
Quasigroups and Related Systems 18 (2010), 149 − 163Identity sieves for quasigroupsSmile Markovski, Vesna Dimitrova and Simona SamardjiskaAbstra
t. In this paper we 
onsider the set Qn of all �nite quasigroups of a givenorder n, where n is a positive integer. Using left and right translations, as well as suitably
hosen quasigroup terms t, we de�ne sets of identities that are satis�ed in the 
lass Qn.The set Qn 
an be represented as a union of isomorphism 
lasses Ci, Qn = ∪h
i=1Ci,and we use sets of identities as sieves for 
lassifying the isomorphism 
lasses. In su
h away we make a presentation of the set of all isomorphism 
lasses of Qn in the form ofa disjoint union {C1, . . . , Cp} = ∪s

i=1Q
(i), where Q(i) are unions of isomorphism 
lasses.We show that these 
lassi�
ations 
an be used for obtaining quasigroups with spe
ialqualities, that 
an be applied for designing several kinds of 
ryptographi
 primitives(PRNG, hash fun
tions, stream and blo
k 
iphers,. . . ), or for de�ning error dete
tingand error 
orre
ting 
odes.Also, by using suitably 
hosen identities, we show the fra
tal stru
ture of somequasigroups in Q4. 1. Introdu
tionA groupoid (G, ·) is a pair of a nonempty set G and a binary operation

· : G2 → G. Given a groupoid (G, ·) and an element a ∈ G, the translations
La and Ra, 
alled left translation and right translation, are de�ned by
La(x) = ax and Ra(x) = xa, for ea
h x ∈ G. A groupoid (G, ·) is said tobe a quasigroup if and only if La and Ra are permutations on G for ea
h
a ∈ G.Note that ea
h set of translations

S = {La1 , . . . , Lam , Rb1 , . . . , Rbk
}, m > 0, k > 0,on a groupoid (G, ·) generates a semigroup <S >.We have the following result.Theorem 1.1. Let (G, ·) be a �nite quasigroup, and let S = {La1 , . . . , Lan ,

Ra1 , . . . , Ran}, where G = {a1, . . . , an}. Then for ea
h T ∈<S> there is asmallest integer r = r(T ) su
h that T r = 1G.2010 Mathemati
s Subje
t Classi�
ation: 20N05Keywords: quasigroup, identity, isomorphism 
lass, identity sieve, fra
tal quasigroup.



150 S. Markovski, V. Dimitrova and S. SamardjiskaProof. Sin
e La and Ra are permutations on G, < S > is a group ofpermutations on G, so r(T ) is the order of the permutation T .If T is a permutation of a set G = {a1, . . . , an}, then for ea
h element
b ∈ G there is a number rb 6 n su
h that T rb(b) = b. (Namely, the set
{b, T (b), T 2(b), . . . } is a subset of G.) Then, for the number

rT = LCM(ra1 , ra2 , . . . , ran) 6 LCM(1, 2, . . . , n)we have T rT (x) = x for ea
h x ∈ G. Hen
e, T rT = 1G, and r(T ) is a fa
torof rT . So, we have the next theorem:Theorem 1.2. The order r(T ) of ea
h T ∈ <S>, where S is a set of leftand right translations of a �nite quasigroup G, is a fa
tor of the number
LCM(1, 2, . . . , |G|).We need as well to introdu
e the notion of a term.A groupoid term, where f denotes a binary fun
tional symbol and Xdenotes a nonempty set of variables, is de�ned indu
tively as follows:1) x is a term for ea
h x ∈ X;2) if t1, . . . , tn are terms, then the expression f(t1, . . . , tn) is a term.Given a term t and di�erent variables x1, . . . , xk ∈ X, by t(x1, . . . , xk)we denote that only the variables x1, . . . , xk may appear in the term t; hen
e,some variable xj may not appear in t. In the sequel we 
onsider spe
ialtypes of terms t(x1, . . . , xk), where a variable xi appears exa
tly on
e, andwe denote it by t(x̄i, xi), where x̄i denotes a �xed tuple of all other variableso

urring in t. For example, the term t(x, y, z, u, v, w) = (y(x((yz)u)))(zy)
an be denoted as t = t(x̄, x) or t = t(ū, u). There are several 
hoi
es for x̄(x̄ = (y, z, u), or x̄ = (u, z, y), or x̄ = (y, u, z), . . . ) as well as for ū, and forour purposes it does not matter whi
h one is 
hosen.Let (G, ·) be a given groupoid. Ea
h term t = t(x1, . . . , xk) de�nesan s-ary fun
tion tG on the set G, where s is the number of all di�erentvariables that o

ur in t. Denote by y1, . . . , ys ∈ X all di�erent variables in
t, in some ordering. (Depending on the ordering, di�erent fun
tions tG 
anbe de�ned.) The de�nition of tG follows the indu
tive de�nition of a term.For ea
h variable x we have that xG is the identity mapping. If t = t1t2,where t1 
ontains the di�erent variables yi1 , . . . , yip and t2 
ontains thedi�erent variables yj1 , . . . , yjq , then for all ai ∈ G we de�ne tG(a1, . . . , as) =
tG1 (ai1 , . . . , aip) · t

