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A new method for computing the number

of n-quasigroups

S. Markovski, V. Dimitrova, A. Mileva

Abstract. We use the isotopy classes of quasigroups for computing the numbers
of finite n-quasigroups (n = 1, 2, 3, . . . ). The computation is based on the prop-
erty that every two isotopic n-quasigroups are substructures of the same number of
n + 1-quasigroups. This is a new method for computing the number of n-quasigroups
and in an enough easy way we could compute the numbers of ternary quasigroups
of orders up to and including 5 and of quaternary quasigroups of orders up to and
including 4.
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1 Introduction

An n-groupoid (n ≥ 1) is an algebra (Q, f) on a nonempty set Q as its universe
and with one n-ary operation f : Qn → Q. An n-groupoid (Q, f) is said to be an
n-quasigroup if any n of the elements a1, a2, . . . , an+1 ∈ Q, satisfying the equality

f(a1, a2, . . . , an) = an+1,

uniquely determine the other one [1]. An n-groupoid is said to be a cancellative
n-groupoid if it satisfies the cancellation law

f(a1, . . . , ai, x, ai+2, . . . , an) = f(a1, . . . , ai, y, ai+2, . . . , an) ⇒ x = y

for each i = 0, 1, . . . , n− 1 and every aj ∈ Q. An n-groupoid is said to be a solvable
n-groupoid if the equation f(a1, . . . , ai, x, ai+2, . . . , an) = an+1 has a solution x for
each i = 0, 1, . . . , n − 1 and every aj ∈ Q.

The definition of an n-quasigroup immediately implies the following.

Lemma 1. Let (Q, f) be a finite n-quasigroup and let the mapping ϕ : Q → Q be

defined by ϕ(x) = f(a1, . . . , ai, x, ai+2, . . . , an). Then ϕ is a permutation on Q.

Here we consider only finite n-quasigroups (Q, f), i.e., Q is a finite set, and in
this case we have the next property.

Proposition 1. The following statements for a finite n-groupoid (Q, f) are equiva-

lent:

(a) (Q, f) is an n-quasigroup.

(b) (Q, f) is a cancellative n-groupoid.

(c) (Q, f) is a solvable n-groupoid.
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Proof. (a) ⇒ (b) follows immediately by the definitions.

(a) ⇒ (c) follows by Lemma 1.

Clearly, (b) and (c) imply (a).

(b) ⇒ (c): Let (Q, f) be a cancellative n-groupoid. Then

{f(a1, . . . , ai, x, ai+2, . . . , an)| x ∈ Q} = Q

for any fixed aj ∈ Q.

(c) ⇒ (b): If the groupoid (Q, f) is not cancellative then, for some aj ∈ Q
and i ∈ {0, . . . , n − 1}, the equation f(a1, . . . , ai, x, ai+2, . . . , an) = an+1 has
two different solutions x1 6= x2. Then there is an element b ∈ Q such that
b /∈ {f(a1, . . . , ai, x, ai+2, . . . , an)| x ∈ Q}. Hence, the equation f(a1, . . . , ai, x,
ai+2, . . . , an) = b has no solution on x. �

Given n-quasigroups (Q, f) and (Q,h), we say that (Q, f) is isotopic to (Q,h) if
there are permutations α1, α2, . . . , αn+1 on Q such that for every aj ∈ Q

αn+1f(a1, . . . , an) = h(α1a1, . . . , αnan).

If (Q, f) is isotopic to (Q,h), then (Q,h) is isotopic to (Q, f) too, since for
the permutations α−1

1 , α−1
2 , . . . , α−1

n+1 we have α−1
n+1h(a1, a2, . . . , an) = f(α−1

1 a1, . . .
. . . , α−1

n an). Then we say that the n + 1-tuple of permutations (α1, . . . , αn+1) is an
isotopism between the n-quasigroups (Q, f) and (Q,h). The set of all isotopisms of
an n-quasigroup is a group under the operation [3]:

(α1, α2, . . . , αn+1)(β1, β2, . . . , βn+1) = (α1β1, α2β2, . . . , αn+1βn+1).

Also, the relation ”is isotopic to” is an equivalence relation in the set of all
n-quasigroups over a set Q. The equivalence classes are called the classes of iso-
topism or isotopy classes.

Example 1. A unary quasigroup (Q, f) is in fact a permutation on the set Q. If
(Q, f) and (Q, g) are unary quasigroups, then they are isotopic by the isotopism
(g−1, f−1). Hence, there is only one isotopy class in the set of unary quasigroups
over given universe.

