
The 10th Conference for Informatics and Information Technology (CIIT 2013)

©2013 Faculty of Computer Science and Engineering

WEB SYSTEM FOR INTERLOCUTOR'S AVAILABILITY

Ljupcho Antovski Elena Janevska

Faculty of Computer science and Engineering Faculty of Computer science and

Engineering

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

It is inevitably noticeable that mobile technologies are

increasingly occupying a central place in today's world.

Currently, they form the fastest growing technologies and it

can easily be concluded that a generation of smart mobile

devices has started. Today, there are four billion active users

of mobile phones and one billion users are familiar and are

using smartphones. Also, for two to three years, we are

expecting accession to the Internet from mobile devices to

surpass joining the Internet via desktop devices [1]. This

situation requires more work and research in this area, so that

we can create new and useful mobile applications that

hopefully in the future might become necessary in everyday

situations.

However, developing mobile applications is not only

creating the software that runs on any portable device with

low power and with limited operating system’s and

platform’s features. Creating a mobile application means to

design and create entire systems with components of different

nature that will exist individually and independently but will

provide all the data and functions that a mobile application

needs. Briefly, mobile phones cannot, and should not carry

large processing or large data. Their duty is only in such

communication with external systems.

This paper will present a system of multiple components,

with special focus on a mobile application that will enable

new, so far unknown function for all users of the Android

operating system. Namely, it is a system which provides fast

information about the availability of interlocutors. It is

presented in an intuitive way on the device display, and the

same information is taken from the user’s calendars. All

details will be presented in the following chapters.

I. INTRODUCTION

A. Today’s mobile applications

All unique benefits that are brought by the area of mobile

technologies, is a big boost for innovative and challenging

achievements through daily creation of new applications for

mobile devices. When we say unique benefits, we think of

constant connection to all users wherever they are, using the

opportunity to access their current location, having the list of

the people in their lives through the address book, having the

messages, emails etc. Using this data, if the user approves, we

can create a lot more useful and not standard applications.

On the other hand, the daily creation of new applications

is not a creation of this type. The "Android Market" consists

of large -scale applications that it offers to its users. Indeed,

the figure is impressive, but from our experience, most of the

applications are without any particular useful functionality

and applications that will fail the users' expectations.

Coming up with unique and useful idea is the hardest

part, and this issue may therefore result in this market’s

products.

What the world wants and expects, is an invention and

application that would be very useful for all regular users of

mobile phones.

B. Integration of web system and mobile applications

Besides the need for larger processing by mobile devices,

storing larger data is an issue too. So, storing and sharing data

is of particular interest in this field also.

Android OS provides more methods to save the mobile

applications data. You can store primitive data type key -

value, private data on phone memory or external memory for

further sharing, storing data in a relational database - SQLite

and most important section where we want to proceed: storing

data on the web through constant device connection to the

internet.

Logically, in these systems, it is necessary to have a

database that is installed on some server. Best practice when

communicating mobile application and database is creating

API, or web service that acts as an intermediary module

between them (Figure 1).

Database

Web Servise

Mobile

Application

Figure 1: Integrated system infrastructure

Next step while building this system is selecting the

appropriate platforms for each component. There are certainly

many arguments to be for or against the choice of the most

appropriate platforms. The presented system consists of

Android application, MS SQL database and .Net web

services.

II. DEFINING THE SYSTEM

The system for intraocular availability consists of a database

with all register users, which are all users that installed the

application on their mobile phones. When one user calls a

person, there will be one of these scenarios:

274

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

1. The called user has the application installed

a. The application is running in background

i. The user is busy

ii. The user is free

2. The called user does not have the application

installed.

This data is presented to the caller in order to get more

information about the callee’s availability.

Today one the most commonly used systems for

managing private time is Google Calendar. The simple

interface and easy calendar synchronization on multiple

devices simultaneously allows most people opt for using it. In

our system, Google Calendar events will serve us as

information about the current availability of the users.

Communication with user’s calendars may not be the key

problem and the main functionality. Important parts of the

work of the mobile application are the two interlocutor’s

screens. Special importance is given to the caller, because he

needs to get information about when the called user will be

free. By this, more questions set in devising the system and its

operation: how smartphones will interact with each other,

how one would know when to take the information from your

calendar and send it to another phone etc. In the next chapters

we will provide detailed explanation for the system specific

issues and functionalities.

III. INTEGRATION OF GOOGLE CALENDAR

Android devices usually come with a set of pre-installed

applications like an e-mail client, client management for

SMS, calendar and contacts list, WebKit- based web browser,

gallery and more. Because it’s Android, often there are

existing Google applications on the phone: Google Maps as

Maps app, Gmail as e-mail client, Google Talk like IM client

and in our case Google Calendar as the official calendar for

the use of the devices.

