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Identity sieves for quasigroups

Smile Markovski, Vesna Dimitrova and Simona Samardjiska

Abstract. In this paper we consider the set Q, of all finite quasigroups of a given
order n, where n is a positive integer. Using left and right translations, as well as suitably
chosen quasigroup terms ¢, we define sets of identities that are satisfied in the class Q.
The set Q,, can be represented as a union of isomorphism classes C;, 9, = U?:l(Ci,
and we use sets of identities as sieves for classifying the isomorphism classes. In such a
way we make a presentation of the set of all isomorphism classes of Q,, in the form of
a disjoint union {Ci,...,Cp} = Uj_; 0@ where Q™ are unions of isomorphism classes.
We show that these classifications can be used for obtaining quasigroups with special
qualities, that can be applied for designing several kinds of cryptographic primitives
(PRNG, hash functions, stream and block ciphers,...), or for defining error detecting
and error correcting codes.

Also, by using suitably chosen identities, we show the fractal structure of some

quasigroups in Q.

1. Introduction

A groupoid (G,-) is a pair of a nonempty set G and a binary operation
-2 G? — G. Given a groupoid (G, -) and an element a € G, the translations
L, and R,, called left translation and right translation, are defined by
Ly(z) = ax and R,(z) = xa, for each x € G. A groupoid (G, -) is said to
be a quasigroup if and only if L, and R, are permutations on G for each
a€G.

Note that each set of translations

S=A{La,. - Lap,,Rpy,...,Rp,}, m=>0, k>0,

on a groupoid (G, -) generates a semigroup <.S>.
We have the following result.

Theorem 1.1. Let (G,-) be a finite quasigroup, and let S = {Lq,, ..., Lq,,
Rayy...y Ry, }, where G = {ay,...,an}. Then for each T €<S> there is a
smallest integer r = r(T) such that T" = 1.
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Proof. Since L, and R, are permutations on G, < S > is a group of
permutations on G, so 7(T) is the order of the permutation 7. O

If T is a permutation of a set G = {ay,...,a,}, then for each element
b € G there is a number 7, < n such that 77 (b) = b. (Namely, the set
{b, T(b), T?(b), ...} is a subset of G.) Then, for the number
re = LOM (7a,,Tags - -sTa,) < LOM(1,2,...,n)
we have T"T (z) = x for each x € G. Hence, T"T = 1¢, and r(T) is a factor
of rr. So, we have the next theorem:

Theorem 1.2. The order r(T') of each T € <S>, where S is a set of left
and right translations of a finite quasigroup G, is a factor of the number

LCM(1,2,...,|G)).

We need as well to introduce the notion of a term.

A groupoid term, where f denotes a binary functional symbol and X
denotes a nonempty set of variables, is defined inductively as follows:

1) x is a term for each x € X

2) if t1,...,t, are terms, then the expression f(t1,...,t,) is a term.

Given a term t and different variables z1,...,zr € X, by t(x1,...,zk)
we denote that only the variables z1, ...,z may appear in the term ¢; hence,
some variable x; may not appear in ¢. In the sequel we consider special
types of terms t(x1,..., k), where a variable x; appears exactly once, and
we denote it by ¢(z;, z;), where Z; denotes a fixed tuple of all other variables
occurring in ¢t. For example, the term t(z,y, z,u,v,w) = (y(x((yz)u)))(zy)
can be denoted as t = t(Z,z) or t = t(u,u). There are several choices for =
(z = (y,2,u), or T = (u,z,y), or T= (y,u,2), ...) as well as for u, and for
our purposes it does not matter which one is chosen.

Let (G,-) be a given groupoid. Each term ¢t = t(xy,...,zx) defines
an s-ary function t© on the set G, where s is the number of all different
variables that occur in t. Denote by y1,...,ys € X all different variables in
t, in some ordering. (Depending on the ordering, different functions t“ can
be defined.) The definition of t& follows the inductive definition of a term.
For each variable z we have that =¥ is the identity mapping. If t = t1to,

where 71 contains the different variables y;,...,y;, and ¢ contains the
different variables y;, , ..., y;,, then for all a; € G we define t%ay,...,a5) =
tf(ail, N ,aip) . tg(ajl, N ,ajq).

