define h(a1...ar) = f'(am(k-1)+1...amk).  

 In such a way  “Edon-F” hash function is defined. 
  

3.  PROPERTIES OF   “Edon-F” HASH FUNCTION 

Here we show that h has suitable cryptographic properties, i.e. we will prove that h is a one-way 
strongly collision-free function, and we present experimentally obtained results. At first, we show that f 
is a one-way function. It is clear that for a given message x, it is easy to compute f(x) using the iterative 
equations (1), (2), (3) and (4). But, it is computationally infeasible to find an origin x = x1 x2...xm of  any 
given v ∈ Am. Namely, let v = v1v2...vm be a given string. If we assume that f(x1 x2...xm) = v1v2...vm then 
in the quasigroup (A, *) we have to solve the  following system of equations: 

y1 = ((x1 * x2) * (x2 * x1)) * b1      
            y2 = (...((x1 * x2) * x3) * ...) * xm) *b2     

  yi = (xi * yi-1) * (xi * bi),          i = 3, 4, ..., m    
v1 = ((z1 * z2) * (z2 * z1)) * y1      

            v2 = (...((z1 * z2) * z3) * ...) * zm) * y2    (5)  
 vi = (zi * vi-1) * (zi * yi),           i = 3, 4, ..., m 
            zi = yi * xi,                               i = 1, 2, ..., m 

In this system the values bi and vi are known, and  xi,  yi, zi are unknown for each  i = 1, 2, ..., m. As it 
was mentioned above, this system can by solved only by checking. Suppose we have chosen values for 
unknowns z1, z2,..., zm. Then in the system (5) we can compute in unique way the values of y1, y2, ..., ym 
from the equations 

v1 = ((z1 * z2) * (z2 * z1)) * y1      
            v2 = (...((z1 * z2) * z3) * ...) * zm) * y2      
 vi = (zi * vi-1) * (zi * yi),           i = 3, 4, ..., m 

and after that the values of  x1, x2,..., xm can be computed in unique way from the last equations in (5). 
But, in such a way obtained values have to satisfy the equations: 

            y1 := ((x1 * x2) * (x2 * x1)) * b1      
            y2 := (...((x1 * x2) * x3) * ...) * xm) *b2.     

  yi := (xi * yi-1) * (xi * bi), for i = 3, 4, ..., m    
This is a checking system if the values of  z1, z2, ..., zm are correctly chosen. For surely finding an origin 
x (if it exists) such that v = f(x) we have to do |A|m checkings. Since |A|m is an exponential function, it is 
computationally infeasible to find an origin x of  any given v, i.e. f  is one-way function.  

Since the function f' is defined using the function f, it follows that  f' is also a one-way function. 
The proof is the same as the previous one, since in f' we have products  x'j = dj * xj  instead of xj,  but it 



does not matter in solving of quasigroup equations. Namely, the mapping xj # x'j is a bijection. So, we 
can conclude that h is a one-way function.  

Let note that the padding function g(a1a2...ar) = a1a2...arbc...c is an injection from A+ to A+. Let 
a1a2...ar ∫ d1d2...dk. If r = k then a1a2...arbc...c = d1d2...drbc...c implies ai = di  for each i=1, 2 , ..., r, a 
contradiction. If r < k then the element c is on the (k+1)-th position in a1a2...arbc...c and the element b 
is on the (k+1)-th position in d1d2...dkbc...c, so a1a2...arbc...c ∫ d1d2...dkbc...c. 
  

It follows from the previous considerations that the padding cannot be used for obtaining a 
collision. On the other hand, by using the function h collision cannot be obtained either. Namely, for 
finding a collision, systems of the kind (5) have to be solved. 
 We have made many experiments to check the statistical properties of  “Edon-F”. In Table 1 we 
present the results of the Hamming distance. We have taken two original strings which differ in only 
one bit. Then we computed their hash values for different digest sizes m ∈ {40, 64, 80, 128, 160, 256, 
320, 384, 512, 1024}. We repeated this procedure 1000 times and in the second column of Table 1, the 
average Hamming distance is given. The third column contains the standard deviation. We can 
conclude that 1 bit difference in the input message produces m/2 differences in the message digest.  