These applications, as well as the calendar, are doing

their own functions and store data directly on the device.

Calendar synchronization is also provided as a function of the

application. What’s in our interest is to find the appropriate

API and to communicate with the calendar by our application.

Google provides a common API for working with data from

calendar online in the form of web services which of course

can be accessed through our application of the standard way

as accessing any web service [3]. But here is the key question

raised: why should we care about the connection, response

time, battery life, authentication, etc., when we already have

the data on our phone.

Working with Google Calendar web services was the

practice for most application developers working with Google

Calendar. However, the standing version: Ice Cream

Sandwich 4.0, in October 2011, came with a new public API

for working with data from calendar [4]. While this was

indeed a great help for building powerful applications, we

were encountering a problem that occurs with any new

technology or skill to be mastered : the documentation was

not yet carved, rare were the answers to the problems on the

forums, there were few examples that to find and use this

API.

In order to access the user's calendar, you must add

permission under the manifest of our application. Because at

this point we want only to perform reading, we need a

permission of this type:

For our application is sufficient to ensure that you can

access to any listed event, its name, the time it begins and the

time it ends. Later you can easily manipulate the data, or

select only the current event, if any. For this purpose we will

show code that reads directly from the database and is pulling

calendar event name, start and end of the event. This code can

then be part of any activity as a core component of Android

(Activity) or as a part of any other component in the

application.

<uses-permission

android:name="android.permission.READ_CALENDAR"/>

// Creating the database cursor

Cursor mCursor = null;

final String[] COLS = new

String[]{CalendarContract.Events.DTSTART,

CalendarContract.Events.DTEND,

CalendarContract.Events.TITLE};

mCursor =

getContentResolver().query(CalendarContract.Events.CO

NTENT_URI, COLS, null, null, null);

mCursor.moveToFirst();

// Defining stra, finish and name variables for an event

long start = 0;

long finish = 0;

String name = "";

while(!mCursor.isAfterLast())

{

start = Long.parseLong(mCursor.getString(0));

 finish = Long.parseLong(mCursor.getString(1));

 name = mCursor.getString(1);

 mCursor.moveToNext();

}

275

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

IV. CHANGING USER STATUSES

Once we read the current event for a user, the next thing

is to timely proceed that information to the database server .

One way to do it immediately is to get the event of the user

who is calling on a short specific time intervals, to call the

function of the web service and to change the field for current

event. This functionality should be running constantly in the

background of the phone. If any other activity on the user’s

mobile device, it should not be obstructed. The solution to

this concept is provided by one of the basic components when

developing Android applications, and it is an Android service

[7] .

Android services are intended to ensure that operations

are performed in the background for a long time without any

interaction with the user. Services have no user interface and

they can start and stop the application as required by other

components. Services receive much higher priority then the

activities and they are unlikely to be killed by the system. To

create the service you need to make a new class that will

inherit from the class Service. If necessary, it could be

amended or supplemented with the functions: onCreate(),

onStart() and onDestroy () [8] .

For our solution, when we start the service, we need to

know the user’s identification and call the function onCreate()

in order to write a code that will read data from the calendar

and send it to the web service. It is acceptable for this action

to be repeated every ten minutes. This means that every ten

minutes we’ll be reading the calendar and sending the latest

data. Such counting is performed using a timer and Java

classes. The following code shows the concept of this work:

V. INCOMING AND OUTGOING CALLS

Perhaps the most important part is the moment when

establishing a call with our interlocutor. Here, we will first

explain the calls that we create, the case when a user

establishes a call. At this point it is necessary to write to the

call screen following information: "The user you are looking

for is at “the name of the meeting”. In case you do not get an

answer, try calling at: “look at the time when the meeting

ends”".

In order for our application to always responds when

calling a callee, we must implement the so-called Broadcast

Receiver as a third component. Its purpose will be only

listening for outgoing calls [9]. Now we will give a small

description of two key components for this issue: Intent and

Broadcast Receiver. Intent is used as a mechanism for

sending messages between components in the application

itself, and also between other different applications. They can

launch a new service or a new activity under the name of the

class or the name of the activity [10] .

In our application we will use intent for each of these

needs, but the part that needs to be clarified here is that you

can use intent to send messages around the system.

Applications may have registered Broadcast Receivers that

have the task of receiving already sent Broadcast Intents[11].

When a phone number is called, this intent will reference our

application ad will show us the number.

