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ABSTRACT

The advancement of cryptology includes various types of

mathematical disciplines. Quasigroups are algebraic structures

that are fit for cryptographic use and their cryptographic proper-

ties are intriguing. Looking into these properties we can classify

the quasigroups based on different criteria and sort out the ones

with best attributes for encryption and resistance to attacks. The

Boolean representations of quasigroups allow us to find out

more about their cryptographic properties. In this paper we will

use those representations to analyze some of their properties

and compare the results with previous research. The scope of

this research are quasigroups of order 4.

I. INTRODUCTION

The quasigroups are plain algebraic structures which are

suitable for cryptographic and coding purposes due to their

large, exponentially growing number, and also their specific

properties. Formally, a groupoid (Q, ∗), where * is binary

operation, is called a quasigroup if it satisfies:

(∀ a, b ∈ Q)(∃! x, y ∈ Q)(x ∗ a = b ∧ a ∗ y = b) (1)

In this paper we are interested only in the quasigroups of

order 4. We use lexicographic ordering [2] of the quasigroups

of order 4. This is done by representing the quasigroup as a

string of length n2 which is obtained by concatenation of its

rows. Then, these strings are ordered lexicographically and thus

we acquire the ordering of quasigroups.

Another important issue that should be discussed before

we pass to the main results of this paper is the Boolean

representations of the quasigroups. Actually, we use the ap-

proach of representing the quasigroups as Boolean functions

[2]. A Boolean function of n variables is defined as a function

f : ❋n
2 → ❋2, where ❋2 = {0, 1} is a two-element field

[2][6]. Each Boolean function can be uniquely presented in its

Algebraic Normal Form (ANF) [2][6], as a polynomial of n
variables over the field ❋2 that has degree less or equal than 1

in each single variable, i.e.:

f(x1, x2, ..., xn) =
∑

I⊆{1,...,n}

aIx
I (2)

where

xI =
∏

i∈I

xi, x
∅ = 1 and aI ∈ {0, 1}.

Every quasigroup (Q, ∗) of order 2n can be represented as

a vector valued Boolean function f : {0, 1}2n → {0, 1}n.

The elements x ∈ Q can be considered as binary vectors

x = (x1, ..., xn) ∈ {0, 1}
n. Now, we represent the quasigroup

in the following way: ∀x, y ∈ Q we have that

x ∗ y ≡ f(x1, ..., x2n) = (f1(x1, ..., x2n), ..., fn(x1, ..., x2n))

where

x = (x1, x2, ..., xn), y = (xn+1, xn+2, ..., x2n)

and

fi : {0, 1}
2n → {0, 1}

are the Boolean function components of the previously de-

fined f [2].

Because here we are considering only the quasigroups of order

4, it is clear that their Boolean representations will be composed

of 2 Boolean functions, each with 4 arguments. For each

quasigroup we will analyze the cryptographic properties of both

Boolean functions.

There is a classification of quasigroups by their Boolean

representations that is already presented in previous research

(see [2]) that we will use for comparison with the new results.

In this classification the quasigroups are categorized as linear or

non-linear by Boolean representations. A quasigroup is called

linear by Boolean representation if and only if all functions fi
for i = 1, 2, ..., n are linear polynomials. On the other hand,

a quasigroup is called non-linear by Boolean representation

if there exist function fi for some i = 1, 2, ..., n which is

not linear. There is also a specific subset of the non-linear

quasigroups that are called pure non-linear quasigroups by

Boolean representations. In these quasigroups all components

are non-linear Boolean functions.

II. ANALYSIS OF THE CRYPTOGRAPHIC PROPERTIES

The Boolean functions have certain properties that are impor-

tant of cryptological aspect. Thus it is necessary to determine

how they are reflected on the quasigroups using their Boolean

representations, or in other words, determine which quasigroups

have the best cryptographic properties.

In this research we use the Boolean representations of quasi-

groups in Algebraic Normal Form. Besides that, we use the

boolfun package [5], which is a convenient open source software

that evaluates the cryptographic properties of Boolean functions.

It is a package for the R language (a free software language and

software environment for statistical computing and graphics).

