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Abstract. Given a finite quasigroup (Q, ∗), we define a quasigroup string
transformation e over the strings of elements from Q by e(a1a2 . . . an) =
b1b2 . . . bn if and only if bi = bi−1 ∗ ai for each i = 1, 2, . . . , n, where b0 is a
fixed element of Q, and ai are elements from Q. These kind of quasigroup
string transformations are used for designing several cryptographic primi-
tives and error-correcting codes. Not all quasigroups are suitable for that
kind of designs. The set of quasigroups of given order can be separated in
two disjoint classes, the class of so called fractal quasigroups and the class of
non-fractal quasigroups. The classification is obtained by presenting several
consecutive sequences generated by e−transformations and their presenta-
tion in matrix form, used to produce suitable image pattern. We note that
the fractal quasigroups are usually not suitable for designing cryptographic
primitives.
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1 Introduction

Finite quasigroups theory is used in many applications: cryptography, coding theory,
design theory and many more. It was noticed that some quasigroups are suitable for
cryptographic purposes, and some other are not. For this reason the classification of
finite quasigroups is very important for successful application of quasigroups in many
fields of applied mathematics or computer science. The classification of quasigroups
is a difficult problem, because the number of quasigroups of order 2n

, n ≥ 3, is too
big. Thus, for n = 3, it is 108776032459082956800 ∼ 266.56.

There are several classifications of quasigroups. By using isotopism and isomor-
phism of the quasigroups two main classifications of the classes of isotopic and the
classes of isomorphic quasigroups are obtained (known only for quasigroups of order
n ≤ 11 [2], [16]). Also, there are some other classifications: by algebraic properties
[20], by random walk on torus [13], by graphical presentation of sequences obtained
by quasigroup transformations [3], etc.
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In this paper we present a new type of classification of quasigroups. In section
2 we give a brief introduction to the notion of quasigroup and quasigroup transfor-
mations. In section 3 we present new method for obtaining graphical presentation
of quasigroup transformations and we give a classification of quasigroups by this
presentation.

2 Quasigroup and Quasigroup Transformations

2.1 Definition of Quasigroup

A quasigroup (Q, ∗) is a groupoid (i.e. algebra with one binary operation ∗ on the
set Q) satisfying the law:

(∀ u, v ∈ Q) (∃! x, y ∈ G) (x ∗ u = v ∧ u ∗ y = v) (1)

In other words the equations x ∗ u = v, u ∗ y = v for each given u, v ∈ Q have
unique solutions x, y.

Equivalent combinatorial structure to quasigroups are Latin squares. To any
finite quasigroup (Q, ∗) given by its multiplication table a Latin square can be as-
sociated, consisting of the matrix formed by the main body of the table, since each
row and column of the matrix is a permutation of Q. Conversely, each Latin square
L on a set Q gives rise up to |Q|2 different quasigroups (depending of the bordering
of the matrix of L by the main row and the main column) [9].

2.2 Quasigroup Transformations

Let Q be a set of elements (|Q| ≥ 2). We denote by Q+ = {a1a2 . . . an|ai ∈ Q, n ≥ 2}
the set of all finite sequences with elements of Q. Assuming that (Q, ∗) is a given
quasigroup, for a fixed element l ∈ Q, called the leader, we define transformations
el, dl : Q+ → Q+ on the quasigroup as follows:

el(a1a2 . . . an) = (b1b2 . . . bn) ⇔ {
b1 = l ∗ a1

bi+1 = bi ∗ ai+1 , 1 ≤ i ≤ n− 1
(2)

dl(a1a2 . . . an) = (c1c2 . . . cn) ⇔ {
c1 = l ∗ a1

ci+1 = ai ∗ ai+1 , 1 ≤ i ≤ n− 1
(3)

If we have a string of leaders l1l2 . . . lk, we can apply consecutive e− or d−
transformation on a given string, as a composition of e− or d− transformations.
This composition of e− or d−transformations we called E− or D−transformation
respectively and they are defined as

Ek = el1
◦ el2

◦ . . . ◦ elk
, Dk = dl1

◦ dl2
◦ . . . ◦ dlk

.
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Further, we will use only one leader l = li, for 1 ≤ i ≤ k.