This component that is waiting for an intent is

implemented in the framework of the Android service. Why?

Because the service is activated when the user runs

application usage and before that will so not need call

listening. Code for this part looks like this:

@Override

public void onCreate() {

 super.onCreate();

 Timer timer = new Timer();

 timer.scheduleAtFixedRate(new TimerTask() {

 public void run()

 {

 // some code for reading the calendar

 // some code for calling the web service

 }, 1000, 600000);

 }

BroadcastReceiver br = new BroadcastReceiver(){

@Override

public void onReceive

(final Context context, final Intent intent)

{

if(intent.getAction().equals("android.intent.action.NEW

_OUTGOING_CALL")) {

 Timer timer = new Timer();

 timer.schedule(new TimerTask() {

 public void run() {

 final String tel;

 tel =

intent.getExtras().getString("android.intent.extra.PHON

E_NUMBER");

Intent i = new Intent(context,

OutgoingCallActivity.class);

i.putExtra("tel",tel);

i.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

i.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

 context.startActivity(i);}}, 5000);}} };

this.registerReceiver(br,new

IntentFilter("android.intent.action.NEW_OUTGOING_CA

LL"));

276

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

When it comes to calls receiving, the problem is solved

another way. Again we use Broadcast Receiver, but working

with the component Telephony Manager also. With its help

we have access to the phone’s API and we can get a variety of

information such as: phone features, network, SIM details etc.

We will work with the phone states [12] [13]. In our interest

are three situations:

• Ringing - a condition in which is the mobile phone only

while rings;

• Off Hook - state when the conversation is done no

matter if someone called us or we have called him. It is

important that the conversation is on-going. When we wait

for a response, the call’s found in this condition too.

• Idle - condition when the phone is not active in terms of

calls. After this condition, Ringing and Off Hook may occur.

To get the time when receiving a call, we should find

ourselves in the "Ringing" situation. It detecting was easy, but

there was a problem at the moment when a call ends and

getting the duration of this activity. In fact, with its

completion we need to stop the information we display. So,

after "Ringing" the phones state goes into "Off Hook" and we

should remove our information off the screen. But the state

"Off Hook" can be activated in another way as mentioned

above and we may request termination of information that we

never offered (because the condition was not caused by the

ending of "Ringing"). Therefore, as a solution we set static

variable that will always keep a record of whether the phone

was ringing before.

VI. DISPLAYING SCREEN MESSAGES

We have already concluded that the by monitoring

changes in conditions and identifying the condition of

interest, we show a new activity that carries information to

the call screen. Each activity represents a single screen

application that is presentend to the user. The larger

applications you create , the more activities you will have.

Typically, this application must include at least one primary

user interface for the current screen that is defined in the

appropriate xml file. The logic is built into the framework of

the activities which interact easily with components of the

xml file (user interface files). To create a new activity in the

application, create a new class that inherits from the

predefined class system - Activity class [14].

All these activities are managed as a stack of activities .

When a new activity is started by running, system adds it on

top of the stack and it becomes the main activity. Activities

can have several conditions, including:

• The activity is in the foreground of the screen and

running;

• The activity has lost focus but is still visible, which

means that an invisible activity is above it on the screen . This

means that the activity is paused. This condition will be

particularly important when building screen calls;

• The activity is stopped. Another activity is started, but

the old activity still exists in the background with saved state

information. It is no longer visible to the user and will soon

be killed by the system if needed for memory.

What we should do is calling our activity in the foreground

during a call. As part of this activity we call a web service and

receive results which we show on the simplest TextView

which is part of the UI activity. Proper xml file for this

activity is as follows:

VII. FREE CALLEE FUNCTIONALITIES

The end product is an Android mobile application Free Callee

whose functionalities are presented within this section. The

app is in English and after installation on the device, it is

requiring the user to register the mobile device and to provide

a regular internet access.

Figure 2 - Free Callee welcome screen

<TextView

xmlns:android="http://schemas.android.com/apk/res/andr

oid"

android:id="@+id/text"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:gravity="center_vertical|center_horizontal"

android:windowBackground="@android:color/transparent

"

android:windowIsTranslucent="true"

android:windowAnimationStyle="@android:style/Animatio

n.Translucent"android:textColor="@android:color/white">

</TextView>

277

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

Once the user is successfully authenticated, its name

appears on the home screen application that has none

particular function except to give information to the user that

the operation of the application is activated (Figure 3). It

means that at that point calling services keep working in the

background. The next thing the user needs to do is to click the

button to continue the operation of the application. Then the

application will lead you to the home screen and he can

resume normal use of his mobile device. The second button

on the screen fills possibility to exclude the operation of this

application.