Given a term t(y1, . .., ys), where y; are different variables that occur in ¢,
and given an I-tuple (a;,, ..., a;) € G, we can define an (s —[)-ary function
tG on G by tG (al,...,ail,l,aiﬁl,...,ail,l,aiﬁl,...,as) =

ail,...,ail ail,‘..,ail
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t%ay, ..., as). We say that tgp
the I-tuple (a;,...,a;) € G

By using the notation ¢(Z, z) of a term t with s different variables, where
x occurs exactly once in ¢, we denote by tg; the (s — 1)-th projection of ¢,
obtained by the (s —1)-tuple @ € G*~'. So, t& is the mapping on G defined
by t&(z) = t%a, z).

In the case of quasigroups, we have that t& € < S >, where G =
{ai,...,an} and S = {Lg4,,...,La,, Ray,-..,Ra,}. For example, when
t = (y(x((y2)u))(zy) = t(z,x), T = (u,y,2) and a = (b,¢,d), we have
o = RgcLeRcqyp- Therefore, Theorem 1.1 and Theorem 1.2 hold for these
mappings too.

Given two terms t1 and o, the expression t1 & to is called an identity. An
identity t1(x1,...,2) = ta(x1,...,x) is said to be satisfied in a groupoid
G if for every a; € G we have t$(a1,...,a1) = tS(a1,...,ax). An identity
is satisfied in a class of groupoids C if it is satisfied in every groupoid of
C. (Note that t{ and t§ are not considered as k-ary functions on G, since
some of the variables x1,...,z; may not appear neither in ¢; nor in ¢s.)

is the [-th projection of ¢ defined by

NS

Further on, if there is no confusion, instead of t© we will write simply t.

2. Sieve construction

In this Section we consider finite quasigroups only.

Lately, quasigroups have been intensively studied for use in cryptogra-
phy and coding theory. The notion of a shapeless quasigroup was defined
in [5] as a kind of quasigroup suitable for building cryptographic primitives.
According to this definition, a shapeless quasigroup @ should not satisfy any
identity of the form z(z(...(xy)...)) =y or (...((yz)z)...)xr =y, where
x occurs n < 2|@| times. In general, quasigroups may satisfy different types
of laws in the form of identities. Here, we make a wider characterization
regarding a special form of identities that refines the notion of a shapeless
quasigroup.

Let ¢ be a term of the form ¢ = (g, y) such that § = (x1,...,2x), k> 1
(and y # x; for each i = 1,...,k). A t-sieve is said to be the set Sieve(t)
of identities defined recursively as follows:

Sieve(t) = {tV = t(g,y), @) = t(g,tV), &) =1(g,t?),...}.

Note that t? = ¢(g,t(7,y)), ¥ = (7, t(7,t(7,))), .- ..
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Theorem 2.1. For each term t = t(y,y) and for each finite quasigroup Q,
there is a smallest number r(t, Q) such that trtQ) ~ y s an identity in Q.

Proof. Let t = t(7,y), ¥ = (z1,...,2) and @ = (a1,...,a) € QF. Then,
by Theorem 1.1, there is a smallest number r(¢z) such that t;(ta)(y) =y for
each y € Q. Note that tg(ta) = t((—lr(tf‘)), since tép) (y) =t(a,t(a,...,ta,y))) =
t2(y). Tt follows that for the number r(t,Q) = LCM{r(tz)| a € Q*} we
have t((—:(t’Q))(y) =y for every a € Q¥ and for each y € Q. This means that
trt@) ~ y is an identity in Q. O

The number r(¢, Q) is called a rang of ¢ in Q.
Let Q,, denote the set of all quasigroups of order n. We have the fol-
lowing.

Theorem 2.2. For each term t = t(y,y) there is a number r(t,n), such
that t(r(&1) ~ y 15 an identity in the set Q.

Proof. By Theorem 2.1 we have that for each ) € Q,, there is a num-
ber r(t,Q) such that t"@) ~ y is an identity in Q. Let r(t,n) =
LCM{r(t,Q)] Q@ € Q,}. Then t"®™) ~ y is an identity in @ for each
Q € Q,, i.e., it is an identity in Q,, as well. O

The number r(¢,n) is called a rang of t in Q,,. It follows, by the defini-
tion of r(t,n), that it is the smallest number such that t"&™) (7, y) ~ y
is an identity in Q,,. The upper bound of r(t,n) is LCM(2,3,...,n).
When considering Sieve(t) on Q,, in order to produce identities of the type
t(rtn) ~ Yy, it is enough to take its restriction, i.e., its finite subset

Sieve(t,n) = {t¥| i|LCM(2,3,...,n)}.