Let Q = {1, 2, . . . , r}, r > 0. An r × · · · × r
︸ ︷︷ ︸

n

-matrix L = [li1,i2,...,in ], such that for

each i1, . . . , ij−1, ij+1, . . . , in and each j the (i1, . . . , ij−1, ij+1, . . . , in)-th row vector
(li1,...,ij−1,1,ij+1,...,in , li1,...,ij−1,2,ij+1,...,in , . . . , li1,...,ij−1,r,ij+1,...,in) of L is a permutation

of Q, is said to be an n-Latin square of order r. The main body of the multiplication
table of an n-quasigroup (Q, f) is an n-Latin square. Conversely, from an n-Latin
square we can obtain an n-quasigroup, by its bordering [2, 5]. (Note that a 1-Latin
square is a permutation of Q, and a 2-Latin square is a Latin square [2].)

In this paper we give a new method for computing the number of
n-quasigroups, that is based on the main theorem from Section 2. For compu-
ting the number of n + 1-quasigroups one needs the number of elements of each
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isotopy class of n-quasigroups, and a representative of each isotopy class. We note
that the other methods for computing the number of n + 1-quasigroups of order r
use the formula Lr = r!(r− 1)!nNr, where Lr is the number of all n + 1-quasigroups
of order r, and Nr is the number of so called normal n + 1 quasigroups of order r.
Usually, the number Nr is computed by different combinatorial technique, while our
approach is algebraically based.

Applications of our method for computing the number of n-quasigroups are given
in Section 3. For that aim we introduce a linear ordering of the set of n-quasigroups
on the universe set {1, 2, . . . , r}. The obtained results are the same as those obtained
by other methods.

2 Main theorem

The problem of enumerating the set of quasigroups of given order r is well known.
In fact, only the number of binary quasigroups of order r ≤ 11 is known [4]. Nowa-
days, one can handle by personal computer only the set of quasigroups of order r ≤ 6
(or maybe 7), since there are about 8.12 × 108 quasigroups of order 6, 6.14 × 1013

quasigroups of order 7 and 1.08 × 1020 quasigroups of order 8.
The main theorem of this paper allows the numbers of n + 1-quasigroups (of

small orders) to be computed, provided the isotopy classes of n-quasigroups of given
order are known.

Given an n + 1-quasigroup (Q, f) of order r = |Q|, n ≥ 1, we define an (a, i)-
projected n-quasigroup (Q, fa,i) for each i = 1, 2, . . . , n + 1 and each a ∈ Q by

fa,i(x1, . . . , xi−1, xi+1, . . . , xn+1) := f(x1, . . . , xi−1, a, xi+1, . . . , xn+1).

We have by Proposition 1 that fa,i is an n-quasigroup operation and that

fa,i = fb,i ⇐⇒ a = b. (1)

This implies that the n + 1-ary operation f is uniquely determined by each of the
sets Fi = {fa,i| a ∈ Q} of (a, i)-projected n-ary operations (i = 1, 2, . . . , n + 1).

Proposition 2. Let Q be a finite nonempty set and let {fa| a ∈ Q} be a set of

n-quasigroup operations on Q such that

a 6= b ⇒ fa(a1, . . . , an) 6= fb(a1, . . . , an) (2)

for every a1, . . . , an ∈ Q. Fix a number i ∈ {1, 2, . . . , n + 1}. Then an

n + 1-quasigroup (Q, f) can be defined such that (Q, fa) are its (a, i)-projected
n-quasigroups, i.e. (Q, fa,i) = (Q, fa) for each a ∈ Q.

Proof. Choose a number i ∈ {1, 2, . . . , n + 1} and define an n + 1-ary operation f
by

f(a1, a2, . . . , an+1) := fai
(a1, . . . , ai−1, ai+1, . . . , an+1)

for every a1, . . . , an+1 ∈ Q. Then (Q, f) is a cancellative n + 1-groupoid, hence it
is an n + 1-quasigroup by Proposition 1. By the definition of an (a, i)-projected
n-quasigroup, we have fa,i = fa. �
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Theorem 1. Let Q = {q1, q2, . . . , qr}, r ≥ 1, and let (Q, g) and (Q,h) be two

n-quasigroups from the same isotopy class. Fix a number i ∈ {1, 2, . . . , n+1}. Then

the number of n + 1-quasigroups having (Q, g) as its (q1, i)-projected n-quasigroup

is equal to the number of n + 1-quasigroups having (Q,h) as its (q1, i)-projected
n-quasigroup.

