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A b s t r a c t: Given a finite alphabet A and a quasigroup
operation ∗ on the set A, in earlier paper of ours we have
defined the quasigroup transformation E : A+ → A+, where
A+ is the set of all finite strings with letters from A. Here
we present several generalizations of the transformation E
and we consider the conditions under which the transformed
strings have uniform distributions of n-tuples of letters of A.
The obtained results can be applied in cryptography, coding
theory, defining and improving pseudo random generators,
and so on.
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1. PRELIMINARIES

The quasigroup string transformations E and D, and their prop-
erties, were considered in several papers ([3], [4], [5], [6], [7]). Here we
give generalizations of the transformation E and we investigate conditions
under which the string obtained by such generalized transformations have
uniform distributions of n-tuples of letters. The needed definitions used in
this paper can be found in the above-cited papers and in [1], [2]. Here we
give some of them for matter of completeness.

A quasigroup (Q, ∗) is a groupoid (i.e. algebra with one binary
operation ∗ on the set Q) satisfying the law:

(∀u, v ∈ Q)(∃!x, y ∈ Q) (x ∗ u = v & u ∗ y = v) (1)
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In fact, (1) says that a groupoid (Q, ∗) is a quasigroup if and only if
the equations x∗u = v and u∗y = v have unique solutions x and y for each
given u, v ∈ Q. It is usual the solutions x and y to be denoted by x = v/u
and y = u \ v. In such a way two new operations / (a right division) and
\ (a left division) are defined on the set Q, and then also (Q, /) and (Q, \)
are quasigroups.

We define a quasigroup string transformation E as follows.
Let A = {1, . . . , s} be an alphabet (s ≥ 2) and denote by A+ =

{x1 . . . xk| xi ∈ A, k ≥ 1} the set of all finite strings over A. Note
that A+ =

⋃
(Ak| k ≥ 1), where Ak = {x1 . . . xk| xi ∈ A}. Let ∗ be a

quasigroup operation on the set A and take a fixed element l ∈ A, called a
leader. Define a transformation E = El,∗ : A+ → A+ as follows.

E(x1 . . . xk) = y1 . . . yk ⇐⇒
{

y1 = l ∗ x1,
yi+1 = yi ∗ xi+1, i = 1, . . . , k − 1,

(2)
where xi, yi ∈ A. We say that the string x1 . . . xk is an input message, while
y1 . . . yk is the output message of E.

Using the transformation E, in Section 2 we prove that an input
message with uniformly distributed n-tuples of letters is transformed to
output message with uniformly distributed n + 1-tuples of letters. So,
starting with an input message where the distribution of the letters is uni-
form, after one application of an E-transformation an output message with
uniformly distributed pairs of letters will be obtained. Applying again
an E-transformation on the output, the new output will have uniformly
distributed triplets of letters. That way, after n applications of the E-
transformation, we can obtain a message with uniformly distributed n + 1-
tuples of letters. By using Markov chains it was shown in the paper [4]
that, after applying an E-transformation on arbitrary input message, an
output message with uniformly distributed letters is obtained.

Generalizations of the transformation E are given in Section 3. It
is shown that for the generalized transformations the following holds: if an
input message has uniformly distributed n-tuples of letters, then the output
message has uniformly distributed n+d-tuples of letters for 1 ≤ d ≤ n. We
made several experiments that support our results, and they are presented
in Section 4. Possible applications of our results are discussed in Section 5.
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2. UNIFORMITY OBTAINED BY E-TRANSFORMATION

Let the alphabet A be as above. A randomly chosen element of the
set Ak can be considered as a random vector (X1, X2, . . . , Xk), where A is
the range of Xi, i = 1, . . . , k. We consider these vectors as input messages.
The transformation E = El,∗ : A+ → A+ can be applied on random vectors
as

E(X1 . . . Xk) = Y1 . . . Yk ⇐⇒
{

Y1 = l ∗X1,
Yi+1 = Yi ∗Xi+1, (i = 1, . . . , k − 1)

(3)
Let (X1, X2, . . . , Xα) be an input message such that, for any fixed

1 ≤ n ≤ α and for each 0 ≤ t ≤ α − n, the vectors (Xt+1, Xt+2, . . . , Xt+n)
are uniformly distributed on the set {1, 2, . . . , s}n, i.e.

