On Recursive Derivates of k-ary Operations

Aleksandra Mileva, Vesna Dimitrova

Abstract

We present several results about recursive derivates of k-ary operations defined on a finite set Q. They are generalizations of some binary cases given by Larionova-Cojocaru and Syrbu [5]. Also, we present several experimental results about recursive differentiability of ternary quasigroups of order 4.

Keywords: recursively differentiable quasigroups, orthogonality

1 Introduction

Let Q be a nonempty set and let k be a positive integer. We will use $\left(x_{1}^{k}\right)$ to denote the k-tuple $\left(x_{1}, \ldots, x_{k}\right) \in Q^{k}$. A k-ary operation f on the set Q is a mapping $f: Q^{k} \rightarrow Q$ defined by $f:\left(x_{1}^{k}\right) \rightarrow x_{k+1}$, for which we write $f\left(x_{1}^{k}\right)=x_{k+1}$. A k-ary groupoid $(k \geq 1)$ is an algebra (Q, f) on a nonempty set Q as its universe and with one k-ary operation f. A k-ary groupoid (Q, f) is called a k-ary quasigroup (of order $|Q|=q$) if any k of the elements $a_{1}, a_{2}, \ldots, a_{k+1} \in Q$, satisfying the equality $f\left(a_{1}^{k}\right)=a_{k+1}$, uniquely specifies the remaining one.

The k-ary operations $f_{1}, f_{2}, \ldots, f_{d}, 1 \leq d \leq k$, defined on a set Q are orthogonal if the system $\left\{f_{i}\left(x_{1}^{k}\right)=a_{i}\right\}_{i=1}^{d}$ has exactly q^{k-d} solutions for any $a_{1}, \ldots, a_{d} \in Q$, where $q=|Q|$ [2]. There is an one-to-one correspondence between the set of all k-tuples of orthogonal k-ary operations $<f_{1}, f_{2}, \ldots, f_{k}>$ defined on a set Q and the set of all permutations $\theta: Q^{k} \rightarrow Q^{k}([2])$, given by

$$
\theta\left(x_{1}^{k}\right) \rightarrow\left(f_{1}\left(x_{1}^{k}\right), f_{2}\left(x_{1}^{k}\right), \ldots, f_{d}\left(x_{1}^{k}\right)\right) .
$$

(C)2017 by Aleksandra Mileva, Vesna Dimitrova

Aleksandra Mileva, et al.
The k-ary operation $I_{j}, 1 \leq j \leq k$, defined on Q with $I_{j}\left(x_{1}^{k}\right)=x_{j}$ is called the j-th selector or the j-th projection.

A system $\Sigma=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}_{s>k}$ of k-ary operations is called orthogonal, if every k operations of Σ are orthogonal. A system $\Sigma=\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}, r \geq 1$ of distinct k-ary operations defined on a set Q is called strong orthogonal if the system $\left\{I_{1}, \ldots, I_{k}, f_{1}, f_{2}, \ldots, f_{r}\right\}$ is orthogonal, where each $I_{j}, 1 \leq j \leq k$, is $j-$ th selector. It follows that each operation of a strong orthogonal system, which is not a selector, is a k-ary quasigroup operation.

A code $C \subseteq Q^{n}$ is called a complete k-recursive code if there exists a function $f: Q^{k} \rightarrow Q(1 \leq k \leq n)$ such that every code word $\left(u_{0}, \ldots, u_{n-1}\right) \in C$ satisfies the conditions $u_{i+k}=f\left(u_{i}^{i+k-1}\right)$ for every $i=0,1, \ldots, n-k-1$, where $u_{0}, \ldots, u_{k-1} \in Q$. It is denoted by $C(n, f)$.
$C(n, f)$ can be represented by

$$
C(n, f)=\left\{\left(x_{1}^{k}, f^{(0)}\left(x_{1}^{k}\right), \ldots, f^{(n-k-1)}\left(x_{1}^{k}\right)\right):\left(x_{1}^{k}\right) \in Q^{k}\right\}
$$

where $f^{(0)}=f^{(0)}\left(x_{1}^{k}\right)=f\left(x_{1}^{k}\right)$,
$f^{(1)}=f^{(1)}\left(x_{1}^{k}\right)=f\left(x_{2}^{k}, f^{(0)}\right)$
$f^{(k-1)}=f^{(k-1)}\left(x_{1}^{k}\right)=f\left(x_{k}, f^{(0)}, \ldots, f^{(k-2)}\right)$
$f^{(i+k)}=f^{(i+k)}\left(x_{1}^{k}\right)=f\left(f^{(i)}, \ldots, f^{(i+k-1)}\right)$ for $i \geq 0$
are recursive derivatives of f. The general form of the recursive derivatives for any k-ary operation f is given in [4], and $f^{(n)}=f \theta^{n}$, where $\theta: Q^{k} \rightarrow Q^{k}, \theta\left(x_{1}^{k}\right)=\left(x_{2}^{k}, f\left(x_{1}^{k}\right)\right)$.

