
The 6th International Conference for Informatics and Information Technology (CIIT 2008) 

©2008 Institute of Informatics. 

THE VISION OF SEMANTICALLY  

ENABLED SERVICE ARCHITECTURES 

Ljupcho Antovski 
University Ss. Cyril and Methodius, PMF, Institute of Informatics 

Skopje, Macedonia 

ABSTRACT

The Semantic differences are the main obstacle for automated 
web service based applications integration. Until there is no 
direct way for applications to understand each other, the 
effect of web services technology will be quite limited. This 
paper is an overview of the current state of the art mainly in 
the research of the European community in the field of the 
semantically enabled service architectures. It presents the 
possibilities, prospects but also the constraints. 

KEY WORDS

Web service, SOA, SESA, service automation, integration 

I. INTRODUCTION

Over the past few years, we face a growing interest in the 
potential of web services and the use of more automated and 
interpretable content on the WWW, involving the 
development of ontologies. At the same time, very little has 
been done to combine the full power of both of these 
approaches. The idea is to design information systems which 
adopt paradigms of Service Oriented Architectures (SOA). 
Although the idea of SOA is to provide more adaptive 
systems friendly to change in business requirements, existing 
SOA solutions are difficult to scale without a proper degree of 
automation. While today�s service technologies around 
WSDL, SOAP, UDDI and BPEL certainly brought a new 
potential to SOA, they only provide partial solution to 
interoperability, mainly by means of unified technological 
environments. 

II. SOA OVERVIEW

The Service-oriented architecture [1] is believed to become 
the future e-government technology solution that promises the 
agility and flexibility the business users have been looking for 
by leveraging the integration process through composition of 
the services spanning multiple agencies [8]. SOA is an 
approach to loosely coupled, protocol independent, standards-
based distributed computing where software resources 
available on the network are considered as Services.  

The services in SOA have minimum amount of 
interdependencies.  The communication infrastructure used 
within an SOA should be designed to be independent of the 
underlying protocol layer. It should offer coarse-grained 
business services, as opposed to fine-grained software-
oriented function calls. It implements service granularity to 
provide effective composition, encapsulation and 
management of services. The key concepts SOA is based on 
are: Loose Coupling, Coarse Granularity and Asynchrony. 
Loosely coupled, coarse grained, asynchronous SOAs provide 
a layer of abstraction that hides the complexity of the 
underlying technical implementation details from the user 
who takes advantages of the Services the SOA exposes. 

� Coarse Granularity � The traditional approach to getting 
information in and out of an application is via an application 
programming interface, or API. APIs are typically fine 
grained, which means that each method call is a detail-
oriented, technical construct for use by programmers. For two 
systems to communicate a complex business task via an API, 
they typically must exchange many of these fine-grained 
messages. Web Services are at their most powerful when they 
are used to exchange coarse grained information between 
systems. Coarse granularity clearly depends on loose 
coupling, because the Web Service consumer does not care 
how the Web Service puts together the information it needs 
[7]. 

� Loose Coupling - traditional distributed computing 
architectures is that they are tightly coupled, Making changes 
to one tightly coupled system often affects the whole 
architecture, requiring expensive and difficult reworking. 
SOA based on Web Services is loosely coupled. Each Web 
Service describes how other systems, known as Web Service 
consumers, can connect to it and exchange information with 
it. A developer can make changes to a Web Service without 
breaking the Service-oriented architecture. 

� Asynchrony - synchronous communications consist of 
round-trip messages in which the sender waits for a reply. 
With an asynchronous message, the sender can submit a 
request, and then go about its work. If a reply does come, then 
the original sender can pick it up when it wants. Email works 
asynchronously, for example. Web Services based SOAs 

29



The 6th International Conference for Informatics and Information Technology (CIIT 2008) 

enable sending and receiving both synchronous and 
asynchronous messages. 

In order to visualize SOA, one can use the SOA generic 
model, represented on Figure 1 [6]. 

Figure 1: SOA Generic Model 

The basic of the SOA Meta-model is the Service Model. The 
Service Model represents the Services an agency has in 
production. The Business Model represents the users and their 
requirements. The Implementation Models represent the 
technology underlying the Services. The Service Model 
becomes the point of contact between the business and 
technology. The most important feature of the SOA Meta-
model is in fact this description between the business and 
technology domains, coupled with the explicit modelling of 
the two-way interaction between. This balance enables the 
business to drive the technology in an environment of 
transformation [10] [11]. 

