
SBIM(Q) - a Multivariate Polynomial Trapdoor
Function over the Field of Rational Numbers

Smile Markovski1, Aleksandra Mileva2, and Vesna Dimitrova1

1Faculty of Computer Science and Engineering,
University “Ss Cyril and Methodius”, Skopje, Republic of Macedonia

{smile.markovski,vesna.dimitrova}@finki.edu.mk,
2Faculty of Computer Science,

University “Goce Delčev”, Štip, Republic of Macedonia
aleksandra.mileva@ugd.edu.mk

Abstract. In this paper we define a trapdoor function called SBIM(Q)
by using multivariate polynomials over the field of rational numbers Q.
The public key consists of 2n multivariate polynomials with 3n variables
y1, . . . , yn, z1, . . . , z2n. The yi variables take care for the information
content, while the zi variables are for redundant information. Thus, for
encryption of a plaintext of n rational numbers, a ciphertext of 2n ra-
tional numbers is used. The security is based on the fact that there are
infinitely many solutions of a system with 2n polynomial equations of 3n
unknowns.
The public key is designed by quasigroup transformations obtained from
quasigroups presented in matrix form. The quasigroups presented in ma-
trix form allow numerical as well as symbolic computations, and here we
exploit that possibility. The private key consists of several 1×n and n×n
matrices over Q, and one 2n× 2n matrix.

Keywords: trap-door function, public key, private key, encryption, de-
cryption, matrix form of quasigroup, quasigroup transformations, bi-
permutations

1 Introduction

A function f : A → B is said to be one way function if for each x ∈ A it can
be effectively computed the image f(x), but for any y ∈ B finding a preimage
x ∈ A, such that f(x) = y, has to be computationally infeasible. In other words,
computation of f(x) can be realized with an algorithm of polynomial complex-
ity, and computation of a preimage of y can be realized only with algorithms
of exponential complexity. A trapdoor function is a one way function such that
the preimage can be effectively computed when some additional (usually secret)
information is known. A trapdoor function has important applications in cryp-
tography, especially for designing public key infrastructures, and for many others
cryptographic primitives. For that purposes a trapdoor function has to be real
time computable and it has to use small instance of the computer memory.



2 Smile Markovski1, Aleksandra Mileva2, and Vesna Dimitrova1

There are not many trapdoor functions. The most popular is the RSA [7]. In
this paper we present a new trapdoor function, called SBIM(Q). It is defined over
the field of rational numbers Q, but its construction can be used over any infinite
field. The public key of SBIM(Q) consists of a set of multivariate polynomials.
The first such scheme was constructed by Matsumoto and Imai [4] in 1985. After
that, several other systems of that type were designed, unfortunately almost all
of them were broken. An excellent survey article for these schemes is written by
Wolf and Preneel [9].

The construction of SBIM(Q) is based on so called quasigroup string trans-
formations. In Section 2 we give the needed definitions and properties (without
proofs), in order to make clear the construction of SBIM(Q). For more details
one may consult [5], [8].

The private key of SBIM(Q) consists of several nonsingular matrices, and
the public key consists of a system of multivariate polynomial equations. The
encryption is by evaluating the polynomial expressions, and decryption is by
several multiplications of vectors by matrices.

In Section 2 we define the notion of quasigroup bi-permutations and the string
transformations defined by them. In Section 3 the construction of SBIM(Q) is
given, as well as the encryption and decryption functions. Section 4 contains an
example in all details. Some issues on security, implementation, and optimization
are discussed in Section 5. Section 6 contains conclusions and future work.

2 Quasigroup bi-permutations

A quasigroup is a groupoid (G, f), where G is a nonempty set and f : G×G →
G is a binary operation that satisfies the property each one of the equations
f(a, x) = b and f(y, a) = b to have a unique solution x, respectively y; then we
also say that f is a quasigroup operation. When G is a finite set, the main body
of the Cayley table of the quasigroup (G, f) represents a Latin square, i.e., a
matrix with rows and columns that are permutations of G. It follows that if we
fix one component of f , then the mappings f(x, ·) : {x}×G → G and f(·, y) are
permutations of the set G. That is why we say that the binary operation f is a
(quasigroup) bi-permutation.