G
2 (aj1 , . . . , ajq).Given a term t(y1, . . . , ys), where yi are di�erent variables that o

ur in t,and given an l-tuple (ai1 , . . . , ail) ∈ Gl, we 
an de�ne an (s− l)-ary fun
tion

tGai1
,...,ail

on G by tGai1
,...,ail

(a1, . . . , ai1−1, ai1+1, . . . , ail−1, ail+1, . . . , as) =
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tG(a1, . . . , as). We say that tGai1

,...,ail
is the l-th proje
tion of t de�ned bythe l-tuple (ai1 , . . . , ail) ∈ Gl.By using the notation t(x̄, x) of a term t with s di�erent variables, where

x o

urs exa
tly on
e in t, we denote by tGā the (s − 1)-th proje
tion of t,obtained by the (s−1)-tuple ā ∈ Gs−1. So, tGā is the mapping on G de�nedby tGā (x) = tG(ā, x).In the 
ase of quasigroups, we have that tGā ∈ < S >, where G =
{a1, . . . , an} and S = {La1 , . . . , Lan , Ra1 , . . . , Ran}. For example, when
t = (y(x((yz)u)))(zy) = t(x̄, x), x̄ = (u, y, z) and ā = (b, c, d), we have
tGā = RdcLcR(cd)b. Therefore, Theorem 1.1 and Theorem 1.2 hold for thesemappings too.Given two terms t1 and t2, the expression t1 ≈ t2 is 
alled an identity. Anidentity t1(x1, . . . , xk) ≈ t2(x1, . . . , xk) is said to be satis�ed in a groupoid
G if for every ai ∈ G we have tG1 (a1, . . . , ak) = tG2 (a1, . . . , ak). An identityis satis�ed in a 
lass of groupoids C if it is satis�ed in every groupoid of
C. (Note that tG1 and tG2 are not 
onsidered as k-ary fun
tions on G, sin
esome of the variables x1, . . . , xk may not appear neither in t1 nor in t2.)Further on, if there is no 
onfusion, instead of tG we will write simply t.2. Sieve 
onstru
tionIn this Se
tion we 
onsider �nite quasigroups only.Lately, quasigroups have been intensively studied for use in 
ryptogra-phy and 
oding theory. The notion of a shapeless quasigroup was de�nedin [5℄ as a kind of quasigroup suitable for building 
ryptographi
 primitives.A

ording to this de�nition, a shapeless quasigroup Q should not satisfy anyidentity of the form x(x(. . . (xy) . . . )) = y or (. . . ((yx)x) . . . )x = y, where
x o

urs n < 2|Q| times. In general, quasigroups may satisfy di�erent typesof laws in the form of identities. Here, we make a wider 
hara
terizationregarding a spe
ial form of identities that re�nes the notion of a shapelessquasigroup.Let t be a term of the form t = t(ȳ, y) su
h that ȳ = (x1, . . . , xk), k > 1(and y 6= xi for ea
h i = 1, . . . , k). A t-sieve is said to be the set Sieve(t)of identities de�ned re
ursively as follows:

Sieve(t) = {t(1) = t(ȳ, y), t(2) = t(ȳ, t(1)), t(3) = t(ȳ, t(2)), . . . }.Note that t(2) = t(ȳ, t(ȳ, y)), t(3) = t(ȳ, t(ȳ, t(ȳ, y))), . . . .



152 S. Markovski, V. Dimitrova and S. SamardjiskaTheorem 2.1. For ea
h term t = t(ȳ, y) and for ea
h �nite quasigroup Q,there is a smallest number r(t, Q) su
h that t(r(t,Q)) ≈ y is an identity in Q.Proof. Let t = t(ȳ, y), ȳ = (x1, . . . , xk) and ā = (a1, . . . , ak) ∈ Qk. Then,by Theorem 1.1, there is a smallest number r(tā) su
h that t
r(tā)
ā (y) = y forea
h y ∈ Q. Note that t