Proof. Fix a number i ∈ {1, 2, . . . , n + 1}. Let (α1, α2, . . . , αn+1) be an isotopism
from (Q, g) to (Q,h), i.e.

αn+1g(a1, . . . , an) = h(α1a1, . . . , αnan)

for each a1, . . . , an ∈ Q. Let (Q, f) be an n + 1-quasigroup such that fq1,i = h.
Then, for the projected quasigroups, by (1) we have

fqs,i = fqt,i ⇐⇒ s = t. (3)

Define a set of n-quasigroups {(Q, f ′
q)| q ∈ Q} by f ′

q1
= g and

f ′
qj

(x1, x2, . . . , xn) := α−1
n+1fqj ,i(α1x1, α2x2, . . . , αnxn) (4)

for j = 2, 3, . . . , r.
The condition (2) of Proposition 2 is satisfied for the set of n-quasigroups

{(Q, f ′
q)| q ∈ Q}. Namely, if f ′

qs
= f ′

qt
, then

α−1
n+1fqs,i(α1x1, α2x2, . . . , αnxn) = α−1

n+1fqt,i(α1x1, α2x2, . . . , αnxn)

and that implies

fqs,i(α1x1, α2x2, . . . , αnxn) = fqt,i(α1x1, α2x2, . . . , αnxn).

Since αk are permutations, we have fqs,i = fqt,i, leading to s = t by (3). Now, by
Proposition 2, we can define an n + 1-quasigroup (Q, f ′) such that f ′

q1,i = g and
f ′

qj,i
= f ′

qj
for j ≥ 2.

We showed that to any n+1-quasigroup (Q, f) satisfying the condition fq1,i = h
we can adjoin an n + 1-quasigroup (Q, f ′) satisfying the condition f ′

q1,i = g. If

(Q, f̃) is another n + 1-quasigroup satisfying the condition f̃q1,i = h and if an n + 1-
quasigroup (Q, f̃ ′) is constructed from f̃ as above, then f̃ ′ 6= f ′. Namely, the equality
f̃ ′ = f ′ implies, by (4),

α−1
n+1fqj,i(α1x1, α2x2, . . . , αnxn) = α−1

n+1f̃qj,i(α1x1, α2x2, . . . , αnxn),

i.e. we have fqj,i = f̃qj ,i for each j = 1, 2, . . . , r. Hence, f = f̃ .
We proved that the number of n + 1-quasigroups having (Q, g) as its

(q1, i)-projected n-quasigroup is not smaller than the number of n + 1-quasigroups
having (Q,h) as its (q1, i)-projected n-quasigroup. Analogously, the number of
n + 1-quasigroups having (Q,h) as its (q1, i)-projected n-quasigroup is not smaller
than the number of n + 1-quasigroups having (Q, g) as its (q1, i)-projected
n-quasigroup. �
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Corollary 1. Let Q = {q1, q2, . . . , qr}, r ≥ 1, and let the isotopy classes of the

n-quasigroups on Q be C1, C2, . . . , Ck. Then the number of n + 1-quasigroups on Q
is equal to

b1|C1| + b2|C2| + · · · + bk|Ck| (5)

where bi denotes the number of n + 1-quasigroups having as its (q1, 1)-projected n-

quasigroup an n-quasigroup from the class Ci.

Example 2. There are 6 unary quasigroups on the set Q = {1, 2, 3} and they
can be represented as the permutations 123, 132, 213, 231, 312 and 321. They
form one class of isotopism C1 and the unary quasigroup 123 can be (1,1)-projected
quasigroup to b1 = 2 binary quasigroups:

∗1 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

∗2 1 2 3

1 1 2 3
2 3 1 2
3 2 3 1

Consequently, there are 2 × 6 = 12 binary quasigroups on the set {1, 2, 3}.