Using Sieve(t,n), where t = t(g,y), we sieve the quasigroups from Q,,
via the isomorphism classes of Q,,. The sieving algorithm SA(t,n) is the
following.

1. Input: the set Q,.

2. Represent the set Q,, as (disjoint) union of its isomorphism classes,
Q,=CiUCyU---UGCy,.

3. For j =1,2,...,h, take a representative quasigroup @; € C;.
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4. For each i|LCM(2,3,...,n) form families of isomorphism classes Q)
as follows. C; € Q(i) if ¢ is the smallest integer such that the identity
t) ~ y is satisfied in Qj.

5. Output: representation of the isomorphism classes of Q,, as a disjoint
union of families of isomorphism classes,

{Cy,...,CLy = U{QD| i|LCM(2,3,...,n)}.

The definition of Q® does not depend on Q;, since if an identity is
satisfied in Q;, then it is satisfied in each quasigroup @ € C; too.

Note that the families Q) = Q¥ (t) depend on the chosen term ¢. For
different terms ti, s, ts, ..., we can obtain different families Q) (tj),7 =
1,2,3,.... Then by using the intersection (\{QW(t;)| j =1,2,...}, we can
classify the isomorphism classes in several different ways. By this classifi-
cation we can separate isomorphism classes of quasigroups of given order n
suitable for different purposes. The Section 3 contains such classifications
for the set Q4 of quasigroups of order 4.

3. Classifications of quasigroups of order 4

In this section we consider the set Q4 of all binary quasigroups of order
4, consisting of 576 quasigroups. We order the set Q4 by lexicographic
ordering, using the presentation of the multiplicative table of a quasigroup
as a concatenation of the strings of its rows. The set Q4 can be represented
as a union of 35 isomorphism classes C;, and we take the quasigroups with
lexicographic numbers 1, 2, 3, 4, 6, 10, 14, 25, 26, 27, 28, 29, 30, 33, 34, 35,
37, 38, 39, 40, 73, 74, 77, 80, 83, 92, 149, 150, 155, 157, 158, 159, 160, 196,
213 as representatives for the classes C1,Co, ..., Css, respectively.

We have LOM (2,3,4) = 12, and there are 6 factors of 12: 1, 2, 3, 4, 6
and 12. Thus, Sieve(t,4) = {t)| i =1,2,3,4,6,12}. Using the algorithm
SA(t,4), for different choices of the terms ¢, we can obtain different classifi-
cations of the isomorphism classes. Table 1 and Table 2 present special type
of sieves constructed from all terms ¢ = ¢(g, y) such that § = (x), and with
m < 3 appearances of the variable z in t. So, for m = 1 we have two terms
zy, yzx, for m = 2 we have 6 terms z(xy), (yx)z, (zy)z, x(yx), (zx)y, y(zz),
and so on. Altogether, there are 24 terms of this type. Instead of C;, the
isomorphism classes in Table 1 (and in all other tables in this section) are
denoted simply by j.
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How can we read Tables 1 and 27 For m = 3, let us consider the term
t = z(xz(zy)) in Table 2. In column 1 we have 6 isomorphism classes:
Ca3,Coy, Cos, Cog,C34,Cs5. This means that the identity t) ~ Yy, l.e.,
z(z(zy)) ~ vy, is satisfied in all of these classes. We note that these classes
also satisfy the identities t®) & y for all other values of i, but i = 1 is the
smallest value of ¢ such that t® = y is an identity in these classes. Next,
the identity t? ~ y, i.e., z(z(z(z(z(xy))))) ~ y, is satisfied in the classes
C1,Cy4,Cr,Cq,Cq1,Cq6,Cq9, and ¢ = 2 is the smallest value of 7 such that
t0) ~ y is an identity in these classes. In all of the other classes the identity
t0) ~ y is satisfied for i = 4 (and also for i = 12), so they are given in
column 4. Note that the rang of the term t = x(z(zy)) in Q4 is r(t,4) = 4,
the same rang has the term ((yx)x)z, and the rang of the other terms in
Tables 1 and 2 is 12, except of the terms z(zy) and (yx)z, that have rang