For the time being, we analyzed several cryptographic properties
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of the quasigroups of order 4 - algebraic immunity, nonlinearity,

balance, correlation immunity and resiliency. The results will be

presented further in this paper.

A. Algebraic immunity

In order to understand what is algebraic immunity we first

need to define the term annihilator in Bn (the set of all Boolean

functions that have n arguments). Namely, an annihilator of

f ∈ Bn is a function g ∈ Bn such that f(x) · g(x) = 0 for each

x ∈ n
2 . Now, the algebraic immunity of a Boolean function f ,

or AI(f) is the smallest value of d such that f(x) or 1⊕ f(x)
has a non-zero annihilator of degree d. [5][9]

The algebraic immunity is an indicator of the resistance to

algebraic attacks for given Boolean function. It is proven [1]

that AI(f) ≤ ⌈n/2⌉, where ⌈m⌉ is the smallest integer equal

to or bigger than m. This means that the best result that we

could get in the examination of the algebraic immunity of the

quasigroups is 2. Since each quasigroup is represented by two

Boolean functions f1 and f2, we will consider the algebraic

immunity of each quasigroup as a pair (AI(f1), AI(f2)). This

means that the best result we can get is (2, 2) and the worst

(1, 1).
Figure 1 shows the distribution of quasigroups based on their

algebraic immunity.

Figure 1: The distribution of quasigroups based on their

algebraic immunity

B. Nonlinearity

The nonlinearity in this context (as a property of Boolean

functions) is not the same with the nonlinearity by Boolean

representation that was mentioned before, as a criteria for

classification of the quasigroups. The term nonlinearity of a

Boolean function in this subsection should be considered as

follows [4].

Firstly, we need to define the term affine Boolean function. An

affine Boolean function h ∈ Bn is a Boolean function in the

form of:

h(x1, x2, ..., xn) = α0 ⊕ α1x1 ⊕ · · · ⊕ αnxn

where αi ∈ {0, 1} for i = 0, 1, ..., n. The set of affine Boolean

functions with n arguments is denoted by An .

Now, the distance between two Boolean functions f, g ∈ Bn is

defined as d(f, g) = |{x | f(x) 6= g(x)}|.
The nonlinearity of f (denoted by NL(f)) is the minimal

distance between f and any h ∈ An [4][7]. It is proven that:

NL(f) ≤ 2n−1 − 2
n

2
−1 [3]. This means that in our case

we can get maximum (6, 6) for nonlinearity of the Boolean

representations of the quasigroups of order 4. However, the

maximal nonlinearity that appears in the results is 4. This means

that there is not a perfect nonlinear Boolean function among the

Boolean representations.

Figure 2 shows the distribution of quasigroups based on their

nonlinearity.

Figure 2: The distribution of quasigroups based on their

nonlinearity

C. Balance, correlation immunity and resiliency

A Boolean function is balanced if its truth table contains as

many zeros as ones. In our case, all quasigroups of order 4 are

balanced.

Correlation immunity is a property of Boolean functions that is

an indicator of their resistance to correlation attacks. A Boolean

function is correlation immune of order m, if the distribution of

its truth table is unaltered while fixing any m inputs [3]. The

matter of finding the best quasigroups based on their Boolean

representations for cryptographic purposes is impossible without

making a compromise between the correlation immunity and

the algebraic degree (the maximum number of variables in a

monomial with non-zero coefficient) of the Boolean function

(which implies its nonlinearity). Namely, a proposition intro-

duced by Thomas Siegenthaler (see [8] and [3]) states that if

f is a Boolean function defined on n
2 with algebraic degree

d and order of correlation immunity m, then d +m ≤ n with

m < n.

Figure 3 shows the distribution of quasigroups based on their

correlation immunity order.

Figure 3: The distribution of quasigroups based on their

correlation immunity order
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Resiliency is a property of Boolean functions that combines

balance and correlation immunity. A function f ∈ Bn is m-

resilient if f is balanced and its correlation immunity order is

m [5]. It is related to the number of input bits that do not

give statistical information about the output bit. Since all of

the Boolean representations of the quasigroups of order 4 are

balanced, this means that if the Boolean function has correlation

immunity order m then it is m-resilient. In other words, the

distribution of quasigroups based on their resiliency matches the

distribution of quasigroups based on their correlation immunity

order.