3 Numerical results

The main theorem of this paper helps us to compute the numbers of
n-quasigroups of order r. We could do that only for smaller values of r. For
computing purposes we present the set of n-quasigroups of order r linearly and
we order them lexicographically as follows. We take that the universe set is
Q = {1, 2, . . . , r} and that the n-quasigroups are given by their n-Latin squares.
The unary quasigroups are linearly presented and lexicographically ordered in a
natural way, since its 1-Latin square consist of only one permutation of Q. An
n + 1-quasigroup (Q, f) of order r is uniquely determined by its (q, i)-projected
quasigroups (Q, f1,i), (Q, f2,i), . . . , (Q, fr,i), for each fixed i ∈ {1, 2, . . . , n + 1}. We
fix i = 1 and let S1, S2, . . . , Sr be the linear presentations of the quasigroups
(Q, f1,1), (Q, f2,1), . . . , (Q, fr,1) respectively. Then the linear presentation of the
n + 1-quasigroup (Q, f) is given by

S1 || . . . |
︸ ︷︷ ︸

n

S2 || . . . |
︸ ︷︷ ︸

n

. . . || . . . |
︸ ︷︷ ︸

n

Sr. (6)

Now, the lexicographic ordering of the linear presentations of all n-quasigroups of
order r gives the ordering of the quasigroups.

Example 3. On the set {1, 2, 3} we have the following linear presentations
and lexicographically ordering of the unary, binary and ternary quasigroups.

123 < 132 < 213 < 231 < 312 < 321,

123|231|312 < 123|312|231 < 132|213|321 < 132|321|213 <
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< 213|132|321 < 213|321|132 < 231|123|312 < 231|312|123 <

< 312|123|231 < 312|231|123 < 321|132|213 < 321|213|132,

123|231|312||231|312|123||312|123|231 < 123|231|312||312|123|231||231|312|123 <

< 123|312|231||231|123|312||312|231|123 < 123|312|231||312|231|123||231|123|312 <

< 132|213|321||213|321|132||321|132|213 < 132|213|321||321|132|213||213|321|132 <

< 132|321|213||213|132|321||321|213|132 < 132|321|213||321|213|132||213|132|321 <

< 213|132|321||132|321|213||321|213|132 < 213|132|321||321|213|132||132|321|213 <

< 213|321|132||132|213|321||321|132|213 < 213|321|132||321|132|213||132|213|321 <

< 231|123|312||123|312|231||312|231|123 < 231|123|312||312|231|123||123|312|231 <

< 231|312|123||123|231|312||312|123|231 < 231|312|123||312|123|231||123|231|312 <

< 312|123|231||123|231|312||231|312|123 < 312|123|231||231|312|123||123|231|312 <

< 312|231|123||123|312|231||231|123|312 < 312|231|123||231|123|312||123|312|231 <

< 321|132|213||132|213|321||213|321|132 < 321|132|213||213|321|132||132|213|321 <

< 321|213|132||132|321|213||213|132|321 < 321|213|132||213|132|321||132|321|213.

Thus, on the set {1, 2, 3}, the 5-th binary quasigroup is 213|132|321 and the
16-th ternary quasigroup is 231|312|123||312|123|231||123|231|312. One can see that
the 14-th ternary quasigroup is built up from the 8-th, 9-th and the first binary
quasigroups. �

Trivially, there is only one n-quasigroup of order 1 and r! unary quasigroups of
order r. For computing the number of n-quasigroups of order 2 and 3 it is use-
ful to be noted the following. Let in (6) us S1 = s11s12 . . . s1r|t11t12 . . . t1r| . . . ,
S2 = s21s22 . . . s2r|t21t22 . . . t2r| . . . , Sr = sr1sr2 . . . srr|tr1tr2 . . . trr| . . . , where
sλµ, tλµ ∈ {1, 2, . . . , r}. Then

s11s21 . . . sr1, s12s22 . . . sr2, . . . , s1rs2r . . . srr,
t11t21 . . . tr1, t12s22 . . . tr2, . . . , t1rt2r . . . trr, . . .

(7)

are permutations of {1, 2, . . . , r}. Immediately we have:

Proposition 3. There are only 2 n-quasigroups of order 2.

Proposition 4. The number of n-quasigroups of order 3 is 3 × 2n.