lm [ eNa | v [ 2 | 38 [ 4 | 6 [ 12 |
1,4,7,8,(23,24,25,26,  2,3,5,6,9, 12,13,14,15,
Ty 11,16,29 34,35/ 10,17,20,30, 18,19,21,22,
33 27,28,31,32
6%1 1,3,9,11,] 7,20,25,26,| 2,4,8,10,12, 5,6,13,15,
yz 14,23,28 30,35/17,21,24,33, 16,18,19,22,
34 27,29,31,32
z(zy) 1,4,7,8,)  2,3,5,6,9,23,24,25,26, 12,13,14,15,
11,16,29(10,17,20,30, 34,35 18,19,21,22,
33 27,28,31,32
(zy)x 1,11,26|  2,3,4,8,9,] 7,17,23,25,[15,20,22,24,(13,14,16,19,]  5,6,12,18,
10,35 33 30,34| 27,2829  21,31,32
z(y) 1,11,26] 2,3,4,8,9,| 7,17,23,25,/15,20,22,24,13,14,16,19,| 5,6,12,18,
10,35 33 30,34|  27,28,29|  21,31,32
102 1,3,9,11,] 2,4,8,10,12,] 7,20,25,26, 5,6,13,15,
(yx)z 14,23,28|17,21,24,33, 30,35 16,18,19,22,
34 27,29,31,32
1,3 24,7,89,22,23 2425, 5,6,17,30,] 13,14,19,28]12,18,21,27,
(zz)y 10,11,15,16,|  26,34,35 33 31,32
20,29
1,8 2,3,4,9,10,] 7,15,20,25,[12,17,21,33,] 13,16,19,29| 5,6,18,27,
y(zz) 11,14,22,23,|  26,30,35 34 31,32
24,28

Table 1: Application of SA(t,4) on Q4 by using terms ¢ = ¢(y,y) with
g = (z), form=1and m = 2.

We analyze the obtained results in Tables 1 and 2. For that aim, we
look at the frequency of appearance of an isomorphism class in different
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[m | t\i | 1 2 3 4 6 12
23,24,25,26, 1,4,7,8, 2,3,5,6,9,10,
34,35 11,16,29 12,13,14,15,
z(z(zy)) 17,18,19,20,
21,22,27,28,
30,31,32,33
(z(zy))z 25 1,3,9,11,] 7,20,23,26,|  2,4,8,10,| 5,12,14,15,| 6,16,21,28,
17,24,34 30,35|  13,27,33| 18,19,22|  29,31,32
z((wy)z) 25 1,3,9,11,] 7,20,23,26,|  2,4,8,10,| 5,12,14,15,| 6,16,21,28,
17,24,34 30,35|  13,27,33| 18,19,22|  29,31,32
((zy)z)z 25 1,4,8,11,| 7,23,24.26,  2,3,9,10,| 5,12,15,16,| 6,14,21,28,
17,20,30 34,35  13,27,33| 18,19,22| 29,31,32
z(z(yz)) 25 1,3,9,11,| 7,20,23,26,|  2,4,8,10,| 5,12,14,15,| 6,16,21,28,
17,24,34 30,35|  13,27,33| 18,19,22|  29,31,32
(z(yz))z 25 1,4,8,11,] 7,23,24,26,|  2,3,9,10,| 5,12,15,16,| 6,14,21,28,
17,20,30 34,35|  13,27,33| 18,19,22|  29,31,32
z((yz)z) 25 1,4,8,11,| 7,23,2426,]  2,3,9,10,| 5,12,15,16,| 6,14,21,28,
17,20,30 34,35  13,27,33| 18,19,22| 29,31,32
7,20,25,26, 1,3,9,11, 2,4,5,6,8,10,
31*3 30,35 14,23,28 12,13,15,16,
((yz)z)x 17,18,19,21,
22,24,27,29,
31,32,33,34
17 1,4,7,9,10,]23,24,25,26,|  2,3,5,6,8,|12,13,19,31| 14,21,22,28
z((zx)y) 20,30,33 34,35|11,15,16,18,
27,29,32
((zz)y)z 26,35 1,3,8,10,| 7,17,23,25, 2,4,9,11,19,| 5,6,12,13,[16,21,22,28,
15,20,30 33| 24,27,31,34| 14,18,32 29
z(y(zz)) 26,35 1,3,8,10,| 7,17,23,25, 2,4,9,11,19,| 5,12,13,16,| 6,14,15,28,
22,24,34 33| 20,27,30,32|  18,21,31 29
17 1,4,9,10,| 7,20,25,26,| 2,3,8,11,12,| 5,13,19,32| 6,15,16,29
(y(zz))z 23,24,33,34 30,35( 14,18,21,22,
27,28,31
1,4,5,6,7,8,]23,24,25,26,| 2,3,9,10,18,[12,13,14,19,|  15,22,28
(z(zx))y 11,16,17,20, 34,35 31 21,27,32
29,30,33
23| 1,3,9,11,12,| 7,20,25,26,| 2,4,8,10,21,| 5,13,18,19,| 6,15,16,22,
y(z(zz)) 14,17,24,28,34 30,35 33 27,31 29,32
7 1,4,5,8,11,(23,24,25,26,| 2,3,6,9,10,[12,13,18,19,14,15,21,22,
((z2)z)y 16,17,20,29,30 34,35 33 27,32 28,31
1,3,9,11,12,| 7,20,25,26,|  2,4,8,10,| 5,6,13,16,] 15,22,29
y((zz)z) 14,17,21,23, 30,35 18,32| 19,27,31
24,28,33,34