Example 1. Let the quasigroup (Q, ∗) is given as below, l = 1 is a leader and
α = 3 4 4 2 2 2 1 2 3 4 1 1 1 1 2 3 3 3 4 1 is the finite sequence of elements of Q.

∗ 1 2 3 4
1 2 3 4 1
2 1 4 3 2
3 3 2 1 4
4 4 1 2 3

(4)

If we apply consecutive e−transformation on a given sequence we obtain the
follows sequences:

el 3 4 4 2 2 2 1 2 3 4 1 1 1 1 2 3 3 3 4 1 = α

1 4 3 4 1 3 2 1 3 1 1 2 1 2 1 3 1 4 2 2 1 = α1 = e1(α)
1 1 4 3 3 1 3 3 1 2 1 3 3 2 1 4 4 3 2 4 4 = α2 = e1(α1)
1 2 2 3 1 2 3 1 2 3 3 1 4 1 2 2 2 3 2 2 2 = α3 = e1(α2)

(5)

2.3 Properties of Quasigroup Transformations

The quasigroup transformations have many interesting properties. The following
theorems are true for these transformations [9], [11], [13], [14], [15]:

Theorem 1. The transformations Ek and Dk are permutations of Q+.

Theorem 2. Consider an arbitrary string α = a1a2 . . . an ∈ Q+, where ai ∈ Q and
let β = Ek(α), γ = Dk(α).
(a) If n is a large enough then, for each l : 1 ≤ l ≤ k, where k is the number of
applied transformations, the distribution of substrings of β of length l is uniform.
(b) If n and k are large enough, then the distribution of substrings of γ of a fixed
length l (l ≥ 1) is uniform.

We say that a string α = a1a2 . . . an ∈ Q+, where ai ∈ Q, has a period p if p is
the smallest positive integer such that

ai+1ai+2 . . . ai+p = ai+p+1ai+p+2 . . . ai+2p for each i ≥ 0.

Let α and β be as in Theorem 1.

Theorem 3. The periods of the string β are increasing at least linearly by k, where
k is the number of applied transformations.

The increasing of the periods depends of the quasigroup operations. So, for some
of them it is exponential (if α has a period p, then β may has periods greater than
p · 2k).
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3 Classification of Quasigroups by Graphical Presentation

of Sequences Obtained by Quasigroup Transformations

The previously defined quasigroup string transformations are used for designing sev-
eral cryptographic primitives and error-correcting codes. It was notice that not all
quasigroups are suitable for that kind of designs. There are some quasigroups that
usually produce undesirable properties of the designs, and the classification of quasi-
groups into suitable classes is helpful for producing better designs. Here we classify
the set of all quasigroups of given finite order n into 2 disjoint classes, the class
of so called fractal quasigroups, and the class of non-fractal quasigroups. The class
of fractal quasigroup is not recommended to be used for producing cryptographic
primitives.

3.1 Ordering of Finite Quasigroups

We use the lexicographic ordering of the set of quasigroups of order n. We present
a quasigroup as a string of n2 letters that is a concatenation of the rows of the
corresponding Latin square (the main body of the quasigroup). Then we apply the
lexicographic ordering of that strings, assuming that the letters are already ordered.

Example 2. There are 576 quasigroups of order 4. For quasigroups shown below,
the corresponding indexes in the lexicographic ordering are: 5, 106, 381.