(Xt+1, Xt+2, . . . , Xt+n) ∼ U({1, 2, . . . , s}n);

in other words, let the n-tuples in the input messages be uniformly dis-
tributed. As a consequence, note that k-tuples of the input messages
will be also uniformly distributed for each k ≤ n, i.e. (Xt+1, Xt+2, . . .
. . . , Xt+k) ∼ U({1, 2, . . . , s}k), t = 0, 1, . . . . Hence, for k = 1 we have
that Xt+1 ∼ U({1, 2, . . . , s}), for each t ≥ 0, i.e., the letters are uniformly
distributed too.

Let (Y1, Y2, . . . , Yα) be a random vector obtained from the vector
(X1, X2, . . . , Xα) by an E-transformation of kind (3). According to the
definition of (3), Yt is independent of the random variables Xt+1, Xt+2, . . . ,
for each t ≥ 1.

Proposition 1 Yt ∼ U({1, 2, . . . , s}) for each t ≥ 1.

Proof For t = 1, X1 ∼ U({1, 2, . . . , s}) implies

P{Y1 = i} = P{l ∗X1 = i} = P{X1 = l \ i} =
1
s
, i = 1, 2, . . . , s.

This means that Y1 ∼ U({1, 2, . . . , s}). We proceed by induction,
and let suppose that Yr ∼ U({1, 2, . . . , s}). Using the equations (3), total
probability theorem and the independence of Yr and Xr+1 we compute the
distribution of Yr+1 as follows.
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P{Yr+1 = i} = P{Yr ∗Xr+1 = i} =
s∑

k=1

P{Yr ∗Xr+1 = i, Yr = k}

=
s∑

k=1

P{k ∗Xr+1 = i, Yr = k} =
s∑

k=1

P{Xr+1 = k \ i, Yr = k}

=
s∑

k=1

P{Xr+1 = k \ i}P{Yr = k} =
s∑

k=1

1
s
· 1
s

=
1
s
,

for i = 1, 2, . . . , s. ¤
The Proposition 1 can be generalized as follows.

Theorem 1 Let (X1, X2, . . . , Xα) be a given random vector such that
(Xt+1, Xt+2, . . . , Xt+n) ∼ U({1, 2, . . . , s}n) for each t ≥ 0 and for fixed n ≥
1. If (Y1, Y2, . . . , Yα) is a random vector obtained by E-transformation of the
vector (X1, X2, . . . , Xα), then (Yt+1, Yt+2, . . . , Yt+m) ∼ U({1, 2, . . . , s}m)
for each m ≤ n + 1 and each t ≥ 0.

Proof Let m ≤ n + 1 be a fixed positive integer. We will find the
distribution of the vector (Yt+1, Yt+2, . . . , Yt+m) for arbitrary t.

P{Yt+1 = yt+1, Yt+2 = yt+2, . . . , Yt+m = yt+m}
= P{Yt+1 = yt+1, Yt+1 ∗Xt+2 = yt+2, . . . , Yt+m−1 ∗Xt+m = yt+m}
= P{Yt+1 = yt+1, yt+1 ∗Xt+2 = yt+2, . . . , yt+m−1 ∗Xt+m = yt+m}
= P{Yt+1 = yt+1, Xt+2 = yt+1 \ yt+2, . . . , Xt+m = yt+m−1 \ yt+m}
= P{Yt+1 = yt+1}P{Xt+2 = yt+1 \ yt+2, . . . , Xt+m = yt+m−1 \ yt+m}.

The last equality is obtained by using that Yt+1 is independent of the
vector (Xt+2, . . . , Xt+m). Since m ≤ n + 1, the vector (Xt+2, . . . , Xt+m)
is uniformly distributed to the set {1, 2, . . . , s}m−1. Applying this to the
previous expression, we obtain that

P{Yt+1 = yt+1, Yt+2 = yt+2, . . . , Yt+m = yt+m} =
1
s
· 1
sm−1

=
1

sm
.

This means that for each m ≤ n+1, the vectors (Yt+1, Yt+2, . . . , Yt+m) have
uniform distribution on the set {1, 2, . . . , s}m. ¤

Remark 1 Note that for m > n+1 the distribution of the vector (Xt+2, . . .
. . . , Xt+m) is not known, so we cannot determine exactly the distribution of
the random vector (Yt+1, Yt+2, . . . , Yt+m) (which generally is not uniform).
We will discuss in Section 3 about the upper bounds of the distribution of
the random vector (Yt+1, Yt+2, . . . , Yt+m).
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Remark 2 Let consider the transformation E1 : A+ → A+ defined by

E1(X1 . . . Xk) = Y1 . . . Yk ⇐⇒
{

Y1 = X1 ∗ l,
Yi+1 = Xi+1 ∗ Yi, (i = 1, . . . , k − 1)

(4)
In the same way as Theorem 1 we can prove Theorem 1′, where the trans-
formation E is replaced by the transformation E1.

