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Abstract. Pseudo random sequence generators (PRSG) produce sequences of 
elements that imitate natural random behavior. They have extensive use in     
(1) scientific experiments as input sequences for different kinds of simulators, 
(2) cryptography for preparation of keys and establishing communication and 
(3) authentication for preparation of identification numbers, smart cards, serial 
numbers, etc. However, widely available PRSGs have limited periods (for ex-
ample, 264) which means that the pseudo random sequences start repeating the 
same elements (after at most 264 elements). This makes them inappropriate for 
large scale scientific experiments, cryptography and authentication. In this pa-
per we investigate the properties of a new type of PRSG which overcomes these 
difficulties. The PRSG is designed using quasigroup processing. We show that 
the quasigroup PRSG is highly scalable and with arbitrary large period. Also 
we present experimental results on some properties of the quasigroups which 
make them appropriate for implementation of PRSG. 

1 Introduction 

Many scientific experiments require large amounts of random input data in order to 
simulate some process. Random sequences are inevitable in many fields like cryptog-
raphy, authentication, cryptanalysis etc. For this reason the field of pseudo random 
generators is widely exploited. 

In this paper we present an implementation of a new type of PRSG [3, 5]. This 
generator is designed using quasigroup processing and it is both highly scalable and 
not predictable. 

 In the beginning we give a brief introduction to the notion of PRSG and qua-
sigroup processing. Afterwards, we give theory background of PRSG and quasigroup 
processing and describe one possible implementation of a Quasigroup PRSG 
(QPRSG). Next, we introduce new property of the quasigroups called coefficient of 
period growth. We investigate further this property and present statistical results from 
which we draw conclusions about the period of the QPRSG. We finish with conclu-
sion about a possible approximation to the ideal random sequence generator.  

2 Pseudo Random Sequence Generators 

PRSG are deterministic algorithms that produce seemingly random sequences of 
elements. A PRSG starts with some random sequence of elements. Usually, that is a 
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short random sequence known as seed. The output is much longer pseudo random 
sequence of elements [2, 8, 9].  

Since PRSGs are deterministic algorithms, there is no guaranty that a theoretically 
ideal random sequence can be produced. Thus, only pseudo random sequence can be 
produced. Every PRSG has its deficiencies and there are not many all purpose 
PRSGs. For example, lots of widely available PRSGs are inappropriate for cryptogra-
phy and authentication, because they produce predictable pseudo random output se-
quence that start repeating after relatively short time of usage [2, 8, 9].  

Secure PRSGs produce unpredictable sequences of elements and have seemingly 
infinite period [7]. For example, it is possible to build next bit predictors for the linear 
congruence generators using several schemes. These predictors provide the next 
pseudo random bit if they have sufficiently many consecutive bits of the pseudo ran-
dom sequence [8].  

Every PRSG has a period. It represents the distance between two sequential ap-
pearances of the same pseudo random sequence. This means that the sequence of 
pseudo random elements will eventually start to repeat. Obviously, the ideal random 
generator has a period of infinite length. Most widely available PRSGs have limited 
periods (up to 264) which means that the pseudo random sequences start repeating the 
same elements after at most 264 elements [2, 8]. This is not enough for high scale 
scientific experiments or authentication purposes. 

There are two big families of PRSGs: (1) linear PRSGs, which rely on linear con-
gruence functions and (2) nonlinear PRSGs, which are built using some other method. 
The best-known and most widely available implementations of linear PRSGs are 
linear congruence functions and linear feedback shift registers. They have relatively 
small periods, but are also highly predictable which makes them inappropriate for 
cryptography and authentication. However the production of the pseudo random se-
quences is relatively fast and that is why they have extended use in scientific experi-
ments (like Monte Carlo simulations) [9]. The QPRSG is a nonlinear PRSG with 
arbitrary large period. 

3 Quasigroups and simple operations 

A quasigroup (Q, ∗) is a groupoid (i.e. algebra with one binary operation ∗ on the set 
Q) satisfying the law: 

(∀ u, v ∈ Q)(∃! x, y ∈ Q) (x ∗ u = v & u ∗ y = v) .    (1) 

In other words the equations x ∗  u = v,   u  ∗ y = v for each given u, v ∈ Q have 
unique solutions x, y [1]. 