Table 1 presents the classification of quasigroups based on

their correlation immunity order.

Table 1: Classification of quasigroups by correlation immunity

order

CI Quasigroups

(1,1) 1, 2, 3, 5, 7, 9, 11, 12, 13, 15, 18, 19, 25, 28, 32, 34, 35,
44, 45, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 63, 65, 68, 74,
75, 81, 84, 88, 91, 94, 96, 99, 102, 104, 105, 108, 114, 115,
117, 121, 124, 131, 134, 136, 137, 140, 144, 145, 148, 149,
155, 158, 159, 162, 167, 170, 171, 172, 174, 176, 178, 183,
185, 187, 189, 190, 191, 195, 198, 199, 201, 204, 205, 210,
215, 218, 219, 227, 230, 232, 233, 236, 238, 242, 244, 245,
246, 248, 250, 255, 257, 259, 260, 261, 263, 265, 268, 273,
276, 278, 283, 286, 288, 289, 291, 294, 299, 301, 304, 309,
312, 314, 316, 317, 318, 320, 322, 327, 329, 331, 332, 333,
335, 339, 341, 344, 345, 347, 350, 358, 359, 362, 367, 372,
373, 376, 378, 379, 382, 386, 387, 388, 390, 392, 394, 399,
401, 403, 405, 406, 407, 410, 415, 418, 419, 422, 428, 429,
432, 433, 437, 440, 441, 443, 446, 453, 456, 460, 462, 463,
469, 472, 473, 475, 478, 481, 483, 486, 489, 493, 496, 502,
503, 509, 512, 514, 516, 518, 519, 520, 522, 524, 525, 526,
528, 530, 532, 533, 542, 543, 545, 549, 552, 558, 559, 562,
564, 565, 566, 568, 570, 572, 574, 575, 576

(1,2) 4, 6, 8, 10, 14, 16, 17, 20, 21, 22, 23, 24, 26, 29, 31, 33, 37,
38, 50, 54, 56, 60, 62, 64, 66, 67, 69, 70, 71, 72, 73, 77, 78,
82, 85, 87, 97, 100, 103, 107, 109, 110, 123, 125, 126, 129,
132, 135, 147, 150, 152, 161, 163, 164, 169, 173, 175, 177,
179, 180, 181, 182, 184, 186, 188, 192, 194, 197, 200, 209,
211, 212, 220, 223, 224, 234, 237, 239, 241, 243, 247, 249,
251, 252, 253, 254, 256, 258, 262, 264, 266, 271, 272, 281,
284, 287, 290, 293, 296, 305, 306, 311, 313, 315, 319, 321,
323, 324, 325, 326, 328, 330, 334, 336, 338, 340, 343, 353,
354, 357, 365, 366, 368, 377, 380, 383, 385, 389, 391, 393,
395, 396, 397, 398, 400, 402, 404, 408, 413, 414, 416, 425,
427, 430, 442, 445, 448, 451, 452, 454, 467, 468, 470, 474,
477, 480, 490, 492, 495, 499, 500, 504, 505, 506, 507, 508,
510, 511, 513, 515, 517, 521, 523, 527, 539, 540, 544, 546,
548, 551, 553, 554, 555, 556, 557, 560, 561, 563, 567, 569,
571, 573

(1,3) 27, 30, 41, 43, 83, 86, 90, 93, 98, 101, 113, 119, 130, 133,
139, 142, 146, 151, 153, 157, 193, 196, 203, 207, 226, 229,
235, 240, 275, 280, 282, 285, 292, 295, 297, 302, 337, 342,
348, 351, 370, 374, 381, 384, 420, 424, 426, 431, 435, 438,
444, 447, 458, 464, 476, 479, 484, 487, 491, 494, 534, 536,
547, 550