r(tā)
ā = t

(r(tā))
ā , sin
e t

(p)
ā (y) = t(ā, t(ā, . . . , t(ā, y))) =

t
p
ā(y). It follows that for the number r(t, Q) = LCM{r(tā)| ā ∈ Qk} wehave t

(r(t,Q))
ā (y) = y for every ā ∈ Qk and for ea
h y ∈ Q. This means that

t(r(t,Q)) ≈ y is an identity in Q.The number r(t, Q) is 
alled a rang of t in Q.Let Qn denote the set of all quasigroups of order n. We have the fol-lowing.Theorem 2.2. For ea
h term t = t(ȳ, y) there is a number r(t, n), su
hthat t(r(t,n)) ≈ y is an identity in the set Qn.Proof. By Theorem 2.1 we have that for ea
h Q ∈ Qn there is a num-ber r(t, Q) su
h that t(r(t,Q)) ≈ y is an identity in Q. Let r(t, n) =
LCM{r(t, Q)| Q ∈ Qn}. Then t(r(t,n)) ≈ y is an identity in Q for ea
h
Q ∈ Qn, i.e., it is an identity in Qn as well.The number r(t, n) is 
alled a rang of t in Qn. It follows, by the de�ni-tion of r(t, n), that it is the smallest number su
h that t(r(t,n))(ȳ, y) ≈ yis an identity in Qn. The upper bound of r(t, n) is LCM(2, 3, . . . , n).When 
onsidering Sieve(t) on Qn in order to produ
e identities of the type
t(r(t,n)) ≈ y, it is enough to take its restri
tion, i.e., its �nite subset

Sieve(t, n) = {t(i)| i|LCM(2, 3, . . . , n)}.Using Sieve(t, n), where t = t(ȳ, y), we sieve the quasigroups from Qnvia the isomorphism 
lasses of Qn. The sieving algorithm SA(t, n) is thefollowing.1. Input: the set Qn.2. Represent the set Qn as (disjoint) union of its isomorphism 
lasses,
Qn = C1 ∪ C2 ∪ · · · ∪ Ch.3. For j = 1, 2, . . . , h, take a representative quasigroup Qj ∈ Cj .



Identities sieves for quasigroups 1534. For ea
h i|LCM(2, 3, . . . , n) form families of isomorphism 
lasses Q(i)as follows. Cj ∈ Q(i) if i is the smallest integer su
h that the identity
t(i) ≈ y is satis�ed in Qj .5. Output: representation of the isomorphism 
lasses of Qn as a disjointunion of families of isomorphism 
lasses,

{C1, . . . , Ch} =
⋃

{Q(i)| i|LCM(2, 3, . . . , n)}.The de�nition of Q(i) does not depend on Qj , sin
e if an identity issatis�ed in Qj , then it is satis�ed in ea
h quasigroup Q ∈ Cj too.Note that the families Q(i) = Q(i)(t) depend on the 
hosen term t. Fordi�erent terms t1, t2, t3, . . . , we 
an obtain di�erent families Q(i)(tj), j =
1, 2, 3, . . . . Then by using the interse
tion ⋂

{Q(i)(tj)| j = 1, 2, . . . }, we 
an
lassify the isomorphism 
lasses in several di�erent ways. By this 
lassi�-
ation we 
an separate isomorphism 
lasses of quasigroups of given order nsuitable for di�erent purposes. The Se
tion 3 
ontains su
h 
lassi�
ationsfor the set Q4 of quasigroups of order 4.3. Classi�
ations of quasigroups of order 4In this se
tion we 
onsider the set Q4 of all binary quasigroups of order4, 
onsisting of 576 quasigroups. We order the set Q4 by lexi
ographi
ordering, using the presentation of the multipli
ative table of a quasigroupas a 
on
atenation of the strings of its rows. The set Q4 
an be representedas a union of 35 isomorphism 
lasses Cj , and we take the quasigroups withlexi
ographi
 numbers 1, 2, 3, 4, 6, 10, 14, 25, 26, 27, 28, 29, 30, 33, 34, 35,37, 38, 39, 40, 73, 74, 77, 80, 83, 92, 149, 150, 155, 157, 158, 159, 160, 196,213 as representatives for the 
lasses C1, C2, . . . , C35, respe
tively.We have LCM(2, 3, 4) = 12, and there are 6 fa
tors of 12: 1, 2, 3, 4, 6and 12. Thus, Sieve(t, 4) = {t(i)| i = 1, 2, 3, 4, 6, 12}. Using the algorithm
SA(t, 4), for di�erent 
hoi
es of the terms t, we 
an obtain di�erent 
lassi�-
ations of the isomorphism 
lasses. Table 1 and Table 2 present spe
ial typeof sieves 
onstru
ted from all terms t = t(ȳ, y) su
h that ȳ = (x), and with
m ≤ 3 appearan
es of the variable x in t. So, for m = 1 we have two terms
xy, yx, for m = 2 we have 6 terms x(xy), (yx)x, (xy)x, x(yx), (xx)y, y(xx),and so on. Altogether, there are 24 terms of this type. Instead of Cj , theisomorphism 
lasses in Table 1 (and in all other tables in this se
tion) aredenoted simply by j.