A k-quasigroup (Q, f) is called recursively t-differentiable if all its recursive derivatives $f^{(0)}, \ldots, f^{(t)}$ are k-ary quasigroup operations [3]. A k-quasigroup (Q, f) is called t-stable if the system of all recursive derivatives $f^{(0)} \ldots, f^{(t)}$ of f is an orthogonal system of k-ary quasigroup operations, i.e. $C(k+t+1, f)$ is an MDS code [3]. A k ary quasigroup (Q, f) is called strongly recursively t-differentiable if it is recursively t-differentiable and $f^{(t+1)}=I_{1}$ (introduced for binary case in [1]). A k-ary quasigroup (Q, f) is strongly recursively 0 -differentiable if $f^{(1)}=I_{1}$.

2 Main results

The following results are generalisation of binary cases for recursive derivates from [5].

Proposition 1. Let (Q, f) be a k-ary groupoid. For every $\left(x_{1}^{k}\right) \in Q^{k}$ the following equalities hold:

$$
f^{(n)}\left(x_{1}^{k}\right)=f^{(n-1)}\left(x_{2}^{k}, f^{(0)}\left(x_{1}^{k}\right)\right), \forall n \in N
$$

Proposition 2. Let (Q, f) be a k-ary groupoid. For every $\left(x_{1}^{k}\right) \in Q^{k}$ and for every $j=k-1, \ldots, n-1$, where $n \geq k$, the following equalities hold:

$$
f^{(n)}\left(x_{1}^{k}\right)=f^{(n-j-1)}\left(f^{(j-k+1)}\left(x_{1}^{k}\right), \ldots, f^{(j)}\left(x_{1}^{k}\right)\right)
$$

Proposition 3. If two k-ary groupoids $\left(Q_{1}, f\right)$ and $\left(Q_{2}, g\right)$ are isomorphic, then their recursive derivatives $\left(Q_{1}, f^{(n)}\right)$ and $\left(Q_{2}, g^{(n)}\right)$ are isomorphic too, for every $n \geq 1$.

Proposition 4. If (Q, f) is a k-ary groupoid, then $\operatorname{Aut}(Q, f)$ is a subgroup of $\operatorname{Aut}\left(Q, f^{(n)}\right)$, for every $n \geq 1$.

3 Experimental results for ternary quasigroups of order 4

By experiments, we obtained the following results:

- there are 96 recursively 1-differentiable ternary quasigroups of order 4, and all are 1-stable
- there are no recursively t-differentiable ternary quasigroups of order 4 , for $t \geq 2$,
- there are 64 strongly recursively 0 -differentiable ternary quasigroups of order 4,
- there are 8 strongly recursively 1-differentiable ternary quasigroups of order 4.

Bellow is an example of strongly recursively 1-differentiable and 1 -stable ternary quasigroups of order 4.
$\{\{\{1,2,3,4\},\{3,4,1,2\},\{4,3,2,1\},\{2,1,4,3\}\},\{\{2,1,4,3\},\{4,3,2,1\},\{3,4,1,2\},\{1,2,3,4\}\}$,
$\{\{3,4,1,2\},\{1,2,3,4\},\{2,1,4,3\},\{4,3,2,1\}\},\{\{4,3,2,1\},\{2,1,4,3\},\{1,2,3,4\},\{3,4,1,2\}\}\}$
Acknowledgments. The bilateral Macedonian-Chinese project with Contract No. 16-4700/1 from 29.02.2016 has supported part of the research for this paper.

References

[1] G. Belyavskaya. Recursively r-differentiable Quasigroups within S-systems and MDS-codes. Quasigroups and Related Systems 20, (2012), pp. $157-168$.
[2] A.S. Bektenov, T. Yakubov. Systems of orthogonal n-ary operations. (Russian), Izv. AN Moldavskoi SSR, Ser. fiz.-teh. i mat. nauk, 3 (1974), pp. 7-14.
[3] E. Couselo, S. Gonsales, V. Markov, A. Nechaev. Recursive MDScodes and recursively differentiable quasigroup. Discrete Math. vol. 10, no. 2 (1998), pp. 3-29.
[4] V.I. Izbash, P. Syrbu. Recursively differentiable quasigroups and complete recursive codes. Comment. Math. Univ. Carolinae 45 (2004), pp. 257-263.
[5] I. Larionova-Cojocaru, P. Syrbu. On Recursive Differentiability of Binary Quasigroups. Studia Universitatis Moldavia vol. 2, no. 82(2015), pp. 53-60.

Aleksandra Mileva ${ }^{1}$, Vesna Dimitrova ${ }^{2}$
${ }^{1}$ Faculty of Computer Science,
University "Goce Delčev", Štip, Republic of Macedonia
Email: aleksandra.mileva@ugd.edu.mk
${ }^{2}$ Faculty of Computer Science and Engineering,
University "Ss Cyril and Methodius", Skopje, Republic of Macedonia
Email: vesna.dimitrova@finki.ukim.mk