Given a quasigroup (G, f) two new operations f (23) and f (13), called paras-
trophes, can be derived from the operation f as follows:

f(x, y) = z ⇔ f (23)(x, z) = y ⇔ f (13)(z, y) = x. (1)

Then (G, f (23)) and (G, f (13)) are also quasigroups and the algebra (G, f, f (23),
f (13)) satisfies the identities

f (23)(x, f(x, y)) = y, f(x, f (23)(x, y)) = y,
f (13)(f(x, y), y) = x, f(f (13)(x, y), y) = x.

(2)

In the sequel, when there will be no confusion, we will write a1a2 . . . an instead
of (a1, a2, . . . , an).



Title Suppressed Due to Excessive Length 3

Quasigroup string transformations are defined on the set Gn = {a1a2 . . .
. . . an| ai ∈ G}, n ≥ 1, by using quasigroup operations f1, f2, . . . , fn on the set
G. Some of the operations fi, and even all of them, can be equal. We define four
types of transformations. Let l ∈ G be a fixed element, called a leader. For every
ai, bi ∈ G, e− and d−transformations are defined as follows:

el(a1a2 . . . an) = b1b2 . . . bn ⇔ bi+1 = fi+1(bi, ai+1),
dl(a1a2 . . . an) = b1b2 . . . bn ⇔ bi+1 = fi+1(ai, ai+1),

(3)

for each i = 0, 1, . . . , n− 1, where b0 = a0 = l. The e′− and d′−transformations
are defined similarly, in reverse way:

e′l(a1a2 . . . an) = b1b2 . . . bn ⇔ bi = fn+1−i(ai, bi+1),
d′l(a1a2 . . . an) = b1b2 . . . bn ⇔ bi = fn+1−i(ai, ai+1),

(4)

for each i = n, n− 1, . . . , 2, 1, where bn+1 = an+1 = l.
By using the identities (2), we have that

dl(el(a1 . . . an)) = el(dl(a1 . . . an)) = a1 . . . an

when el is defined by the sequence of quasigroup operations f1, . . . , fn−1, fn
and dl is defined by the sequence of quasigroup operations f

(23)
1 , f

(23)
2 , . . . , f

(23)
n .

Also, when e′l is defined by f1, . . . , fn−1, fn and d′l is defined by f
(13)
1 , f

(13)
2 , . . .

. . . , f
(13)
n we have d′l(e

′
l(a1 . . . an)) = e′l(d

′
l(a1 . . . an)) = a1 . . . an as well. This

means that el, dl, e
′
l and d′l are permutations on Gn, such that el, dl and e′l, d

′
l

are mutually inverse.
The next theorem shows that e− and e′− transformations are useful for

obtaining pseudo-randomness of the transformed strings.

Theorem 1. [5] Consider an arbitrary string α = a1a2 . . . ak where ai ∈ G, and
let β be obtained after k applications of e− or e′−transformations on α. If k is
an enough large integer then, for each 1 ≤ t ≤ k, the distribution of substrings
of β of length t is uniform. (We note that for t > k the distribution of substrings
of β of length t is not uniform.)

A construction of quasigroup bi-permutations is given by the next theorem.

Theorem 2. Let A and B be nonsingular m×m matrices and let C be 1×m
matrix over a field F . Then the mapping

f(a1, . . . , am; b1 . . . , bm) = (a1, . . . , am) ·A+ (b1, . . . , bm) ·B + C, (5)

where ai, bi ∈ F , is a quasigroup bi-permutation on Fm. The parastrophic oper-
ations f (13) and f (23) of f are defined as follows:

f (13)(x;y) = x ·A−1 + y · (−B ·A−1)− C ·A−1,

f (23)(x;y) = x · (−A ·B−1) + y ·B−1 − C ·B−1,
(6)

where x = a1 . . . am, y = b1 . . . bm ∈ Fm.



4 Smile Markovski1, Aleksandra Mileva2, and Vesna Dimitrova1

The presentation of the bi-permutations f in matrix form (5) allows f to
be used for symbolic computations. Namely, instead of elements ai, bi ∈ F,
we can use any expressions Ei, Hi valuable in F for getting a new expression
f(E1, . . . , Em;H1, . . . , Hm). Thus, in the sequel we will use polynomials Ei,Hi

and then f(E1, . . . , Em;H1, . . . , Hm) will be polynomials too.