3. GENERALIZED E-TRANSFORMATIONS

The transformation E defined in (3) is not the only one that can
be used as quasigroup string transformation. Here we will consider some
other kind of transformations that generalize the transformation E. We will
show that they give uniform distribution of higher level than E. Namely,
we define a transformation Gd with following property: after applying Gd

on an input string with uniformly distributed n-tuples we obtain an output
string with uniform distribution of n + d -tuples, where d ≤ n.

Let A be as before and let define the transformation G = Gd :
A+ → A+ as follows. Take fixed leaders l1, l2, . . . , ld ∈ A, where d is a
positive integer. Then:

G(X1 . . . Xk) = Y1 . . . Yk ⇐⇒

⇐⇒





Y1 = l1 ∗ (l2 ∗ (· · · ∗ (ld−1 ∗ (ld ∗X1)) . . . ))
Y2 = l2 ∗ (l3 ∗ (· · · ∗ (ld ∗ (Y1 ∗X2)) . . . ))
. . .
Yd = ld ∗ (Y1 ∗ (· · · ∗ (Yd−2 ∗ (Yd−1 ∗Xd)) . . . ))
Yd+1 = Y1 ∗ (Y2 ∗ (· · · ∗ (Yd ∗Xd+1) . . . ))
. . .
Yk = Yk−d ∗ (Yk−d+1 ∗ (· · · ∗ (Yk−1 ∗Xk) . . . ))

(5)

Proposition 2 Let d ≤ n and (Xt+1, Xt+2, . . . , Xt+n) ∼ U({1, 2, . . . , s}n).
Then (Yt+1, Yt+2, . . . , Yt+d) ∼ U({1, 2, . . . , s}d), for arbitrary t ≥ 0.
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Proof The distribution of the vector (Yt+1, Yt+2, . . . , Yt+d) for t = 0 is
the following.

P{Y1 = y1, . . . , Yd = yd}
= P{l1 ∗ (· · · ∗ (ld ∗X1) . . . ) = y1, . . . , ld ∗ (Y1 ∗ (· · · ∗ (Yd−1 ∗Xd) . . . )) = yd}
= P{l1 ∗ (· · · ∗ (ld ∗X1) . . . ) = y1, . . . , ld ∗ (y1 ∗ (· · · ∗ (yd−1 ∗Xd) . . . )) = yd}
= P{X1 = x1, . . . , Xd = xd}
=

1
sd

,

where x1 is the solution of the quasigroup equation l1 ∗ (· · · ∗ (ld−1 ∗ (ld ∗
x)))) = y1, i.e. x1 = ld \ (ld−1 \ (· · · \ (l1 \ y1))), and so on, xd = yd−1 \
(yd−2 \ (· · · \ (y1 \ (ld \ yd)))).

We proceed by induction. Suppose that

(Yt+1, . . . , Yt+d) ∼ U({1, 2, . . . , s}d)

for each t ≤ r− 1. Now, the distribution of the vector (Yr+1, . . . , . . . , Yr+d)
is the following.

P{Yr+1 = yr+1, . . . , Yr+d = yr+d}

= P{Yr−d+1 ∗ (· · · ∗ (Yr ∗Xr+1) . . . ) = yr+1, . . .

. . . , Yr ∗ (· · · ∗ (Yr+d−1 ∗Xr+d) . . . ) = yr+d}

=
s∑

k1,...,kd=1

P{Yr−d+1 ∗ (· · · ∗ (Yr ∗Xr+1) . . . ) = yr+1, . . .

. . . , Yr ∗ (· · · ∗ (Yr+d−1 ∗Xr+d) . . . ) = yr+d, Yr−d+1 = k1, . . . , Yr = kd}

=
s∑

k1,...,kd=1

P{k1 ∗ (· · · ∗ (kd ∗Xr+1) . . . ) = yr+1, . . .