Figure 3 - Free Callee activation screen

The information that should presented when calling

somebody, references a number of activities depending on the

user who owns the number you are calling. The user may be a

registered user of the mobile application, but also does not

have to. In the first case, if the user uses the application, and

he is regularly changing field where we keep his involvement

in our system, the display of the caller will write standard

availability information as it is shown in Figure 4.

 If the user is free, which means that it is read from the

calendar that this time there is no event, we will write the

information that the user who is called is free at the moment

The other two cases can occur are: the person has never used

the application and is not a registered user or he just not

currently use the application.

In a case of an incoming call, again we have four

different scenarios. The main difference is that, if the user

who is calling you is busy, you get to see only where he is,

but not the time he will be free.

Figure 4 - Free Callee busy user screen

VIII. APPLICATION BENEFITS

The idea for such a system came from thinking about the

possible benefits of mobile options which were not yet

enabled and used. In our case the main benefit is fast and

timely information about availability of the callee when

necessary, i.e. when establishing the call. Other benefits are:

• Another reason for regular planning their time with

the help of Google Calendar;

• Obtain information on current events for the needed

user;

• Obtaining information about the time when the user

will be available again.

• A kind of modern answering machine that always

gives precise information about why the called

number may not respond;

• Possibility to learn and user location via the event

name that currently attends;

• Running of the application in the background while

the user uses the phone for any of its needs without

special settings and input data into the application;

278

The 10th Conference for Informatics and Information Technology (CIIT 2013)

The 10th Conference for Informatics and Information Technology (CIIT 2013)

• Especially useful application within employees in a

company, but also in everyday life as a way to get

information on availability of friends.

IX. CONCLUSION

Finding a solution to this prospect was a big challenge.

Finishing the whole system brings new efficiency and

something new that could be offered to the market and will

open a new horizon for future work. Using the mobile

application without problem can be limited to a small circle

of people that is important to share their availability, but you

can take it globally and to create a network of users who’s

information will be a daily service.

For future work we are considerin other relevant information

that could be taken by another application or calculated by

some user data. The new information could pose addition to

the work already created of be a reason reason to create a

whole new system and Android application.

REFERENCES

[1] Digitalbuzzblog. „ Infographic: Mobile Statistics, Stats &

Facts 2011“ http://www.digitalbuzzblog.com

[2] API Google Calendar: https://developers.google.com

[3] Tim Bray. „New Public APIs in ICS“

[4] Reto Meier. „Databases and contetnt providers - Using

the calendar content provider “ Professional Android

Application Development, Updated for Android 4.

Indianapolis: John Wiley & Sons, Inc, 2012, 325-330

[5] Android developers. „Calendar Provider“, API Guides.

[6] Reto Meier. „Working in the Background “ in

Professional Android 4 Application Development,

Updated for Android 4. Indianapolis: John Wiley &

Sons, Inc, 2012, 331-345

[7] Android developers. „Android Services“, API Guides.:

http://developer.android.com, 12.07.2012.

[8] Satua Komatineti и Dave MacLean. „Broadcast recievers

and long-running services“ in Pro Android 4, Android 4

platform SDK techniques for developinf smartphone and

tablet app . New York: Apress, 2012, 599-641

[9] Satua Komatineti и Dave MacLean. „Understanding

Intents“ in Pro Android 4, Android 4 platform SDK

techniques for developinf smartphone and tablet app .

New York: Apress, 2012, 113-135

[10] Satua Komatineti и Dave MacLean. „Broadcast recievers

and long-running services“ in Pro Android 4, Android 4

platform SDK techniques for developinf smartphone and

tablet app . New York: Apress, 2012, 599-641

[11] Reto Meier. „ Accessing Telephony Properties and Phone

State “ in Professional Android 4 Application

Development, Updated for Android 4. Indianapolis: John

Wiley & Sons, Inc, 2012, 705-707

[12] Satua Komatineti и Dave MacLean. „Using the

telephony APIs“ in Pro Android 4, Android 4 platform

SDK techniques for developinf smartphone and tablet

app . New York: Apress, 2012, 599-641

[13] Android developers. „Activities“

http://developer.android.com, 12.07.2012.

[14] Grasshopper.iics. „Calling ASP.NET Webservice from an

Android application, the simplest way“.

http://www.codeproject.com/, 22.12.2011.

[15] Chuck Hudson. „Incorporating Web Serves in Mobile

Applications”: http://www.slideshare.net, 03.04.2009.

279

The 10th Conference for Informatics and Information Technology (CIIT 2013)