3 Construction of SBIM(Q)

Further on we work with the field of rational numbers Q. We define SBIM(Q)
over Q in several steps. We use as a parameter a positive integer n.

Choosing polynomials. Denote by y1, . . . , yn, z1, . . . , z2n variables on Q.
Choose randomly n multivariate polynomials Y1, Y2, . . . , Yn on Q with variables
y1, . . . , yn such that the system of equations

Y1(y1, . . . , yn) = b1,

Y2(y1, . . . , yn) = b2,

. . . . . . . . . . . . (7)

Yn(y1, . . . , yn) = bn,

for any given bi ∈ Q, has unique solution y1 = a1, . . . , yn = an, ai ∈ R. (As usual,
R denotes the field of real numbers.) One trivial way to choose the polynomials
Yi is by taking a nonsingular n×n matrix S over Q and then (Y1, Y2, . . . , Yn) =
(y1, . . . , yn) · S. Another simple example, for instance for n = 4, is by taking
Y1 = y1 + 3y2, Y2 = y33 − 4, Y3 = y4 − y1, Y4 = y54 .

Next, we choose randomly n multivariate polynomials Yn+1, Yn+2, . . . , Y2n on
Q with variables y1, . . . , yn, z1, . . . , z2n.

Applying transformation. Let π be a random permutation on the set of
integers {1, 2, . . . , 2n}, and let denote (X1, . . . , X2n) = (Yπ(1), . . . , Yπ(2n)), x =
(X1, X2, . . . , Xn) and y = (Xn+1, Xn+2, . . . , X2n). We apply e− and e′−transfor-
mations on (X1, X2, . . . , X2n) for producing new polynomials as follows.

The first e−transformation. At first we use an e-transformation defined by
a random leader l1 = (l11, . . . , l1n) ∈ Qn and two quasigroup bi-permutations f1
and f2 defined by random nonsingular n× n matrices Ai, Bi as following:

f1(l1;x) = l1 ·A1 + x ·B1, f2(x
′;y) = x′ ·A2 + y ·B2,

where x′ = f1(l1;x). Let denote y′ = f2(x
′;y).

The second e′−transformation. As second transformation we use an e′-trans-
formation defined by a random leader l2 = (l21, . . . , l2n) and two quasigroup
bi-permutations f3 and f4 defined by random nonsingular n×n matrices Ai, Bi

as following:

f3(y
′; l2) = y′ ·A3 + l2 ·B3, f4(x

′;y′′) = x′ ·A4 + y′′ ·B4,

where y′′ = f3(y
′; l2). Let denote x′′ = f4(x

′;y′′).



Title Suppressed Due to Excessive Length 5

The next transformations. The previous two transformations are obligatory.
We can make p (p ≥ 0) new e− or e′−transformations in the same manner as
before. It is choice of ours what type of transformation and in which order will
be applied. We start by transforming the n−tuples of polynomials x′′,y′′. For
p = 1 we can take either an e− or an e′−transformation, for p = 2 we can take
either e−, e−, or e−, e′−, or e′−, e− or e′−, e′− transformations, and so on. For
that purposes we have to take new random leaders li and new random matrices
Ai, Bi. (In that case more secure system will be obtained, the price being paid
with more complex private key. If we want to keep the private key enough small,
we can reuse the previous bi-permutations f1, . . . , f4 and/or leaders.)

The public key and the encryption. Let p ≥ 0 additional transforma-
tions were applied. Then the last transformation was done by some leader l2+p

and bi-permutations f3+p and f4+p, applied on some n−tuples of polynomials u
and v. In the case when the last transformation was an e−transformation, we de-
note (Z1, . . . , Zn) = f3+p(l2+p;u) and (Zn+1, . . . , Z2n) = f4+p((Z1, . . . , Zn);v).
In the case of an e′−transformation, we denote (Z1, . . . , Zn) = f3+p(v; l2+p)
and (Zn+1, . . . , Z2n) = f4+p(u; (Z1, . . . , Zn)). We choose randomly a nonsingu-
lar 2n× 2n matrix R on Q and we denote (A1, A2, . . . , A2n) = (Z1, . . . , Z2n) ·R.
Then the public key consists of the 2n−tuple of polynomials (A1, A2, . . . , A2n).
Note that each Ai = Ai(y1, . . . , yn, z1, . . . , z2n) is a multivariate polynomial on
Q with 3n variables.