Table 2: Application of SA(t,4) on Q4 by using terms ¢ = ¢(y,y) with
gy = (z), for m = 3.
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columns. For example, the class C; appears only in columns 1 and 2. It
means that the identity t® ~ y is satisfied for each term ¢ from Tables 1
and 2. Consequently, the quasigroups of the class C; should not be used
for cryptographic purposes, since they allow to be attacked by applying
very simple identities. Nevertheless, they are suitable for defining some
error detecting codes ([1]). On the other hand, the classes C3; and Cgso
appear 13 times in column 12, 6 times in column 6 and 5 times in column
4. We conclude that the quasigroups of the classes Cs; and Cse are suit-
able for cryptographic purposes. They have better cryptographic properties
regarding ¢, because it would be more unlikely and more difficult to reach
an expression that can be replaced by a simpler one. They belong also to
the class of shapeless quasigroups. Even more, for any term of the form
t = t(g,y) from Tables 1 and 2, they satisfy the identity ¢*) ~ y only when
mi > 12. One can find some identities of type ¢ = t(¢,y), where = appears
at least 5 times in ¢, such that the inequality m: > 12 is not satisfied. Nev-
ertheless, the inequality mi > 8 was satisfied in all terms t = ¢(y, y), where
y = (x), we have checked.

The discussion above can help improve the definition of a shapeless
quasigroup. Now, we define that a shapeless quasigroup should not satisfy
any identity of the form t() ~ y, for any term t = t(7,y), where § = (z),
for mi < 2n. By this new definition, we have that only the quasigroups of
the classes Ci3,C1g,C19,Co7,C3; and Csy can be considered as shapeless.

In Tables 1 and 2 we considered only special types of terms, in order to
get more complete picture of the distribution of the isomorphism classes in
the families Q). Still, sieves of general type Sieve(t), where t = (7, y) such
that ¥ = (x1,...,2s), s = 1, can be considered as well. For that aim we
investigate the left and the right translations, which define the quasigroups.
From the properties of these translations, we can derive general conclusions
about the structure of the quasigroups, and how they can be sieved. This
gives a different classification of the classes of isomorphism.

As we said earlier, in a quasigroup @, for an arbitrary term ¢ = (g, y),
and each @ € Q*~!, the mapping taQ €< S >, where Q = {aq,...,a,} and
S ={L4,---sLa,, Rays---,Ra,}. Even more, each translation (being a
permutation) can be represented as a composition of disjoint cycles. Hence,
the permutation tg can be given by cycles and the order of tc—LQ depends on
the lengths of these cycles. On the other hand, by Theorem 2.1, (¢, Q) =
LCM{r(tC—LQ)] a € Q* 1} sor(t,Q) depends on Lg,,...,La,, Ray,---,Ra,,
i.e., on the properties of their cycles.
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Example 3.1. Consider the quasigroup (@, -) that is a representative of
the isomorphism class Csq, given by its multiplicative table