∗ 1 2 3 4

1 1 2 3 4

2 2 3 4 1

3 3 4 1 2

4 4 1 2 3

∗ 1 2 3 4

1 1 4 2 3

2 3 1 4 2

3 4 2 3 1

4 2 3 1 4

∗ 1 2 3 4

1 3 2 4 1

2 4 1 3 2

3 3 3 1 4

4 1 4 2 3

3.2 Graphical Presentation of Sequences Obtained by Quasigroup

Transformations

We give a graphical presentation of quasigroup transformations in order to obtain
a suitable tool for their classification. We can use this presentation to discover and
investigate some of their properties. The method for obtaining graphical presentation
of Ek− or Dk−transformations is the following.

Let Q be a quasigroup of given order. If we take a periodical sequence s of length
t, then by consecutive application of e−transformation (or d−transformation) k

times, we obtain a k × t–matrix with elements from Q. If we treat the elements
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of Q as a pixels with the corresponding color, then we have images that present
Ek−transformation (or Dk- transformation) for given quasigroup.

In Appendix 1 are given the source codes of two modules, ETransforma−

tion[k, s, l, n] and DTransformation[k, s, l, n], made in software package Mathe

matica. Using this modules a lot of experiments with quasigroups of order n ≤ 4
are made.

Example 3. For the first two quasigroups from Example 2 and the periodi-
cal sequence s = 12341234 . . . 1234 with length t = 100, leader l = 4, and k =
100 times of e−transformation, the corresponding images obtained by the mod-
ule ETransformation are shown on Figure 1. The corresponding images of the
d−transformation by the module DTransformation are shown on Figure 2.

5 106

Fig. 1. Images of e-transformations of quasigroups 5 and 106.

5 106

Fig. 2. Images of d-transformations of quasigroups 5 and 106.
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3.3 Classification of Quasigroups by Graphical Presentation

By using the modules describe previously we made experiments for all quasigroups

of order 3 and 4. The results showed interesting “graphical” property of the quasi-

groups. The quasigroups that have images like left-hand side images in Figures 1

and 2, we named “fractal” quasigroups, and the others “non-fractal”. By using this

terms we can conclude that all 12 quasigroups of order 3, as well as the quasigroups

of order 2, are “fractal”.

For all 576 quasigroups of order 4 we obtained that some of them are “fractal”

and the others are “non-fractal”. We made a lot of experiments by the modules

and we conclude that the appearing of fractalness property depends on the starting

periodical sequence and the leader.

We took Q = {1, 2, 3, 4} and we considered periodical sequences with the smallest

periods x1x2x3x4, xi ∈ Q, where x1x2x3x4 is a permutation of 1234, and for different

leaders l ∈ Q. The obtained results showed the following.

Case 1: If l = x1, then the number of “fractal” quasigroups of order 4 is 200 and

the number of “non-fractal” quasigroups is 376.

Case 2: If l ∈ {x2, x3}, then the number of “fractal” quasigroups of order 4 is

197 and the number of “non-fractal” quasigroups is 379.

Case 3: If l = x4, then the number of “fractal” quasigroups of order 4 is 209 and

the number of “non-fractal” quasigroups is 367.

Also, we made experiments for periodical sequences with smallest period x1 . . . xk,

xi ∈ Q and k ≤ 3.

Our investigation show that the number of “fractal” quasigroups differs in dif-

ferent experiments. The intersection of all sets of “fractal” quasigroups appearing

in different experiments consists of 192 quasigroups. By this method we conclude

that the set of all quasigroups of order 4 can be grouped in two classes: “the class

of fractal quasigroups” and “the class of non-fractal quasigroups”. The class of 192

fractal quasigroups of order 4 is the following:

{1, 2, 3, 4, 5, 7, 9, 11, 14, 18, 21, 24, 25, 26, 27, 28, 37, 40, 43, 46, 49, 51, 54, 57,

60, 63, 70, 71, 77, 80, 82, 83, 92, 93, 100, 101, 110, 111, 113, 116, 121, 126, 127, 132,

133, 138, 139, 144, 145, 146, 147, 148, 157, 160, 163, 166, 169, 170, 171, 172, 174,

176, 178, 179, 182, 185, 189, 192, 196, 197, 203, 206, 212, 213, 218, 222, 223, 228,