The encryption of a message M = (m1,m2, . . . ,mn) ∈ Qn is as follows.
Choose random elements r1, r2, . . . , r2n ∈ Q and evaluate the polynomials Ai

by taking yj = mj , zk = rk. The ciphertext is the 2n−tuple (c1, c2, . . . , c2n),
where

c1 = A1(m1, . . . ,mn, r1, . . . , r2n),

c2 = A2(m1, . . . ,mn, r1, . . . , r2n),

. . . . . . . . . . . .

c2n = A2n(m1, . . . ,mn, r1, . . . , r2n).

We note that a plaintext of n rational numbers is encrypted with 2n rational
numbers, we can say that the information efficiency is 50%.

The private key. The private key consists of the permutation π, of all
leaders l1, l2, l3, . . . and all matrices Ai, Bi, R used for producing the public key.
The leaders and the matrices may not be all different. It is obligatory to be
used at least two different leaders and at least four different matrices for the bi-
permutations. By choosing suitable number of leaders and matrices an optimal
private key can be designed.

Decryption. The decryption is done by applying d− and d′−transforma-
tions. The public key was built up in an upward-down way. The decryption is in
downward-up way.

Given a ciphertext (c1, . . . , c2n), we first apply the inverse matrix R−1 and
obtain (t1, . . . , t2n) = (c1, . . . , c2n) · R−1. After that we produce two n-tuples
C1 = (t1, . . . . . . , tn) and C2 = (tn+1, . . . , t2n). We have to possible cases.



6 Smile Markovski1, Aleksandra Mileva2, and Vesna Dimitrova1

The case of a d−transformation. Let the last applied transformation for ob-
taining the polynomials (Z1, Z2, . . . , Z2n) have been an e−transformation, de-
fined by a leader l2+p and bi-permutations f3+p and f4+p. Then we apply a

d−transformation on C1, C2 by using the leader l2+p and the parastrophes f
(23)
3+p

and f
(23)
4+p . We obtain two new n-tuples of rational numbers D1 and D2 as follows:

D1 = f
(23)
3+p (l2+p;C1), D2 = f

(23)
4+p (C1;C2).

The case of a d′−transformation. Let the last applied transformation for
obtaining the polynomials (Z1, Z2, . . . , Z2n) have been an e′−transformation,
defined by a leader l2+p and bi-permutations f3+p and f4+p. Then we apply a

d′−transformation on C1, C2 by using the leader l2+p and the parastrophes f
(13)
3+p

and f
(13)
4+p . We obtain two new n-tuples of rational numbers D1 and D2 as follows:

D1 = f
(13)
3+p (C2; l2+p), D2 = f

(13)
4+p (C1;C2).

What we have done is replacing the n−tuples of polynomials with n−tuples
of rational numbers. We apply these d− or d′−transformations from downward-
up way and after each application we will obtain n-tuples of rational num-
bers. Eventually, at the end, instead of starting n-tuples of polynomials x =
(X1, . . . , Xn) and y = (Xn+1, . . . , X2n) we obtain n-tuples of rational numbers
a = (a1, . . . , an) and b = (an+1, . . . , a2n).

Finally, we apply the inverse permutation π−1 on (a1, a2, . . . , a2n) to get
(b1 = aπ−1(1), . . . , b2n = aπ−1(2n)). Then we form the system of equations (7)
with the rational numbers b1, b2, . . . , bn. The solution of the system (7) is the
message M = (m1,m2, . . . ,mn).

4 Example

Here we give an example to illustrate the previous constructions.
We take n = 2 and so we use the variables y1, y2, z1, z2, z3 and z4. We choose

polynomials Y1 = y1 − 2y2, Y2 = y31 − 2, Y3 = y31 + y22 + z31 +3y1z4 +2y2z2 +
y1 + y2 − z1 − z4, Y4 = −z42 − y2z1 + 2y1 + z1 − z3 − z4 and a permutation
π = (3, 2, 1, 4). We have X1 = Y3, X2 = Y2, X3 = Y1, X4 = Y4 and
x = (X1, X2), y = (X3, X4). We also take p = 0.