154 S. Markovski, V. Dimitrova and S. SamardjiskaHow 
an we read Tables 1 and 2? For m = 3, let us 
onsider the term
t = x(x(xy)) in Table 2. In 
olumn 1 we have 6 isomorphism 
lasses:
C23, C24, C25, C26, C34, C35. This means that the identity t(1) ≈ y, i.e.,
x(x(xy)) ≈ y, is satis�ed in all of these 
lasses. We note that these 
lassesalso satisfy the identities t(i) ≈ y for all other values of i, but i = 1 is thesmallest value of i su
h that t(i) ≈ y is an identity in these 
lasses. Next,the identity t(2) ≈ y, i.e., x(x(x(x(x(xy))))) ≈ y, is satis�ed in the 
lasses
C1, C4, C7, C8, C11, C16, C29, and i = 2 is the smallest value of i su
h that
t(i) ≈ y is an identity in these 
lasses. In all of the other 
lasses the identity
t(i) ≈ y is satis�ed for i = 4 (and also for i = 12), so they are given in
olumn 4. Note that the rang of the term t = x(x(xy)) in Q4 is r(t, 4) = 4,the same rang has the term ((yx)x)x, and the rang of the other terms inTables 1 and 2 is 12, ex
ept of the terms x(xy) and (yx)x, that have rang6.

m t \ i 1 2 3 4 6 121,4,7,8, 23,24,25,26, 2,3,5,6,9, 12,13,14,15,
xy 11,16,29 34,35 10,17,20,30, 18,19,21,22,33 27,28,31,32

6∗1 1,3,9,11, 7,20,25,26, 2,4,8,10,12, 5,6,13,15,
yx 14,23,28 30,35 17,21,24,33, 16,18,19,22,34 27,29,31,32

x(xy) 1,4,7,8, 2,3,5,6,9, 23,24,25,26, 12,13,14,15,11,16,29 10,17,20,30, 34,35 18,19,21,22,33 27,28,31,32
(xy)x 1,11,26 2,3,4,8,9, 7,17,23,25, 15,20,22,24, 13,14,16,19, 5,6,12,18,10,35 33 30,34 27,28,29 21,31,32
x(yx) 1,11,26 2,3,4,8,9, 7,17,23,25, 15,20,22,24, 13,14,16,19, 5,6,12,18,10,35 33 30,34 27,28,29 21,31,32

10∗2 1,3,9,11, 2,4,8,10,12, 7,20,25,26, 5,6,13,15,
(yx)x 14,23,28 17,21,24,33, 30,35 16,18,19,22,34 27,29,31,321,3 2,4,7,8,9, 22,23,24,25, 5,6,17,30, 13,14,19,28 12,18,21,27,
(xx)y 10,11,15,16, 26,34,35 33 31,3220,291,8 2,3,4,9,10, 7,15,20,25, 12,17,21,33, 13,16,19,29 5,6,18,27,
y(xx) 11,14,22,23, 26,30,35 34 31,3224,28Table 1: Appli
ation of SA(t, 4) on Q4 by using terms t = t(ȳ, y) with

ȳ = (x), for m = 1 and m = 2.We analyze the obtained results in Tables 1 and 2. For that aim, welook at the frequen
y of appearan
e of an isomorphism 
lass in di�erent
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m t \ i 1 2 3 4 6 1223,24,25,26, 1,4,7,8, 2,3,5,6,9,10,34,35 11,16,29 12,13,14,15,

x(x(xy)) 17,18,19,20,21,22,27,28,30,31,32,33
(x(xy))x 25 1,3,9,11, 7,20,23,26, 2,4,8,10, 5,12,14,15, 6,16,21,28,17,24,34 30,35 13,27,33 18,19,22 29,31,32
x((xy)x) 25 1,3,9,11, 7,20,23,26, 2,4,8,10, 5,12,14,15, 6,16,21,28,17,24,34 30,35 13,27,33 18,19,22 29,31,32
((xy)x)x 25 1,4,8,11, 7,23,24,26, 2,3,9,10, 5,12,15,16, 6,14,21,28,17,20,30 34,35 13,27,33 18,19,22 29,31,32
x(x(yx)) 25 1,3,9,11, 7,20,23,26, 2,4,8,10, 5,12,14,15, 6,16,21,28,17,24,34 30,35 13,27,33 18,19,22 29,31,32
(x(yx))x 25 1,4,8,11, 7,23,24,26, 2,3,9,10, 5,12,15,16, 6,14,21,28,17,20,30 34,35 13,27,33 18,19,22 29,31,32
x((yx)x) 25 1,4,8,11, 7,23,24,26, 2,3,9,10, 5,12,15,16, 6,14,21,28,17,20,30 34,35 13,27,33 18,19,22 29,31,327,20,25,26, 1,3,9,11, 2,4,5,6,8,10,