Digest size 
m 

Average 
Hamming distance

Standard 
deviation 

    40   20.00    3.16 
    64   31.99    4.00 
    80   40.00    4.48 
  128   63.99    5.65 
  160   79.88    7.04 
  256 127.98    8.00 
  320 159.39 13.27 
  384 191.42 14.35 
  512 256.02 11.32 
1024 511.98 16.02 

Table 1. The Hamming distance 
  

On Table 2 we present the results of the experiments made for a collision. The digest size is 
chosen to be m = 24, 32, 40, 48 for technical reasons. It can be seen from the Table 2 that for m = 24, a 
collision was found when hash values of 3258 randomly chosen messages were taken. For m = 48,       
5 960 000 messages were needed for obtaining a collision. On the third column of the Table 2 the 
values of 2m/2 are given. We note that a collision is obtained for less than 2m/2 messages, i.e. in 
approximately 2m/2-2

 messages. Considering the Birthday attack on hash functions we can see that 
“Edon-F” hash function has smaller security. (This means that one have to take somewhat larger values 
of m, i.e. to take m+4 instead of m.)  

  
  

Digest size m 
Number of messages 

for obtaining a collision
  

2m/2 
24       3258         4096 
32      15170       65536 
40    375268   1048576 
48 5960000 16777216 

 
 Table 2. Number of messages for obtaining a collision 



The complexity of our algorithm is linear. Namely, for one round of computing the function  f', 
one needs  10m - 4 applications of  the operation *. So, for input message of length r, one needs to 
apply 10r times the operation *. We conclude that the complexity of “Edon-F” hash function is O(r) 
where r is the length of the input message.  
  
  

4. CONCLUSION 
  

The everyday enlargement of the computer performances arise the problems of security of the 
cryptographical products. Considering the hash functions, digest sizes have to be larger and larger. 
Here we propose the hash function “Edon-F” having a digest size of variable length. So, “Edon-F” is an 
adoptable hash function that can follow the changes of computer technologies. It is built by using 
properties of quasigroups and its collision resistant security is mathematically proved. It is of linear 
complexity of the length of the input message, so it is fast one. By the experiments we could see that it 
is a good mixture and it has some weakness considering  a Birthday kind of attacks which can be avoid 
by choosing somewhat larger digest size.  
  

REFERENCES 
  
[DK 1974] Dénes, J.,  Keedwell, A.D.: Latin Squares and their Applications, English Univer. Press 
Ltd., 1974 
  
[GMB 2003] Gligoroski, D., Markovski, S. and Bakeva, V.: “Edon–C” and “Edon–R” – two infinite 
classes of strongly collision resistant hash functions with variable length of output (preprint) 
  
[MGB 1999] Markovski, S.,  Gligoroski, D., and Bakeva, V.:  Quasigroup String Processing: Part 1, 
Contributions, Sec. Math. Tech. Sci., MANU,  XX 1-2(1999) 13-28. 
  
[MGB 2001] Markovski, S.,  Gligoroski, D., and Bakeva, V.: Quasigroup and Hash Functions, Disc. 
Math. and Appl., Sl.Shtrakov and K. Denecke ed., Proceedings of the 6th ICDMA, Bansko 2001,  43-50 
  
[MK 2000] Markovski, S.,  Kusakatov, V.: Quasigroup String Processing: Part 2, Contributions, Sec. 
math. Tech.Sci., MANU, XXI, 1-2(2000) 15-32 
  
[MOV 1997] A. Menezes, P. van Oorschot, and S. Vanstone: Handbook of Applied Cryptography, 
CRC Press, Inc., 1997 
  
[PBD 1997] B. Preneel, A. Bosselaers, H. Dobbertin: The cryptographic hash function RIPEMD-160, 
CryptoBytes, Vol. 3, No. 2, 1997, 9-14. 
 

View publication statsView publication stats

https://www.researchgate.net/publication/2566774