For the transformations we use the leaders l1 = (−1, 1) and l2 = (2,−1) and
the following bi-permutations:

f1(x,y) = x

(
1 −1
2 −1

)
+ y

(
0 3
1 0

)
, f2(x,y) = x

(
−1 0
1 1

)
+ y

(
2 1
−1 −1

)
,

f3(x,y) = x

(
−1 0
0 −1

)
+ y

(
3 5
1 2

)
, f4(x,y) = x

(
1 −2
1 1

)
+ y

(
1 0
0 1

)
.

The first e−transformation is defined by l1, f1 and f2, and from x,y we
obtain x′,y′ as follows:



Title Suppressed Due to Excessive Length 7

x′ = f1(l1; x) = f1(−1, 1; X1, X2) = (1, 0) + (X2, 3X1) = (1 +X2, 3X1),

y′ = f2(1+X2, 3X1; X3, X4) = (−1−X2+3X1, 3X1)+(2X3−X4, X3−X4)

= (−1 + 3X1 −X2 + 2X3 −X4, 3X1 +X3 −X4).

Next, we have to apply an e′−transformation and we use l2, f3 and f4. Then
x′,y′ will be transformed into x′′,y′′, where

y′′ = f3(y
′; l2) = f3(−1 + 3X1 −X2 + 2X3 −X4, 3X1 +X3 −X4; 2,−1)

= (1− 3X1 +X2 − 2X3 +X4,−3X1 −X3 +X4) + (5, 8)

= (6− 3X1 +X2 − 2X3 +X4, 8− 3X1 −X3 +X4),

x′′ = f4(x
′;y′′) = f4(1+X2, 3X1; 6−3X1+X2−2X3+X4, 8−3X1−X3+X4)

= (1 + 3X1 +X2,−2(1 +X2) + 3X1)+

+(6− 3X1 +X2 − 2X3 +X4, 8− 3X1 −X3 +X4)

= (7 + 2X2 − 2X3 +X4, 6− 2X2 −X3 +X4).

We obtain Z1 = 7 + 2X2 − 2X3 +X4, Z2 = 6 − 2X2 −X3 +X4, Z3 =
6−3X1+X2−2X3+X4, Z4 = 8−3X1−X3+X4. Let take a 4×4 nonsingular

matrix R =


2 −1 0 −3
1 2 −1 −1
0 3 2 0
−3 −1 −1 4

 and compute (A1, . . . , A2n) = (Z1, . . . , Z2n) · R.

We get the public key

A1 = −4 + 9X1 + 2X2 − 2X3,

A2 = 15− 6X1 − 3X2 − 5X3 + 3X4,

A3 = −2− 3X1 + 4X2 − 2X3,

A4 = 5− 12X1 − 4X2 + 3X3.

After replacement of variables we get the final form of the public key:

A1 = −8 + 7y1 + 13y2 − 9z1 − 9z4 + 11y31 + 9y32 + 9z31 + 27y1z4 + 18y2z2,

A2 = 21 − 5y1 + 4y2 + 9z1 − 3z3 + 3z4 − 9y31 − 6y32 − 6z31 − 3z42 − 18y1z4 −
3y2z1 − 12y2z2,

A3 = −10− 5y1 + y2 + 3z1 + 3z4 + y31 − 3y32 − 3z31 − 9y1z4 − 6y2z2,

A4 = 13− 9y1 − 18y2 + 12z1 + 12z4 − 16y31 − 12y32 − 12z31 − 36y1z4 − 24y2z2.

Given a message M(1, 1) (so y1 = y2 = 1), we choose redundant elements
z1 = z2 = z3 = 0, z4 = 1 and we compute the ciphertext (c1, c2, c3, c4) as
following:

c1 = A1(1, 1, 0, 0, 0, 1) = 50,
c2 = A2(1, 1, 0, 0, 0, 1) = −10,
c3 = A3(1, 1, 0, 0, 0, 1) = −22,
c4 = A4(1, 1, 0, 0, 0, 1) = −66.

Hence, (50,−10,−22,−66) is the ciphertext of the plaintext (1, 1).
LetAllice obtained the ciphertext (50,−10,−22,−66). She does not know the

message and the redundant elements. Allice will make a decryption of the cipher-
text as follows. First she compute (50,−10,−22,−66) · R−1 = (8, 10,−10,−8)
and obtain that (t1, t2, t3, t4) = (8, 10,−10,−8).