Let Q be a set of elements (|Q | ≥ 2). We denote by Q + = {x1x2…xk | xi ∈ Q,, k ≥ 2} 
the set of all finite sequences with elements of Q. Assuming that (Q , ∗) is a given 
quasigroup, for a fixed element a∈Q , we define transformation Ea

(1): Q+→ Q+ on 
the quasigroup as follows [5]:  
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Also, we define Ea
(s) = Ea

(1) ° Ea
(1) ° … ° Ea

(1) (s times) [3] to be 

Ea
(s) (a1a2…ak) = a1

(s) a2
(s)… ak

(s) .    
 (3)The following theorem proved in [5] provides the backbone for the 

QPRSG. 
Theorem 1: Let 1 ≤ l ≤ n, α = a1a2…ak ∈ Q+ and β = E(n)(α). Then the dis-

tribution of subsequences of β of length l is uniform.            ■ 
The theorem states that if we have arbitrary sequence of sufficiently large 

length and if we apply n times the transformation E on the sequence, then every sub-
sequence of length not greater than n will have uniform distribution in the resulting 
sequence. This provides a natural behavior of the pseudo random subsequences of 
length not greater than n. However, subsequences of length greater than n must not 
necessarily be uniformly distributed.  

This means, that we can apply the transformation E sufficiently many times 
on a large sequence of elements and we can expect QPRSG with a suitable period to 
be produced. We will present experimental data that shows the growth of the period 
of the QPRSG depending on the quasigroup and the times of application of transfor-
mation E. 

4 Pseudo Random Sequence Generator Using Quasigroup 
 Processing 

One possible implementation of the QPRSG is shown on Figure 1. 

 
 a a a a ... 

a a1
(1) a2

(1) a3
(1) a4

(1) ... 

a a1
(2) a2

(2) a3
(2) a4

(2) ... 

a a1
(3) a2

(3) a3
(3) a4

(3) ... 

... ... ... ... ... ... 

a a1
(k) a2

(k) a3
(k) a4

(k) ... 

... ... ... ... ... ... 

Figure 1: Implementation of a PRSG using quasigroup processing 

The element a is an arbitrary element of the quasigroup Q such that a*a ≠ a. The 
sequence a1

(1) a2
(1) a3

(1)… is obtained as Ea (aaa…). The sequence a1
(p+1) a2

(p+1) 
a3

(p+1)… is obtained as  
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  Ea
(p+1) (aaa…)= Ea (a1

(p) a2
(p) a3

(p)…) .    (4) 

The pseudo random sequence is a1
(k)a2

(k)a3
(k)…, where k is large enough. 

The following theorem proved in [3] shows the relation between the times of ap-
plication of the transformation E and the period growth of the QPRSG. 

Theorem 2: Let α be a sequence of k elements. If the period of Ea(α) is p0, then 
the sequences Ea

(s)(α) are periodical with periods ps-1 correspondingly, all of which 
are multiples of p0. The periods satisfy the law 11 −>

− sp pp
s

 for each s ≥ 1. ■  
Thus, it is reasonable to expect that not all quasigroups provide the same period of 

the QPRSG. According to the theorem we can easily observe that the period growth 
of the QPRSG is at least linear.  

However, experimental results show that exist quasigroups which increase the pe-
riod of the QPRSG with each application of the transformation E. Hence, we can 
obtain exponential period growth of the QPRSG using these quasigroups. 

5 Choosing Suitable Quasigroups 

We have experimentally discovered that the choice of the quasigroup has a great ef-
fect on the performance of the QPRSG. Every quasigroup has a coefficient of period 
growth, which represents how many times the period has grown (in average) after one 
application of the transformation E. It is obvious that the ideal coefficient of period 
growth is at most the order of the quasigroup. Thus, ideally, if we apply the transfor-
mation E(k) on the quasigroup of order n, then the pseudo random sequence will have 
a period nk. This implies that we can obtain a PRSG with arbitrary period by choosing 
suitable k [3]. 