. . . , kd ∗ (yr+1 ∗ (· · · ∗ (yr+d−1 ∗Xr+d) . . . )) = yr+d, Yr−d+1 = k1, . . . , Yr = kd}

=
s∑

k1,...,kd=1

P{Xr+1 = xr+1, . . . , Xr+d = xr+d, Yr−d+1 = k1, . . . , Yr = kd},

where xj are the solutions of the corresponding quasigroup equations.
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Note that the vectors (Xr+1, . . . , Xr+d) and (Yr−d+1, . . . , Yr) are
independent; namely, by the definition (5) of the transformation G we
have that the random variable Yi depends only on the random variables
X1, . . . , Xi. Therefore, we have

P{Yr+1 = yr+1, . . . , Yr+d = yr+d}
=

s∑

k1,...,kd=1

P{Xr+1 = xr+1, . . . , Xr+d = xr+d}P{Yr−d+1 = k1, . . . , Yr = kd}

=
s∑

k1,...,kd=1

1
sd
· 1
sd

=
1
sd

which means that (Yt+1, Yt+2, . . . , Yt+d) ∼ U({1, 2, . . . , s}d). ¤

Theorem 2 Let (X1, X2, . . . , Xα) be a given random vector such that
(Xt+1, Xt+2, . . . , Xt+n) ∼ U({1, 2, . . . , s}n) for each t ≥ 0 and for fixed n ≥
1. If (Y1, Y2, . . . , Yα) is a random vector obtained by Gd-transformation of
the vector (X1, X2, . . . , Xα), then (Yt+1, Yt+2, . . . , Yt+m) ∼ U({1, 2, . . . , s}m)
for each m ≤ n + d and each t ≥ 0.

Proof The theorem is true for m ≤ d by Proposition 2. Let fix an
integer m, d < m ≤ n + d. We find the distribution of the vector
(Yt+1, Yt+2, . . . , Yt+m), for arbitrary t, as follows.

P{Yt+1 = yt+1, . . . , Yt+d = yt+d, Yt+d+1 = yt+d+1, . . . , Yt+m = yt+m}

= P{Yt+1 = yt+1, . . . , Yt+d = yt+d, Yt+1 ∗ (· · · ∗ (Yt+d ∗Xt+d+1) . . . ) = yt+d+1, . . .

. . . , Yt+m−d ∗ (· · · ∗ (Yt+m−1 ∗Xt+m) . . . ) = yt+m}

= P{Yt+1 = yt+1, . . . , Yt+d = yt+d, yt+1 ∗ (· · · ∗ (yt+d ∗Xt+d+1) . . . ) = yt+d+1, . . .

. . . , yt+m−d ∗ (· · · ∗ (yt+m−1 ∗Xt+m) . . . ) = yt+m}

= P{Yt+1 = yt+1, . . . , Yt+d = yt+d, Xt+d+1 = xt+d+1, . . . , Xt+m = xt+m}

where xi are the solutions of the corresponding quasigroup equations (i.e.
xt+d+1 = yt+d \ (yt+d−1 \ (· · · \ (yt+1 \ yt+d+1) . . . )), and so on.)

Since the vectors (Xt+d+1, . . . , Xt+m) and (Yt+1, . . . , Yt+d) are inde-
pendent, we have

P{Yt+1 = yt+1, . . . , Yt+m = yt+m}
= P{Yt+1 = yt+1, . . . , Yt+d = yt+d}P{Xt+d+1 = xt+d+1, . . . , Xt+m = xt+m}.
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Now, since m− d ≤ n, the vector (Xt+d+1, . . . , Xt+m) is uniformly
distributed on the set {1, 2, . . . , s}m−d. Then, by Proposition 2, we have

P{Yt+1 = yt+1, . . . , Yt+m = yt+m} =
1
sd
· 1
sm−d

=
1

sm
.

¤
The distributions of the vectors (Yt+1, . . . , Yt+m) must not be uni-

form in the case m > n + d. By the next theorem, it can be seen that the
distribution of the m-tuples is becoming closer to the uniform distribution
with increasing of d (d < m− n).

Theorem 3 Let (X1, X2, . . . , Xα) be a given random vector such that
(Xt+1, Xt+2, . . . , Xt+n) ∼ U({1, 2, . . . , s}n) for each t ≥ 0 and for fixed
n ≥ 1. If (Y1, Y2, . . . , Yα) is a random vector obtained by Gd-transformation
of the vector (X1, X2, . . . , Xα), then all probabilities in the distribution of

the vectors (Yt+1, Yt+2, . . . . . . , Yt+m) are upper bounded by
1

sn+d
for each

m > n + d and each t ≥ 0.