8 Smile Markovski1, Aleksandra Mileva2, and Vesna Dimitrova1

She also needs the parastrophes f
(23)
1 , f

(23)
2 , f

(13)
3 , f

(13)
4 for decryption pur-

poses. Recall that the parastrophes of f(x;y) = xA + yB are f (13)(x;y) =
xA−1 + y(−BA−1) and f (23)(x;y) = x(−AB−1) + yB−1. Then the needed
parastrophes are the following:

f
(23)
1 (x;y) = x

(
1/3 −1
1/3 −2

)
+ y

(
0 1
1/3 0

)
,

f
(23)
2 (x;y) = x

(
1 1
0 1

)
+ y

(
1 1
−1 −2

)
,

f
(13)
3 (x;y) = x

(
−1 0
0 −1

)
+ y

(
3 5
1 2

)
,

f
(13)
4 (x;y) = x

(
1/3 2/3
−1/3 1/3

)
+ y

(
−1/3 −2/3
1/3 −1/3

)
.

From the 4-tuple (t1, t2, t3, t4) = (8, 10,−10,−8) Allice makes the pairs
C1 = (8, 10) and C2 = (−10,−8). Since the last applied transformation for
producing the public key was an e′−transformation, she applies on C1 and C2

the d′−transformation defined by l2, f
(13)
3 and f

(13)
4 . She computes

D2 = f
(13)
3 (C2; l2) = f

(13)
3 (10,−8; 2,−1) = (15, 16) and

D1 = f
(13)
4 (C1;C2) = f

(13)
4 (8, 10; 10,−8) = (0, 18).

The previous transformation before the last one was an e−transformation.

So, Allice applies the d−transformation defined by l1, f
(23)
1 and f

(23)
2 on D1 and

D2 and she computes

x = f
(23)
1 (l1;D1) = f

(23)
1 (−1, 1; 0, 18) = (6,−1),

y = f
(23)
2 (D1;D2) = f

(23)
2 (0, 18; 15, 16) = (−1, 1).

Then Allice knows that X1 = 6, X2 = −1, X3 = −1, X4 = 1 and
by the inverse permutation π−1 she get that X3 = Y1 = y1 − 2y2 = −1 and
X2 = Y2 = y31 − 2 = −1. From that Allice discovers the sent message M , since
(y1 = 1, y2 = 1) is the solution of the system of polynomial equations{

y31 − 2 = −1,
y1 − 2y2 = −1.

5 Discussion

Here we will discuss security, implementation, optimization and other issues.

5.1 Security

The security of the SBIM(Q) is based mainly on the infinity number of solutions
of a system of 2n polynomial equations with 3n unknowns. If an attacker have



Title Suppressed Due to Excessive Length 9

a ciphertext (c1, c2, . . . , c2n), he/she can make the system

A1(y1, . . . , yn, z1, . . . , z2n) = c1,

A2(y1, . . . , yn, z1, . . . , z2n) = c2,

. . . . . . . . . . . . (8)

A2n(y1, . . . , yn, z1, . . . , z2n) = c2n.

When the public key is carefully produced, the system (8) has infinitely many
rational solutions for the unknowns y1, y2, . . . , yn, so the attacker cannot com-
pute the plaintext in that way. Even when the ciphertext consists of integers
and the attacker supposes that the plaintext consists only of integers too, well
defined public key can have infinitely many integers solutions. Hence, by this
attack, an attacker can only guess the plaintext.

The attacker can only guess the private key as well, since the key space is
infinite.

The public key was produced by using linear bi-permutations and we find
that it is the weakest part of the construction of SBIM(Q). We could not realized
an attack by using this weakness, although it may be possible.

5.2 Implementation

The public key has 2n polynomials of 3n variables. If we bounded the degrees

of the polynomial by 2, the polynomials may have up to (3n)!(3n−1)
2 + 6n + 2

members. So, the choice of the starting polynomials should be suitably made for
obtaining desired public key. We think that for n = 4 quite secure public key
can be designed, with quadratic polynomials only.

An obvious question is why we are not using linear polynomials only? The
reason is that in that case the system is not secure.

The presented example in Section 5 shows that the choice of the bi-permuta-
tions have to be carefully done. Choosing simpler matrices Ai, Bi may produce
weak public key. On the other hand, applying more e− and e′−transformations
will produce better public key.