(2,2) 36, 39, 40, 42, 46, 48, 76, 79, 80, 89, 92, 95, 106, 111, 112,
116, 118, 120, 122, 127, 128, 138, 141, 143, 154, 156, 160,
165, 166, 168, 202, 206, 208, 213, 214, 216, 217, 221, 222,
225, 228, 231, 267, 269, 270, 274, 277, 279, 298, 300, 303,
307, 308, 310, 346, 349, 352, 355, 356, 360, 361, 363, 364,
369, 371, 375, 409, 411, 412, 417, 421, 423, 434, 436, 439,
449, 450, 455, 457, 459, 461, 465, 466, 471, 482, 485, 488,
497, 498, 501, 529, 531, 535, 537, 538, 541

III. ANALYSIS OF THE RESULTS IN COMPARISON WITH

OTHER QUASIGROUPS PROPERTIES

Our interest is to compare the results that we obtained consid-

ering the algebraic immunity, nonlinearity, balance, correlation

immunity and resiliency with results of previous research. In

fact, we want to compare the classification of quasigroups based

on the mentioned properties with the nonlinearity by Boolean

representation (see [2]). The purpose of this is to analyze if

there is a match between the classifications and to sort out the

quasigroups with best attributes.

Table 2: Classification of quasigroups by algebraic immunity,

nonlinearity and nonlinearity by Boolean representation

Class Quasigroups

AI (1,1)
NL (0,0)
linear
by Bool.
repr.

1, 4, 11, 14, 21, 24, 26, 27, 37, 40, 43, 46, 51, 54, 57, 60,
70, 71, 77, 80, 82, 83, 92, 93, 100, 101, 110, 111, 113, 116,
126, 127, 132, 133, 138, 139, 146, 147, 157, 160, 163, 166,
169, 172, 179, 182, 189, 192, 196, 197, 203, 206, 212, 213,
222, 223, 228, 229, 234, 235, 243, 246, 252, 253, 259, 262,
269, 272, 274, 275, 284, 285, 292, 293, 302, 303, 305, 308,
315, 318, 324, 325, 331, 334, 342, 343, 348, 349, 354, 355,
364, 365, 371, 374, 380, 381, 385, 388, 395, 398, 405, 408,
411, 414, 417, 420, 430, 431, 438, 439, 444, 445, 450, 451,
461, 464, 466, 467, 476, 477, 484, 485, 494, 495, 497, 500,
506, 507, 517, 520, 523, 526, 531, 534, 537, 540, 550, 551,
553, 556, 563, 566, 573, 576

AI (1,2)
NL (0,4)
nonlin-
ear by
Bool.
repr.

2, 3, 5, 6, 12, 13, 15, 16, 17, 18, 19, 20, 25, 28, 29, 30, 35,
36, 38, 39, 41, 42, 47, 48, 52, 53, 55, 56, 58, 59, 61, 62,
65, 66, 67, 68, 75, 76, 78, 79, 81, 84, 85, 86, 89, 90, 95, 96,
97, 98, 99, 102, 105, 106, 109, 112, 117, 118, 119, 120, 121,
122, 125, 128, 129, 130, 131, 134, 141, 142, 143, 144, 145,
148, 151, 152, 153, 154, 155, 156, 164, 165, 167, 168, 170,
171, 175, 176, 177, 178, 183, 184, 187, 188, 190, 191, 193,
194, 195, 198, 201, 202, 207, 208, 211, 214, 215, 216, 217,
218, 221, 224, 225, 226, 231, 232, 233, 236, 239, 240, 244,
245, 247, 248, 249, 250, 255, 256, 257, 258, 260, 261, 267,
268, 270, 271, 277, 278, 279, 280, 281, 282, 283, 286, 291,
294, 295, 296, 297, 298, 299, 300, 306, 307, 309, 310, 316,
317, 319, 320, 321, 322, 327, 328, 329, 330, 332, 333, 337,
338, 341, 344, 345, 346, 351, 352, 353, 356, 359, 360, 361,
362, 363, 366, 369, 370, 375, 376, 379, 382, 383, 384, 386,
387, 389, 390, 393, 394, 399, 400, 401, 402, 406, 407, 409,
410, 412, 413, 421, 422, 423, 424, 425, 426, 429, 432, 433,
434, 435, 436, 443, 446, 447, 448, 449, 452, 455, 456, 457,
458, 459, 460, 465, 468, 471, 472, 475, 478, 479, 480, 481,
482, 487, 488, 491, 492, 493, 496, 498, 499, 501, 502, 509,
510, 511, 512, 515, 516, 518, 519, 521, 522, 524, 525, 529,
530, 535, 536, 538, 539, 541, 542, 547, 548, 549, 552, 557,
558, 559, 560, 561, 562, 564, 565, 571, 572, 574, 575

AI (2,2)
NL (4,4)
pure
nonlin-
ear by
Bool.
repr.