=W N
W N |
W o = NN
N e W W
DO = W |~

Let t = (wy)z = t(y,y), where § = (x,2). Then, for a = (a,b) € Q?,
have t& = L,R,. Q is commutative with unit 1, so L1 = Ry = (1)(2)(3)(4),
L2 = R2 = (12)(34), L3 = R3 = (1324) and L4 = R4 = (1423)

1\IOW7 LlRl = (1)(2)(3)(4), L1R2 = L2R1 = (12)(34), L1R3 = L3R1 =
(1324), L1Ry = LyRy = (1423), LoR2 = (1)(2)(3)(4), LeR3 = L3Ry =
(1423), LoRy = LyRy = (1324), LyRy = L4Ry = (1324), L3Rs = (12)(34),
L3Ry = LyR3 = (1)(2)(3)(4), LaRy = (12)(34).

Since we have cycles of lengths 1, 2 and 4, r(¢,Q) = LCM(1,2,4) = 4.

This example shows how we can calculate r(t, Q) for given ¢ and ). But,
of course, there are an infinite number of terms, so such approach is not
always suitable. Especially, if we are considering the properties of quasi-
groups used in some kind of quasigroup transformations in a cryptographic
primitive. Still, the nature of the left and the right quasigroup translations
can show how the mapping taQ behaves for any ¢ or (). For cryptographic
purposes, a quasigroup ) needs bigger r(¢, Q) for any ¢.

Denote by rmae = maz{r(t,Q)| t is a term}, which in fact is the maxi-
mal i for any Sieve(t,4) that sieves the quasigroup (). Analyzing the cycles
of the translations L1, Ry, ..., L4, Ry from Example 3.1 we can conclude
that any composition of these translations, produces only permutations
with cycles of lengths 1, 2 and 4. Hence, we have that rp,, = 4 for all
quasigroups in the class Cs.

T'maz Isomorphism class
2 1
3 7,23,25,26,35
4 2,3,4,8,9,10,11,17,20,24,30,33,34
12 5,6,12,13,14,15,16,18,19,21,22,27,28,29,31,32

Table 3: Classification of Q4 by Sieve(t,4), for any term ¢.
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Table 3 gives the values 7,4, for all isomorphism classes in Q4. The
analysis that led to this classification is rather cumbersome and not espe-
cially neat. That is why, here we give only a few examples that prove the
correctness of Table 3.

Example 3.2. Consider the quasigroup with lexicographic order 1, that is a
representative of the isomorphism class C;, and is given by its multiplication
table

=W N
W N |
W o = NN
DN — s W W
=N W R

This quasigroup is commutative with unit 1, so L1 = Ry = (1)(2)(3)(4),
L2 = R2 = (12)(34), L3 = R3 = (13)(24) and L4 = R4 = (14)(23).

Let t be an arbitrary term. Then the mapping tg, a € Q! is some finite
composition of the translations Ly = Ry,...,Ls = R4. When composing
any two of these translations, we have only the following three possibilities:
(i) (kD) - (i) (kD) = (3)(G)(k)D), (i) (kL) - (iR)(jil) = (il)(kj) and (i) (k) -
() () (k) (1) = (i) (kD) (or (2)() (kY1) - (i) (k1) = (i) (k1)) .., again we get
permutations of the same type. Hence, an arbitrary composition produces
only permutations with cycles of lengths 1 and 2, which implies that 7,4, =
2 for all quasigroups in the class C;.

Example 3.3. Consider the quasigroups with lexicographic orders 92 and
213, that are representatives of the isomorphism classes Cog and Css respec-
tively. The quasigroups from these two different isomorphic classes have
identical properties regarding the translations that define them. Namely,
the left translations of the quasigroup 92 (given in Subsection 4.2) are
(1)(234), (2)(143),(3)(124), (4)(132), which on the other hand are the right
translations of the quasigroup 213. Again, the right translations of the
quasigroup 92, (1)(243),(2)(134),(3)(142), (4)(123), are the left transla-
tions of the quasigroup 213.

Similarly, as in the previous example, it is crucial to discover all of the
different cases of composing an arbitrary number of the translations that
define these quasigroups. We make several observations.