229, 232, 234, 235, 242, 243, 246, 252, 253, 259, 262, 263, 269, 272, 274, 275, 284,

285, 292, 293, 302, 303, 305, 308, 314, 315, 318, 324, 325, 331, 334, 335, 342, 343,

345, 348, 349, 354, 355, 359, 364, 365, 371, 374, 380, 381, 385, 388, 392, 395, 398,

399, 401, 403, 405, 406, 407, 408, 411, 414, 417, 420, 429, 430, 431, 432, 433, 438,

439, 444, 445, 450, 451, 456, 461, 464, 466, 467, 476, 477, 484, 485, 494, 495, 497,

500, 506, 507, 514, 517, 520, 523, 526, 528, 531, 534, 537, 540, 549, 550, 551, 552,

553, 556, 559, 563, 566, 568, 570, 572, 573, 574, 575, 576}.
Also, we conclude that if a quasigroup is “fractal” by Ek-transformation, it is

“fractal” also by Dk-transformation.
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The same kind of classification can be made for the quasigroups of order k > 4,

but the process of their classification is tedious and time consuming, having in mind

the numbers of quasigroups of order 5, 6, ...
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Appendix: Program Codes

Mathematica modules for graphical presentation of quasigroups of order 4

1. ETransformation[k, s, l, n]
k - lists of quasigroups
s - starting periodic sequence
l - leader
n - number of transformations

kk=Get["m01.dat"];

(lists of quasigroups)

s=Flatten[Table[{1,2,3,4},{i,1,25}]];

(starting sequence)

cryptone[q_,s_,l_]:=Module[{},

b[0]=l;

For[i=0,i<=Length[s]-1,i++,

b[i + 1]=q[[b[i],s[[i+1]]]]

];

niza[t]=Table[b[i],{i,1,Length[s]}]

]

cryptntimes[q_,s_,l_,n_]:=Module[{s1=s,l1=l},

Transf={};

For[ik=1,ik<=n,ik++,

k=cryptone[q,s1,l1];

Transf=Join[Transf,{k}];

s1=k

];

Transf

]

ETransformation[q_,s_,l_,n_]:=Module[{},

For[qt=1,qt<=576,qt++,

t=cryptntimes[First[q[[qt]]],s,l,n];

p[qt]=Graphics[RasterArray[Reverse

[Table[Hue[t[[i,j]]/4],{i,1,n},{j,1,n}]]],

PlotLabel -> qt];

If[Mod[qt,4]==0,Show[GraphicsArray

[Table[p[qq],{qq,qt-3,qt}]]]

]

]
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]

2. DTransformation[k, s, l, n]
k - lists of quasigroups
s - starting periodic sequence
l - leader
n - number of transformations

kk=Get["m01.dat"];

(lists of quasigroups)

s=Flatten[Table[{1,2,3,4},{i,1,25}]];

(starting sequence)

decryptone[q_,s_,l_]:=Module[{},

s1=s;

s1=Prepend[s1,l];

For[i=1,i<=Length[s1]-1,i++,

b[i]=q[[s1[[i]],s1[[i+1]]]]

];

niza[t]=Table[b[i],{i,1,Length[s1]-1}]

]

decryptntimes[q_,s_,l_,n_]:=Module[{s1=s,l1=l},

Transf={};

For[ik=1,ik<=n,ik++,

k=decryptone[q,s1,l1];

Transf=Join[Transf,{k}];

s1=k

];

Transf

]

DTransformation[q_,s_,l_,n_]:=Module[{},

For[qt=1,qt<=576,qt++,

t=decryptntimes[First[q[[qt]]],s,l,n];

p[qt]=Graphics[RasterArray[Reverse

[Table[Hue[t[[i,j]]/4],{i,1,n},{j,1,n}]]],

PlotLabel -> qt];

If[Mod[qt,4]==0,Show[GraphicsArray

[Table[p[qq],{qq,qt-3,qt}]]]

]

]

]