31∗3 30,35 14,23,28 12,13,15,16,
((yx)x)x 17,18,19,21,22,24,27,29,31,32,33,3417 1,4,7,9,10, 23,24,25,26, 2,3,5,6,8, 12,13,19,31 14,21,22,28
x((xx)y) 20,30,33 34,35 11,15,16,18,27,29,32
((xx)y)x 26,35 1,3,8,10, 7,17,23,25, 2,4,9,11,19, 5,6,12,13, 16,21,22,28,15,20,30 33 24,27,31,34 14,18,32 29
x(y(xx)) 26,35 1,3,8,10, 7,17,23,25, 2,4,9,11,19, 5,12,13,16, 6,14,15,28,22,24,34 33 20,27,30,32 18,21,31 2917 1,4,9,10, 7,20,25,26, 2,3,8,11,12, 5,13,19,32 6,15,16,29
(y(xx))x 23,24,33,34 30,35 14,18,21,22,27,28,311,4,5,6,7,8, 23,24,25,26, 2,3,9,10,18, 12,13,14,19, 15,22,28
(x(xx))y 11,16,17,20, 34,35 31 21,27,3229,30,3323 1,3,9,11,12, 7,20,25,26, 2,4,8,10,21, 5,13,18,19, 6,15,16,22,
y(x(xx)) 14,17,24,28,34 30,35 33 27,31 29,327 1,4,5,8,11, 23,24,25,26, 2,3,6,9,10, 12,13,18,19, 14,15,21,22,
((xx)x)y 16,17,20,29,30 34,35 33 27,32 28,311,3,9,11,12, 7,20,25,26, 2,4,8,10, 5,6,13,16, 15,22,29
y((xx)x) 14,17,21,23, 30,35 18,32 19,27,3124,28,33,34Table 2: Appli
ation of SA(t, 4) on Q4 by using terms t = t(ȳ, y) with

ȳ = (x), for m = 3.
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olumns. For example, the 
lass C1 appears only in 
olumns 1 and 2. Itmeans that the identity t(2) ≈ y is satis�ed for ea
h term t from Tables 1and 2. Consequently, the quasigroups of the 
lass C1 should not be usedfor 
ryptographi
 purposes, sin
e they allow to be atta
ked by applyingvery simple identities. Nevertheless, they are suitable for de�ning someerror dete
ting 
odes ([1℄). On the other hand, the 
lasses C31 and C32appear 13 times in 
olumn 12, 6 times in 
olumn 6 and 5 times in 
olumn
4. We 
on
lude that the quasigroups of the 
lasses C31 and C32 are suit-able for 
ryptographi
 purposes. They have better 
ryptographi
 propertiesregarding t, be
ause it would be more unlikely and more di�
ult to rea
han expression that 
an be repla
ed by a simpler one. They belong also tothe 
lass of shapeless quasigroups. Even more, for any term of the form
t = t(ȳ, y) from Tables 1 and 2, they satisfy the identity t(i) ≈ y only when
mi > 12. One 
an �nd some identities of type t = t(ȳ, y), where x appearsat least 5 times in t, su
h that the inequality mi > 12 is not satis�ed. Nev-ertheless, the inequality mi > 8 was satis�ed in all terms t = t(ȳ, y), where
ȳ = (x), we have 
he
ked.The dis
ussion above 
an help improve the de�nition of a shapelessquasigroup. Now, we de�ne that a shapeless quasigroup should not satisfyany identity of the form t(i) ≈ y, for any term t = t(ȳ, y), where ȳ = (x),for mi < 2n. By this new de�nition, we have that only the quasigroups ofthe 
lasses C13, C18, C19, C27, C31 and C32 
an be 
onsidered as shapeless.In Tables 1 and 2 we 
onsidered only spe
ial types of terms, in order toget more 
omplete pi
ture of the distribution of the isomorphism 
lasses inthe familiesQ(i). Still, sieves of general type Sieve(t), where t = t(ȳ, y) su
hthat ȳ = (x1, . . . , xs), s > 1, 
an be 
onsidered as well. For that aim weinvestigate the left and the right translations, whi
h de�ne the quasigroups.From the properties of these translations, we 
an derive general 
on
lusionsabout the stru
ture of the quasigroups, and how they 
an be sieved. Thisgives a di�erent 
lassi�
ation of the 
lasses of isomorphism.As we said earlier, in a quasigroup Q, for an arbitrary term t = t(ȳ, y),and ea
h ā ∈ Qs−1, the mapping t

Q
ā ∈< S >, where Q = {a1, . . . , an} and

S = {La1 , . . . , Lan , Ra1 , . . . , Ran}. Even more, ea
h translation (being apermutation) 
an be represented as a 
omposition of disjoint 
y
les. Hen
e,the permutation t
Q
ā 
an be given by 
y
les and the order of t

Q
ā depends onthe lengths of these 
y
les. On the other hand, by Theorem 2.1, r(t, Q) =

LCM{r(tQā )| ā ∈ Qs−1}, so r(t, Q) depends on La1 , . . . , Lan , Ra1 , . . . , Ran ,i.e., on the properties of their 
y
les.