Caution: After any construction of SBIM(Q), it has to be checked if the
system of equations (8) has infinitely many solutions for the variables y1, . . . , yn.

5.3 Performance

The performance of the system depends on the chosen polynomials mainly. For
example, let take n = 4 and let we work with polynomials of degree 2 only.
Those polynomials have at most 91 members (1 constant + 12 linear + 78
quadratic). Then for getting a ciphertext we have to make no more than 8 ·
12 = 96 additions and 8 · 156 = 1248 multiplications of rational numbers. Let
assume that 4 transformations were applied for getting the public key. So, 8 4×4
matrices and 4 1× 4 vectors as leaders were used. For computing the plaintext
we have firstly to apply the inverse matrix R−1, then 16 multiplications and 12



10 Smile Markovski1, Aleksandra Mileva2, and Vesna Dimitrova1

additions of rational numbers will be made. For transformations we have to make
8 multiplications of vectors by matrices, so 128 multiplications and 96 additions
of rational numbers have to be made, and 8 additions of vectors by vectors, so
32 additions more have to be made. Hence, altogether, 140 additions and 144
multiplication of rational numbers have to be made for recovering the plaintext,
i.e., the message.

5.4 Optimization

Some optimization of the system can be made.
The number of variables can be reduced. Namely, instead of using 3n variables

for building the polynomials Yn+1, Yn+2, . . . , Y3n, we can reduce the number of
polynomials to 2n+m, where 0 < m < n. In that case we have to check that the
system of equations (8) has infinitely many solutions for the variables y1, . . . , yn.

We mentioned that the system is not secure if only linear polynomials are
used. Still, we can use linear polynomials to make the system more simpler. For
example, many of the polynomials Y1, Y2, . . . , Yn can be linear, and some of the
polynomials Yn+1, Yn+2, . . . , Y3n too.

One obvious question is why we have used quasigroup transformations? A
quite simpler way to produce the public key of the same type is by taking a
nonsingular 2n× 2n matrix T and to compute (A1, . . . , A2n) = (Y1, . . . , Y2n) ·T.
In this case the system is not secure, since then the system (8) can be easily
solved for the variables y1, . . . , yn (although the redundant variables z1, . . . , zn
may have infinitely many solutions).

6 Conclusion

SBIM(Q) is a public key cryptsystem of multivariate polynomial type. We found
that SBIM(Q) has a moderate speed, comparable to today standard public key
cryptsystems. Also, we found that a version of SBIM(Q) for n = 2 can be imple-
mented in hardware useful for embedded systems. The encryption of SBIM(Q)
can be easily parallelized, since each of the 2n polynomials of the public key can
be independently computed.

References

1. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preenel, B. (Ed.)
Advances in Cryptology-Eurocrypt 2000. LNCS, vol. 1807, pp. 392–407. Springer-
Verlag Berlin Heidelberg (2000).

2. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Inform.
Theory IT-22 (6), 644–654 (1976).

3. Gligoroski, D., Markovski, S., Knapskog, S.J.: Multivariate quadratic trapdoor func-
tions based on multivariate quadratic quasigroups. In: American Conference on Ap-
plied Mathematics. Harvard, March 2008, USA.



Title Suppressed Due to Excessive Length 11

4. Imai, H., Matsumoto, T.: Algebraic methods for constructing asymmetric cryp-
tosysytems. In: Calmet, J. (Ed.) 3rd Intern. Conf. AAECC-3. LNCS, vol. 229, pp.
108–119. Springer Berlin Heidelberg (1986).

5. Markovski, S., Gligoroski, D., Bakeva, V.: Quasigroup String Processing: Part 1.
Contributions, Sec. Math. Tech. Sci., MANU, XX 1- 2, 13–28 (1999).

6. Patarin, J.: Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U.M. (Ed.) Advances in
Cryptology - EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer (1996).

7. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Comm. ACM 21(2), 120–126 (1978).

8. Siljanoska, M., Mihova, M., Markovski, S.: Matrix presentation of quasigroup of
order 4. In: 10th Conference for Informatics and Information Technology (CIIT
2013), Bitola (2013).

9. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem
of Multivariate Quadratic equations. Cryptology ePrint Archive, Report 2005/077,
(2005).