The process of service-oriented modelling and architecture 
consists of three general steps: identification, specification 
and realization of services, components and flows [9]. The 
process of identification consists of a combination of top-
down, bottom-up, and middle-out techniques of domain 
decomposition, existing asset analysis, and goal-service 
modelling. In the top-down view, a blueprint of business use 
cases provides the specification for business services. 

It is important to start service classification into a service 
hierarchy, reflecting the composite nature of services. 
Classification helps determine composition and layering. 
Also, it helps minimize the service proliferation syndrome in 
which an increasing number of small-grained services get 
deployed with very little governance, resulting in major 
issues. The service realization recognizes that the software 
that realizes a given service must be selected or custom built. 
Other options that are available include integration, 
transformation, subscription and outsourcing of parts of the 
functionality using Web services.  

III. SEMANTIC ISSUES WITH SOA

The essential challenges of computing that are not addressed 
by SOA are search and integration. Besides that SOA provide 
a basis for addressing these challenges, SOA significantly and 
fundamentally depends on solutions to fill the semantic gap to 
achieve its potential. SOA provides the potential of a global 
registry in which to search for services anywhere in the 
network. This is referred to as service discovery.  

SOA provides the potential of invoking remote services to 
achieve the combined results of those services. This requires 
that the services interoperate or integrate with respect to their 
respective data, protocol, and process syntax and semantics. 
These actions are called service composition and integration.  
Service automation does not address the challenges of 
automating discovery, composition, or integration. 

In the SOA world service requirements include functional and 
non-functional requirements. Functional requirements of a 
service require that a match be made based on a meaningful 
match of the required service functions with the capabilities 
of the functions that will provide the offering service. The 
semantics of the functions provided by the service must 
match those defined in the requirement. It is the same 
situation with the non-functional requirements. For service 
discovery and matching to be achieved dynamically syntactic 
and semantic aspects of service requirements must be 
considered. 

The service discovery is a process of matching the user needs 
for service with the capabilities of the service-candidates and 
discovery of unique service or complex of unique services. In 
SOA the service requests contain functional and non-
functional descriptions. More specifically the semantic 
requests must match with the semantic possibilities of the 
server. The same counts for the non-functional descriptions. 
In order to have dynamic or so called automatic discovery and 
selection of services, one must consider the syntactic but 
more the semantic characteristics of the service.  We argue 
that SOA will not work in near future when billions of 
services emerge if t automatic way of service discovery will 
not exist. The selection of services is a more complex task, 
bearing in mind the orchestration, and in some cases 
composition of complex services.  

Without optimization, the computational cost of the algorithm 
for service discovery is linearly dependant O(n) to the number 
n of available services. The number of service in SOA can be 
very large. If the search space is not organized, the efficiency 
of finding service can be extremely low. All the published 
algorithms for semantic discovery are dealing with 
automation of the process and definitions of the goal oriented 
architecture. Very few algorithms deal with the optimization 
and improvement of efficiency in an environment with large 
number of services.  

The service discovery and composition is the factor indented 
as bottleneck point from the aspect of performance in SESA. 
When we talk about web services, one must bear in mind that 
today there are 91.323.472 domains on the Net [4]. From the 
perspective of performance, there is an identified need for 
optimized algorithm for service directory search. 
The use of semantic organization, like graphs [2] is an 
efficient approach in reducing the search space. In this 
dissertation we propose a new model to improve the 
efficiency with shorter search time and use of fewer 
resources.  

Business Model

Service Model

(Platform

Independent)

Platform Dependant

Implementation

Models

Business Process

Defintion
Requirements

Implementation

30



The 6th International Conference for Informatics and Information Technology (CIIT 2008) 

IV. CURRENT WSMO SOLUTIONS

The Web Service Modelling Ontology (WSMO) consists of 
several components presented in the following text.  WSMO 
[12] provides a conceptual model for adding semantics to 
SOA. Its main elements are goal definitions of user, service 
definitions of providers, and  Ontologies and mediators as 
declarative and procedural means to facilitate Interoperability 
at the level of data, protocols, and processes. 