Proof We have

P{Yt+1 = yt+1, . . . , Yn+d = yn+d, Yn+d+1 = yn+d+1, . . . , Yt+m = yt+m}
= P{Yt+1 = yt+1, . . . , Yn+d = yn+d}×
×P{Yn+d+1 = yn+d+1, . . . , Yt+m = yt+m| Yt+1 = yt+1, . . . , Yn+d = yn+d}

By Theorem 2, for m = n+d, we have P{Yt+1 = yt+1, . . . , Yn+d = yn+d} =
1/sn+d. On the other hand, P{Yn+d+1 = yn+d+1, . . . , Yt+m = yt+m| Yt+1 =
yt+1, . . . , Yn+d = yn+d} ≤ 1. ¤

The transformation Gd is not the unique possible generalization of
the E-transformation. We can change the way of application of the quasi-
group operation ∗ and we can obtain several other kind of transformations.
As an example, for d = 3 we can use the following applications of the
operation ∗ (altogether, there are 120 different forms):

Y4 = Y1 ∗ (Y2 ∗ (Y3 ∗X4)) - this was used for definition of G3 as in (5);
Y4 = Y1 ∗ (Y3 ∗ (Y2 ∗X4)); Y4 = Y2 ∗ (Y1 ∗ (Y3 ∗X4));
Y4 = Y2 ∗ (Y3 ∗ (Y1 ∗X4)); Y4 = Y3 ∗ (Y1 ∗ (Y2 ∗X4));
Y4 = Y1 ∗ (Y2 ∗ (X4 ∗ Y3)); Y4 = Y1 ∗ (Y3 ∗ (X4 ∗ Y2)); and so on.
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For arbitrary d, we can choose any bracketing and we can place the
variables Y1, . . . , Yd and Xd+1 in arbitrary order. By using the obtained
form we can define a transformation T : A+ → A+ in the same way as
(5). Then we can state and proof theorems like Theorem 2 and Theorem 3;
namely, as one can notice, the proof of Theorem 2 depends strongly on the
possibilities a quasigroup equation with one unknown to be solved.

4. EXPERIMENTAL RESULTS

We made many experiments in order to check our theoretical re-
sults. Here we give an example. We have randomly chosen a string with
1,000,000 letters of the alphabet A = {1, 2, 3, 4} with only letters uniformly
distributed. A Gd transformation was defined by using the quasigroup (6).

∗ 1 2 3 4
1 2 1 3 4
2 3 4 2 1
3 1 3 4 2
4 4 2 1 3

(6)

We took leaders l0 = 1, l1 = 1,. . . , ld = 1.

2 4 6 8 10 12 14

0.05

0.06

0.07

0.08

input d=1

Figure 1. The distribution of the pairs in the input message and the output
message for d = 1
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10 20 30 40 50 60

0.01

0.015

0.02

0.025

0.03

input d=1 d=2

Figure 2. The distribution of the triplets in input message and output messages
for d = 1 and d = 2

50 100 150 200 250

0.003

0.004

0.005

0.006

0.007

d=1 d=2 d=3

Figure 3. The distribution of the 4-tuples in output messages strings for d = 1,
d = 2 and d = 3
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The distributions of pairs in the input message and output message
for d = 1 are presented on the Figure 1. The distributions of triplets
in input message and output messages for d = 1, 2 are presented on the
Figure 2 and the distributions of 4-tuples for d = 1, 2, 3 are presented on
the Figure 3.

We can see on Figure 1 that, for d = 1, the pairs are uniformly
distributed. Also, we can see on Figure 2 that the distribution of the
triplets for d = 1 is closer to the uniform distribution than the distribution
of triplets in the input message (which is in correlation with Theorem 3).
The same is true for the 4-tuples (Figure 3).

5. CONCLUSION

We show in this paper that quasigroup transformations can be ap-
plied for improving the uniformly distributed strings, in the sense that from
strings with uniformly distributed n-tuples it can be obtained strings with
uniformly distributed n + d-tuples (d ≥ 1). The results can be applied in
cryptography and coding theory for:

- improving the existing and defining new kinds of pseudo random
number (and sequence) generators [11];

- defining primitives for hash functions [8], [9];
- defining primitives for stream cipher [7];
- design of random codes [10];

and many others.
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R e z i m e

KVAZIGRUPNI TRANSFORMACII NA NIZI: DEL 4

Za dadena azbuka A i kvazigrupna transformacija ∗ na mno�-
estvoto A, vo nax prethoden trud, e definirana kvazigrupna transfor-
macija E : A+ → A+, kade A+ e mno�estvoto od site neprazni koneqni
nizi nad A. Vo ovoj trud, se dadeni nekolku generalizacii na E i
se razgleduvaat uslovite pri koi transformiranite nizi imaat ram-
nomerna raspredelba na n-torki od bukvi od A. Dobienite rezultati
mo�e da se primenat vo kriptografija, teorija na kodiraǌe, defini-
raǌe i podobruvaǌe na generatori na psevdo-sluqajni broevi itn.

Kluqni zborovi: kvazigrupa, kvazigrupna transformacija na
nizi, ramnomerna raspredelba
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