Proof. Let S1 || . . . |
︸ ︷︷ ︸

n

S2 || . . . |
︸ ︷︷ ︸

n

S3 be an n + 1-quasigroup of order 3. S1 can be any

n-quasigroup of order 3. Given S1, by (7), there are only two choices for S2; given
S1 and S2, the quasigroup S3 is uniquely determined. Since we have 6 1-quasigroups
of order 3, the result follows. �

Proposition 5. The number of n-quasigroups of order 4 for n = 1, n = 2, n = 3
and n = 4 are 24, 576, 55 296 and 36 972 288 respectively.
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Isotopy class Represent of Ci |Ci| bi bi|Ci|

1234|2143|3412|4321||
C1 2143|1234|4321|3412|| 864 2292 1980288

3412|4321|1234|2143||
4321|3412|2143|1234
1234|2143|3421|4312||

C2 2143|1234|4312|3421|| 2592 852 2208384

3421|4312|2143|1234||
4312|3421|1234|2143
1234|2143|3412|4321||

C3 2143|1234|4321|3412|| 2592 876 2270592

3412|4321|2143|1234||
4321|3412|1234|2143
1234|2143|3412|4321||

C4 2143|1234|4321|3412|| 2592 876 2270592

3421|4312|1243|2134||
4312|3421|2134|1243
1234|2143|3412|4321||

C5 2143|1234|4321|3412|| 2592 876 2270592

3421|4312|2134|1243||
4312|3421|1243|2134
1432|3241|4123|2314||

C6 4123|2314|1432|3241|| 2592 876 2270592

3214|4132|2341|1423||
2341|1423|3214|4132
1432|3241|4123|2314||

C7 4123|2314|1432|3241|| 2592 876 2270592

3241|1432|2314|4123||
2314|4123|3241|1432
1432|3241|4123|2314||

C8 4123|2314|1432|3241|| 2592 876 2270592

3214|1423|2341|4132||
2341|4132|3214|1423
1234|2341|3412|4123||

C9 4123|3412|2341|1234|| 5184 144 746496

3412|1234|4123|2341||
2341|4123|1234|3412
1234|2341|3412|4123||

C10 4321|1432|2143|3214|| 5184 144 746496

2413|3124|4231|1342||
3142|4213|1324|2431
1243|2431|3124|4312||

C11 3421|4213|1342|2134|| 5184 144 746496

2314|3142|4231|1423||
4132|1324|2413|3241
1234|2143|3412|4321||

C12 2143|1234|4321|3412|| 20736 816 16920576

3412|4321|1243|2134||
4321|3412|2134|1243

Table. Isotopy classes of ternary quasigroups of order 4

Proof. We use Corollary 1. There is only one isotopy class of unary quasigroups
of order 4, and the unary quasigroup 1234 is the first unary quasigroup of 24 binary
quasigroups. So, there are 24 × 24 = 576 binary quasigroups. There are 2 isotopy
classes of binary quasigroups, C1 with 144 and C2 with 432 elements. The quasigroup
1234|2143|3412|4321 ∈ C1 is the first quasigroup of b1 = 132 ternary quasigroups,
and the quasigroup 1234|2143|3421|4312 ∈ C2 is the first quasigroup of b2 = 84
ternary quasigroups. So, there are 144×132+432×84 = 55296 ternary quasigroups
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of order 4. For the quaternary quasigroups of order 4 the results are presented
in Table. �

We remark that the result of Table differs from that given in ”On-Line En-
cyclopedia of Integer Sequences” (see [7]) for the sequence A099321 of ”Number of
isotopy classes of Latin cubes of order n”. We note that, by using Table, we correctly
computed the number of quaternary quasigroups of order 4 (see also [5, 6]).

Proposition 6. The numbers of n-quasigroups of order 5 for n = 1, n = 2 and

n = 3 are 120, 161 280 and 2 781 803 520 respectively.

Proof. We use Corollary 1. There is only one isotopy class of unary quasigroups of
order 5, and the unary quasigroup 12345 is the first unary quasigroup of 56 binary
quasigroups of the form

12345|2a1b1c1d1|3a2b2c2d2|4a3b3c3d3|5a4b4c4d4.

So, 12345 can be the first unary quasigroup of 56 × 4! = 1 344 binary quasigroups.
Hence, there are 5! × 1 344 = 161 280 binary quasigroups of order 5.

There are 2 isotopy classes of binary quasigroups of order 5, C1 with 17280 and
C2 with 144 000 elements. The quasigroup 12345|31452|43521 |54213|25134 ∈ C1

is the first quasigroup of b1 = 22 584 ternary quasigroups, and the quasigroup
12345|21453|34512|45231|53124 ∈ C2 is the first quasigroup of b2 = 16 608 ternary
quasigroups. So, there are 17280× 22584 + 144000× 16608 = 2781803520 ternary
quasigroups of order 5. �
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