7, 8, 9, 10, 22, 23, 31, 32, 33, 34, 44, 45, 49, 50, 63, 64, 69,
72, 73, 74, 87, 88, 91, 94, 103, 104, 107, 108, 114, 115, 123,
124, 135, 136, 137, 140, 149, 150, 158, 159, 161, 162, 173,
174, 180, 181, 185, 186, 199, 200, 204, 205, 209, 210, 219,
220, 227, 230, 237, 238, 241, 242, 251, 254, 263, 264, 265,
266, 273, 276, 287, 288, 289, 290, 301, 304, 311, 312, 313,
314, 323, 326, 335, 336, 339, 340, 347, 350, 357, 358, 367,
368, 372, 373, 377, 378, 391, 392, 396, 397, 403, 404, 415,
416, 418, 419, 427, 428, 437, 440, 441, 442, 453, 454, 462,
463, 469, 470, 473, 474, 483, 486, 489, 490, 503, 504, 505,
508, 513, 514, 527, 528, 532, 533, 543, 544, 545, 546, 554,
555, 567, 568, 569, 570

A. Algebraic immunity, nonlinearity and nonlinearity by

Boolean representation

These three classifications match perfectly and this is pre-

sented in Table 2. Actually, all the quasigroups that are linear

by Boolean representations also have algebraic immunity (1,1)
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and nonlinearity (0,0). All the quasigroups that are nonlinear by

Boolean representations also have algebraic immunity (1,2) or

(2,1) and nonlinearity (0,4) or (4,0). Finally, all the quasigroups

that are pure nonlinear by Boolean representations also have

algebraic immunity (2,2) and nonlinearity (4,4).

B. Algebraic immunity, nonlinearity and nonlinearity by

Boolean representation opposed to balance, correlation immu-

nity and resiliency

It is important to compare the results of the classification

presented in Table 1 with the one presented in Table 2. As

we mentioned before compromise between nonlinearity and

correlation immunity is inevitable. Also, we can say that the

most important is the specific context of application of quasi-

groups, since the mentioned properties are almost inverse, so

the question of selecting the best quasigroups for cryptographic

purposes depends on the requirements we want it to fulfill.

In other words, if we want resistance to algebraic attacks, we

should use the pure non-linear quasigroups by Boolean repre-

sentations, but they are the worst for resistance to correlation

attacks. If we want resistance to correlation attacks, we should

use the linear quasigroups, but they are the worst for resistance

to algebraic attacks. We could use nonlinear quasigroups by

Boolean representations, because they are not the worst for

nonlinearity or correlation immunity, but they are not good

enough for both resistance to algebraic attacks and resistance

to correlation attacks.

Figure 4 shows the distribution of quasigroups based on their

correlation immunity opposed to their nonlinearity.

Figure 4: The distribution of quasigroups based on their

correlation immunity opposed to their nonlinearity

IV. CONCLUSION

In this paper we have presented new properties of quasigroups

relevant for cryptology using their Boolean representation. We

have made two classifications: based on the algebraic immunity,

nonlinearity and nonlinearity by Boolean representation on

one hand and based on balance, correlation immunity and

resiliency on the other hand.

To sum up, some of the quasigroups of order 4 have some

good cryptographic properties, but none of them has perfect

cryptographic properties. None of the Boolean functions of

the Boolean representations of quasigroups has maximal

nonlinearity 6. The highest nonlinearity we obtained is 4,

which is expected since all of the Boolean representations of

quasigroups are actually balanced Boolean functions, so they

can’t have maximal nonlinearity.

The quasigroups are good for application in cryptographic

primitives, but not on their own. Their application should not

be straight forward, but improved so that the cryptographic

primitive they are applied in has higher nonlinearity, or higher

correlation immunity, or it is prone to different types of attacks

in general.
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