When composing any two left, or any two right translations, we have
these two possibilities: (7)(jkl) - (4)(jkl) = (3)(jlk) or (i)(jkl) - (§)(ilk) =
(I)(ijk), i.e., again we have permutations of the same type and of order 3.
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When composing a left and a right translation (in any order) we have
()GkD) - G)Glk) = (D)G)D) (k) or ()(Gk) - (7)(ikl) = (i0)(jk), i.e., we get
a new permutation of order at most 2. Now, this new type of permutation
can be composed with any of the quasigroup translations yielding (¢)(jkl) -
(i)(jk) = (ijl)(k), (i)(jlk) - (il)(jk) = (ikl)(j), and (il)(jk) - (1)(jkl) =
(ilk)(4), (il)(jk) - (i)(jlk) = (ilj)(k), or two such permutations can be
composed to give (il)(jk) - (il)(jk) = (i)(1)()(k) or (ij)(Ik) - (il)(jk) =
(ik)(15).

Hence, an arbitrary composition produces only permutations with cycles
of lengths 1 and 2, or only permutations with cycles of lengths 1 and 3. This
means that r,,,, = 3 for the quasigroups in the classes Cos and Css.

Example 3.4. The quasigroup with lexicographic order 158, that is a rep-
resentative of the isomorphism class Csq, has the following multiplication
table

B> =W N
N W N
o N W W
W DN = |

1
2
3
4

The left translations of this quasigroup are (12)(34),(1324), (1)(234),
(143)(2), while the right ones are (123)(4), (1)(3)(24), (134)(2), (1432). Since
these permutations have cycles of length 12, this immediately implies that

Tmaz = 12.

We combine Tables 1, 2 and 3 to obtain Table 4, where the values /...
come only from terms ¢ from Tables 1 and 2, i.e., v}, ... = mazx{r(t,Q)| t is a
term from Tables 1 and 2}. The families of isomorphism classes in Table 4
are separated by semi-columns. So, ‘1;” denotes the family {C;}, ‘7,23,35;
denotes the family {C7, Cas,Cs5}, and so on. The family ‘3,4,8,9,11;" ap-
pears in the columns ¢ = 1, ¢ = 2 and ¢ = 4. It means that for any term
t from Tables 1 and 2, only identities of the form t() ~ y are satisfied (for
the corresponding value of 7). Note that 7/, . = e = 4.

Tables 4 gives another information about the applications of quasi-
groups. Generally, the quasigroups from the classes in the row /.. = 12
and columns ¢ = 4, ¢ = 6 and ¢ = 12 should be used for building cryp-

tographic primitives, while those in the rows 7/ = 2,3 and columns

max
i = 1,2, 3 should be used for designing codes. As we have noted before, the
family ‘13,18,19,27,31,32;” contains the best quasigroups for cryptographic

purposes. Nevertheless, some other classes can be used quite as well. They
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are denoted by italic letters in the table (6, 21, 28 and 29). Namely, the
“italic” classes have the properties that in at least half of the terms ¢ from
Tables 1 and 2, the identity t() ~ y is satisfied only for i = 12.

[rmae\ e[ v T 2 [ 8 [ 4 [ 6 [ 1
2 1; 1;
3 7,23,35; 7,23,35; 7,23,35;
25,26; 25,26;
4 2,10; 2,10;
3,4,8,9,11; 3,4,8,9,11; 3,4,8,9,11;
33; 33; 33;
17,20,24,30,34;(17,20,24,30,34;(17,20,24,30,34;(17,20,24,30,34;
15,22; 15,22; 15,22; 15,22; 15,22;
12 14,16, 14,16, 14,16, 14,16, 14,16,
28,29, 28,29, 28,29, 28,29, 28,29,
5,12, 5,12, 5,12, 5,12,
6,21, 6,21; 6,21; 6,21;
13,18,19,27,|13,18,19,27,(13,18,19,27,
31,32; 31,32, 31,32;

/

Table 4: Classification of isomorphism classes by 77,

4. Proving the fractal structure
of quasigroup transformations

There are several papers [6, 7|, where quasigroup e- and d-transformations
are considered. In [4] a method for graphical presentation of sequences
obtained by quasigroup transformations is proposed. Using this method
(without mathematical proof) the quasigroups are classified in two disjoint
classes: the class of fractal quasigroups and the class of non-fractal quasi-
groups. Initiated by the identities sieves, here we give a proof that the
quasigroups of order 4 with lexicographic numbers 1 and 92 are fractal (see
Figure 1, where the patterns obtained from quasigroups with lexicographic
numbers 1, 92 and 191 are given; 1 and 92 are fractal, 191 is non-fractal).
In the same way it can be shown that all fractal quasigroups as classified
in [4] have really a fractal structure too. The proofs given here use suitably
chosen identities, satisfied in the quasigroup in question.