The Web Service Modelling Language (WSML) [3] is a set of 
languages providing formal semantics for WSMO models. Its 
four major dialects form a lattice based on rule languages and 
descriptions logics as well as on their minimal and maximal 
intersection. 

The Web Service Execution Environment (WSMX) [5] is an 
example implementation of an SESA that is compliant with 
the semantic specifications of WSMO. It supports 
semantically enabled shifting functions such as dynamic 
discovery, selection, and complex creation. WSMX also 
implements semantically enabled control and connection 
functions such as service invocation and interoperation. 
WSMX is an execution environment for the dynamic 
discovery, selection, mediation, invocation and Interoperation 
of the Semantic Web Services in a reference implementation 
for WSMO. The development process for WSMX includes 
defining its conceptual model, defining the execution 
semantics for the environment, describing architecture and 
software design and building real life implementation. 

WSMO provides three main categories of semantic 
descriptions. First, it provides means to describe Web 
services, and then it provides means to describe user goals 
referring to the problem solving aspect of our architecture. 
Last it provides means to ensure interoperability between the 
various semantic descriptions of heterogeneous environments 
with ontologies and mediators. Goals provide means to 
characterize user requests in terms of functional and non-
functional requirements. Web service descriptions build up on 
this by an interface definition that defines access of, as well as 
means to complex services composed from several services. 
More concretely, a Web service has a capability that is a 
functional description of a Web service, than interfaces that 
specify how the service behaves in order to achieve its 
functionality. A service interface consists of a choreography 
that describes the interface for the client service interaction 
required for service consumption, and an orchestration that 
describes how the functionality of a Web service is achieved. 
Ontologies provide an important means to achieve 
interoperability between goals and services. Mediators 
provide additional procedural elements to specify further 
mappings that cannot directly be captured using ontologies. 

V. POSSIBILITIES AS CONCLUSION

Figure 2: Estimates for 2010, source: TopQuadrant 

This paper presented some possible ways of implementing 
SESA. The success will come in numbers of profit when the 
business is at stake. Figure 2 shows the potential of the 
market of SESA. According to the source, TopQuadrant, this 
market is estimated to be worth $52,4 billion in 2010. It 
shows the full potential of this technology. 

REFERENCES

[1] Antovski, Lj. And Gusev, M., M-GOV �The Evolution 
Method, Proceedings of the Second European Conference on 
Mobile Government , University Sussex, Brighton UK, 
September 2006 
[2] Antovski, Lj. Gusev M., Improving service matching in 
M-government with soft technologies, SWEB Workshop, 
18th IEEE PIMRC 2007, Athens , Greece, 07 September, 
2007 
[3] Bruijn, J, et Al,  Owl DL vs. OWL FLight: Conceptual 
modelling and reasoning for the semantic web, Proceedings 
of the 14th International World Wide Web Conference, 2005 
[4] DomainTools (2007), Internet Domains Statistics, 
http://www.domaintools.com/internet-statistics/, accessed: 
01.06.2007 
[5] Haller, A., E. Cimpian, A. Mocan, E. Oren, and C. 
Bussler, WSMX A Semantic Service Oriented Architecture. 
Proceedings of the International Conference on Web Service 
(ICWS 2005), 2005 
[6] Jason Bloomberg, The SOA Implementation Framework, 
http://www.zapthink.com, April 2004 
[7] Jeff Hanson, Coarse-grained Interfaces Enable Service 
Composition in SOA, JavaOne, August 2003 
[8] Kishore Channabasavaiah and Kerrie Holly, IBM White 
Paper, Migrating to a Service-Oriented Architecture, April 
2004  
[9] KIT(2005), National Strategy for Information Society 
Development, http://www.kit.gov.mk , April 2005 
[10] Kushchu, I. and Kuscu, H (2003), �From E-Government 
to M-Government: Facing the Inevitable�, in the proceedings 
of European Conference on E-Government (ECEG 2003), 
Trinity College, Dublin 
[11] Meta Group White Paper, Practical Approaches to 
Service-Oriented Architecture, November 2003 
[12] Roman, D. et Al , Web Service Modelling Ontology, 
Applied Ontology, pp. 77-106, 2005 

31