Identities sieves for quasigroups 157Example 3.1. Consider the quasigroup (Q, ·) that is a representative ofthe isomorphism 
lass C2, given by its multipli
ative table
· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 2 1
4 4 3 1 2Let t = (xy)z = t(ȳ, y), where ȳ = (x, z). Then, for ā = (a, b) ∈ Q2, wehave t

Q
ā = LaRb. Q is 
ommutative with unit 1, so L1 = R1 = (1)(2)(3)(4),

L2 = R2 = (12)(34), L3 = R3 = (1324) and L4 = R4 = (1423).Now, L1R1 = (1)(2)(3)(4), L1R2 = L2R1 = (12)(34), L1R3 = L3R1 =
(1324), L1R4 = L4R1 = (1423), L2R2 = (1)(2)(3)(4), L2R3 = L3R2 =
(1423), L2R4 = L4R2 = (1324), L2R4 = L4R2 = (1324), L3R3 = (12)(34),
L3R4 = L4R3 = (1)(2)(3)(4), L4R4 = (12)(34).Sin
e we have 
y
les of lengths 1, 2 and 4, r(t, Q) = LCM(1, 2, 4) = 4.This example shows how we 
an 
al
ulate r(t, Q) for given t and Q. But,of 
ourse, there are an in�nite number of terms, so su
h approa
h is notalways suitable. Espe
ially, if we are 
onsidering the properties of quasi-groups used in some kind of quasigroup transformations in a 
ryptographi
primitive. Still, the nature of the left and the right quasigroup translations
an show how the mapping t

Q
ā behaves for any t or Q. For 
ryptographi
purposes, a quasigroup Q needs bigger r(t, Q) for any t.Denote by rmax = max{r(t, Q)| t is a term}, whi
h in fa
t is the maxi-mal i for any Sieve(t, 4) that sieves the quasigroup Q. Analyzing the 
y
lesof the translations L1, R1, . . . , L4, R4 from Example 3.1 we 
an 
on
ludethat any 
omposition of these translations, produ
es only permutationswith 
y
les of lengths 1, 2 and 4. Hen
e, we have that rmax = 4 for allquasigroups in the 
lass C2.

rmax Isomorphism 
lass2 13 7,23,25,26,354 2,3,4,8,9,10,11,17,20,24,30,33,3412 5,6,12,13,14,15,16,18,19,21,22,27,28,29,31,32Table 3: Classi�
ation of Q4 by Sieve(t, 4), for any term t.



158 S. Markovski, V. Dimitrova and S. SamardjiskaTable 3 gives the values rmax for all isomorphism 
lasses in Q4. Theanalysis that led to this 
lassi�
ation is rather 
umbersome and not espe-
ially neat. That is why, here we give only a few examples that prove the
orre
tness of Table 3.Example 3.2. Consider the quasigroup with lexi
ographi
 order 1, that is arepresentative of the isomorphism 
lass C1, and is given by its multipli
ationtable
· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1This quasigroup is 
ommutative with unit 1, so L1 = R1 = (1)(2)(3)(4),

L2 = R2 = (12)(34), L3 = R3 = (13)(24) and L4 = R4 = (14)(23).Let t be an arbitrary term. Then the mapping t
Q
ā , ā ∈ Qs−1 is some �nite
omposition of the translations L1 = R1, . . . , L4 = R4. When 
omposingany two of these translations, we have only the following three possibilities:

(ij)(kl) · (ij)(kl) = (i)(j)(k)(l), (ij)(kl) · (ik)(jl) = (il)(kj) and (ij)(kl) ·
(i)(j)(k)(l) = (ij)(kl) (or (i)(j)(k)(l) · (ij)(kl) = (ij)(kl)), i.e., again we getpermutations of the same type. Hen
e, an arbitrary 
omposition produ
esonly permutations with 
y
les of lengths 1 and 2, whi
h implies that rmax =
2 for all quasigroups in the 
lass C1.Example 3.3. Consider the quasigroups with lexi
ographi
 orders 92 and213, that are representatives of the isomorphism 
lasses C26 and C35 respe
-tively. The quasigroups from these two di�erent isomorphi
 