We consider here only e-transformations, defined on a quasigroup (Q, )
as follows. Let Q1 = {ajas...anla; € Q, n > 2} denote the set of all finite
sequences with elements of @ and let us take a fixed element [ € @, called
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a leader. The e-transformation e; : QT — Q7 is defined by:

by =lxay,

e(araz...an) = (bibs...bn) < {bz‘+1:bi*ai+1, 1<i<n—1

The method of producing images of quasigroup processed sequences is
defined as follows. Take a sequence aaa...a, a € ), and put one under the
other the sequences ¢;(aaa. ..a),e?(aaa...a),...,ef(aaa...a). For graphi-
cal presentation, like the one in Figure 1, we take different colors for different
elements of Q).

Figure 1: Images of e-transformations of the quasigroups 1, 92 and 191
4.1 The case of the quasigroup with lexicographic number 1

The quasigroup with lexicographic number 1 is given in Example 3.2. It
can be checked that the following identities are satisfied by this quasigroup:
Li: zy=~yz, (yo)r~y, ylyz) =z, (yo)’y =y, 222 ~ %

Let the starting sequence be zxxzzxzrzx ... and let the leader be | =y,
where x,y are variables. If we apply the e-transformation e, consecutively
on each produced sequence, then, using the identities I;, we obtain the
sequences shown on the table below,where the fractal structure appears
clearly.

] = | = | = | « | | 0« | = | = | |
y [wz] v yz y yw y yx y yz y
y |z | yz | wx)?| T yr | (o)’ | x yx
y || vz | o) | (w2)* | y yr | (y2)* | (y2)* | y yr_ | (yx)®
y ||z | = x yr | (yx)* | (yo)* | (y2)* |y x x
y |y | g yr | (yo)* | (yo)* | (yo)* | (yx)* | y yx y
y || =z | vz | ()’ | (yo)® | (yo)* | (yo)* | (yx)* | y x yx
y || yr [ (o)’ | (y2)® | (yo)” | (y=)® [ (yo)” | (yz)® | g yr_ | (yx)?
y T T T T T T T Yy (yz)2 (y:c)2
y |y | y yz y Yz y yr | (yo)* | (yz)? | (yx)®
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4.2 The case of the quasigroup with lexicographic number 92

The quasigroup with lexicographic number 92 is given by its multiplicative
table:

In this quasigroup the following identities are satisfied:

zx ~z, (yz)z)r =y, y(yz) = (yo)z, ((yz)z)y ~ yz,

oy = (yx)((yo)r) =y, y(y(yr)) ~ =, x((yx)z) = yz, (yo)y =z,
(yz)z = vy, ((yo)z)(yr) =z, 2(yz) = y.

We use the same starting sequence and leader as in the case of the

quasigroup 1, and the resulting e-transformations are presented in the table
below,where again a fractal structure appears.

y yr | (yr)z |y yr | (yo)z |y yr | (yr)z | y | y=
y || o)z | (yz)z | yz yx Yy Y (yz)z | (yx)z | yz | yz
Yy T yx Y YT r | (yx)zr | (yx)x | (yx)z | = |y
y yx y yz yr | (yr)z | (yx)z | (yz)z | (yz)z | y | ¥
y || yr)z | = y | o)z | (yx)z | (yo)z | (yo)z | (yo)z | yo | =
Yy x r | (yx)z | (yx)r | (yo)z | (yx)z | (yx)z | (yx)z | = | =
y yr | (yz)z | (yz)z | (y2)z | (yx)z | (yx)z | (y2)z | (yo)z | y | y=
y || o)z | (yx)z | (yo)z | (yo)z | (yo)o | (yx)o | (yo)z | (yo)z | yo | y=
Yy z Y Yy z YT Yy z yr | yr | yx

The proofs for other fractal quasigroups are similar, and they may be
quite complicated. But, if we try to write the sequences obtained by e-
transformation for non-fractal quasigroups, we get very complicated terms,
and it is almost impossible to obtain suitable identities.

Since if an identity is satisfied in a quasigroup @), it is satisfied in all
quasigroups isomorphic to @, we conclude that all of the quasigroups of the
isomorphism classes C; and Coq are fractal.
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