lasses haveidenti
al properties regarding the translations that de�ne them. Namely,the left translations of the quasigroup 92 (given in Subse
tion 4.2) are
(1)(234), (2)(143), (3)(124), (4)(132), whi
h on the other hand are the righttranslations of the quasigroup 213. Again, the right translations of thequasigroup 92, (1)(243), (2)(134), (3)(142), (4)(123), are the left transla-tions of the quasigroup 213.Similarly, as in the previous example, it is 
ru
ial to dis
over all of thedi�erent 
ases of 
omposing an arbitrary number of the translations thatde�ne these quasigroups. We make several observations.When 
omposing any two left, or any two right translations, we havethese two possibilities: (i)(jkl) · (i)(jkl) = (i)(jlk) or (i)(jkl) · (j)(ilk) =
(l)(ijk), i.e., again we have permutations of the same type and of order 3.
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omposing a left and a right translation (in any order) we have
(i)(jkl) · (i)(jlk) = (i)(j)(l)(k) or (i)(jkl) · (j)(ikl) = (il)(jk), i.e., we geta new permutation of order at most 2. Now, this new type of permutation
an be 
omposed with any of the quasigroup translations yielding (i)(jkl) ·
(il)(jk) = (ijl)(k), (i)(jlk) · (il)(jk) = (ikl)(j), and (il)(jk) · (i)(jkl) =
(ilk)(j), (il)(jk) · (i)(jlk) = (ilj)(k), or two su
h permutations 
an be
omposed to give (il)(jk) · (il)(jk) = (i)(l)(j)(k) or (ij)(lk) · (il)(jk) =
(ik)(lj).Hen
e, an arbitrary 
omposition produ
es only permutations with 
y
lesof lengths 1 and 2, or only permutations with 
y
les of lengths 1 and 3. Thismeans that rmax = 3 for the quasigroups in the 
lasses C26 and C35.Example 3.4. The quasigroup with lexi
ographi
 order 158, that is a rep-resentative of the isomorphism 
lass C31, has the following multipli
ationtable

· 1 2 3 4
1 2 1 3 4
2 3 4 2 1
3 1 3 4 2
4 4 2 1 3The left translations of this quasigroup are (12)(34), (1324), (1)(234),

(143)(2), while the right ones are (123)(4), (1)(3)(24), (134)(2), (1432). Sin
ethese permutations have 
y
les of length 12, this immediately implies that
rmax = 12.We 
ombine Tables 1, 2 and 3 to obtain Table 4, where the values r′max
ome only from terms t from Tables 1 and 2, i.e., r′max = max{r(t, Q)| t is aterm from Tables 1 and 2}. The families of isomorphism 
lasses in Table 4are separated by semi-
olumns. So, `1;' denotes the family {C1}, `7,23,35;'denotes the family {C7, C23, C35}, and so on. The family `3,4,8,9,11;' ap-pears in the 
olumns i = 1, i = 2 and i = 4. It means that for any term
t from Tables 1 and 2, only identities of the form t(i) ≈ y are satis�ed (forthe 
orresponding value of i). Note that r′max = rmax = 4.Tables 4 gives another information about the appli
ations of quasi-groups. Generally, the quasigroups from the 
lasses in the row r′max = 12and 
olumns i = 4, i = 6 and i = 12 should be used for building 
ryp-tographi
 primitives, while those in the rows r′max = 2, 3 and 
olumns
i = 1, 2, 3 should be used for designing 
odes. As we have noted before, thefamily `13,18,19,27,31,32;' 
ontains the best quasigroups for 
ryptographi
purposes. Nevertheless, some other 
lasses 
an be used quite as well. They



160 S. Markovski, V. Dimitrova and S. Samardjiskaare denoted by itali
 letters in the table (6, 21, 28 and 29). Namely, the�itali
� 
lasses have the properties that in at least half of the terms t fromTables 1 and 2, the identity t(i) ≈ y is satis�ed only for i = 12.
r′max \ i 1 2 3 4 6 122 1; 1;3 7,23,35; 7,23,35; 7,23,35;25,26; 25,26;4 2,10; 2,10;3,4,8,9,11; 3,4,8,9,11; 3,4,8,9,11;33; 33; 33;17,20,24,30,34; 17,20,24,30,34; 17,20,24,30,34; 17,20,24,30,34;15,22; 15,22; 15,22; 15,22; 15,22;12 14,16, 14,16, 14,16, 14,16, 14,16,28,29; 28,29; 28,29; 28,29; 28,29;5,12, 5,12, 5,12, 5,12,6,21; 6,21; 6,21; 6,21;13,18,19,27, 13,18,19,27, 13,18,19,27,31,32; 31,32; 31,32;Table 4: Classi�
ation of isomorphism 
lasses by r′max.4. Proving the fra
tal stru
tureof quasigroup transformationsThere are several papers [6, 7℄, where quasigroup e- and d-transformationsare 
onsidered. In [4℄ a method for graphi
al presentation of sequen
esobtained by quasigroup transformations is proposed. Using this method(without mathemati
al proof) the quasigroups are 
lassi�ed in two disjoint
lasses: the 
lass of fra
tal quasigroups and the 
lass of non-fra
tal quasi-groups. Initiated by the identities sieves, here we give a proof that thequasigroups of order 4 with lexi
ographi
 numbers 1 and 92 are fra
tal (seeFigure 1, where the patterns obtained from quasigroups with lexi
ographi
numbers 1, 92 and 191 are given; 1 and 92 are fra
tal, 191 is non-fra
tal).In the same way it 
an be shown that all fra
tal quasigroups as 
lassi�edin [4℄ have really a fra
tal stru
ture too. The proofs given here use suitably
hosen identities, satis�ed in the quasigroup in question.We 
onsider here only e-transformations, de�ned on a quasigroup (Q, ∗)as follows. Let Q+ = {a1a2 . . . an|ai ∈ Q, n > 2} denote the set of all �nitesequen
es with elements of Q and let us take a �xed element l ∈ Q, 
alled



Identities sieves for quasigroups 161a leader. The e-transformation el : Q+ → Q+ is de�ned by:
el(a1a2 . . . an) = (b1b2 . . . bn) ⇐⇒

{

b1 = l ∗ a1,

bi+1 = bi ∗ ai+1, 1 6 i 6 n − 1The method of produ
ing images of quasigroup pro
essed sequen
es isde�ned as follows. Take a sequen
e aaa . . . a, a ∈ Q, and put one under theother the sequen
es el(aaa . . . a), e2
l (aaa . . . a), . . . , ek

l (aaa . . . a). For graphi-
al presentation, like the one in Figure 1, we take di�erent 
olors for di�erentelements of Q.
1 92 191

a) b) 
)Figure 1: Images of e-transformations of the quasigroups 1, 92 and 1914.1 The 
ase of the quasigroup with lexi
ographi
 number 1The quasigroup with lexi
ographi
 number 1 is given in Example 3.2. It
an be 
he
ked that the following identities are satis�ed by this quasigroup:
I1 : xy ≈ yx, (yx)x ≈ y, y(yx) ≈ x, (yx)2y ≈ y, x2x2 ≈ x2.Let the starting sequen
e be xxxxxxxxx . . . and let the leader be l = y,where x, y are variables. If we apply the e-transformation ey 
onse
utivelyon ea
h produ
ed sequen
e, then, using the identities I1, we obtain thesequen
es shown on the table below,where the fra
tal stru
ture appears
learly.
x x x x x x x x x x . . .

y yx y yx y yx y yx y yx y . . .

y x yx (yx)2 y x yx (yx)2 y x yx . . .

y yx (yx)2 (yx)2 y yx (yx)2 (yx)2 y yx (yx)2 . . .

y x x x yx (yx)2 (yx)2 (yx)2 y x x . . .

y yx y yx (yx)2 (yx)2 (yx)2 (yx)2 y yx y . . .

y x yx (yx)2 (yx)2 (yx)2 (yx)2 (yx)2 y x yx . . .

y yx (yx)2 (yx)2 (yx)2 (yx)2 (yx)2 (yx)2 y yx (yx)2 . . .

y x x x x x x x yx (yx)2 (yx)2 . . .

y yx y yx y yx y yx (yx)2 (yx)2 (yx)2 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ase of the quasigroup with lexi
ographi
 number 92The quasigroup with lexi
ographi
 number 92 is given by its multipli
ativetable:
· 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4In this quasigroup the following identities are satis�ed:

I92 :
xx ≈ x, ((yx)x)x ≈ y, y(yx) ≈ (yx)x, ((yx)x)y ≈ yx,

(yx)((yx)x) ≈ y, y(y(yx)) ≈ x, x((yx)x) ≈ yx, (yx)y ≈ x,

(yx)x ≈ xy, ((yx)x)(yx) ≈ x, x(yx) ≈ y.We use the same starting sequen
e and leader as in the 
ase of thequasigroup 1, and the resulting e-transformations are presented in the tablebelow,where again a fra
tal stru
ture appears.
x x x x x x x x x x . . .

y yx (yx)x y yx (yx)x y yx (yx)x y yx . . .

y (yx)x (yx)x yx yx y y (yx)x (yx)x yx yx . . .

y x yx yx yx x (yx)x (yx)x (yx)x x y . . .

y yx yx yx yx (yx)x (yx)x (yx)x (yx)x y y . . .

y (yx)x x y (yx)x (yx)x (yx)x (yx)x (yx)x yx x . . .

y x x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x x x . . .

y yx (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x y yx . . .

y (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x yx yx . . .

y x yx y x yx y x yx yx yx . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The proofs for other fra
tal quasigroups are similar, and they may bequite 
ompli
ated. But, if we try to write the sequen
es obtained by e-transformation for non-fra
tal quasigroups, we get very 
ompli
ated terms,and it is almost impossible to obtain suitable identities.Sin
e if an identity is satis�ed in a quasigroup Q, it is satis�ed in allquasigroups isomorphi
 to Q, we 
on
lude that all of the quasigroups of theisomorphism 
lasses C1 and C26 are fra
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