For example, if the quasigroup has order 10 and the transformation is applied 100 
times, then a PRSG with a period of 10100 can be obtained in the ideal case. We meas-
ured the average of the coefficient of period growth for quasigroups of orders 5, 6, 7, 
8, 9 and 10. The values of the coefficients of period growth were grouped into 20 
equal intervals as presented on Figure 2. 

We used 216 randomly chosen quasigroups for each order and the average of the 
coefficient of period growth was measured from seven consecutive applications of the 
transformation E. None of the quasigroups satisfies the equation a*a=a, which means 
that we have reduced the number of all possible quasigroups by a fraction reversely 
proportional to the order of the quasigroup. For example, 20% of the quasigroups of 
order 5 are eliminated, but only 10% of the quasigroups of order 10. The elements of 
a quasigroup of order n are in the set {0, 1, …, n-1}. We take a = 0 for all statistics 
and the starting array is aaa… = 000….  

The observed statistics are quite optimistic. Over 50% of the quasigroups have co-
efficient of period growth greater than half of their order. Although the fraction of 
quasigroups with almost ideal coefficient of period growth is relatively small, the fact 
that such quasigroups do exist provides good background for a QPRSG that has large 
periods for relatively small number of applications of the transformation E.  
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Quasigroups of order 5
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Quasigroups of order 7
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Quasigroups of order 9
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Figure 2: Distribution of the coefficient of growth for quasigroups of various orders 

We notice big difference in the number of quasigroups with high coefficient of pe-
riod growth. For example, we obtained 25 quasigroups of order 5 that have coefficient 
of period growth between 4.8 and 5, but only 6 quasigroups of order 10 whose coeffi-
cient of period growth is between 9.1 and 10. The main reason for this behavior is the 
number of quasigroups of different order. 

For example, there are about 160000 quasigroups of order 5, and over 1030 qua-
sigroups of order 10, but we took equal samples of 216 quasigroup of order 5 and 10. 
Obtaining proportional samples was computationally infeasible. 

We may argue that a relatively small percentage (less than 0.00001%) of the qua-
sigroups has almost ideal coefficient of period growth (i.e. less than 5% of the ideal 
coefficient). However, this is enough if we consider that the number of quasigroups 
increases with great speed as the order of the quasigroup increases. If we consider the 
previous example, the number of quasigroups increased more than 1024 times (from 
160000 to 1030) and the order of the quasigroup increased only 2 times (from 5 to 10). 

In order to approve the coefficient of period growth of the quasigroups we intro-
duced the following restrictions on the quasigroups: 

(∀ u, v ∈ Q) (u ∗ u ≠ u   &   u ∗ v ≠ u   &   u ∗ v ≠ v) .   (6) 

After gathering statistical data in the same manner as before we compared the new 
results with the previous as presented on Figure 3.  
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Comparison quasigroups of order 5
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Comparison of quasigroups of order 7
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Comparison of quasigroups of order 8
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Comparison of quasigroups of order 9
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Comparison of quasigroups of order 10
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Figure 3: Comparison of the coefficients of period growth between general quasigroups  
and quasigroups with restrictions. 

We observe that the behavior of the coefficients of the period growth has not 
changed significantly. Some improvements can be noticed in the manner of reduced 
number of quasigroups with very low coefficient of period growth. This is noticeable 
for the quasigroups with low orders. 

However, there is no considerable gain by applying the suggested restrictions on 
the quasigroups. Future work may suggest better classification of the quasigroups 
which may improve the coefficient of period growth. 

6 Examples of Quasigroups with High Coefficient of Period Growth 

The quasigroups presented on Figure 4 have almost ideal coefficient of period growth 
after 7 consecutive applications of the transformation E. Note that this results are 
obtained for seven consecutive applications of the transformation E. By further appli-
cation of the transformation the coefficient of period growth will change. 

Quasigroups with restrictions
General quasigroups
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Quasigroups with high coefficient of period growth 
           

order 5, coef. per. growth 4.71 order 6, coef. per. growth 5.57 
                    
   0 1 2 3 4     0 1 2 3 4 5   
  0 1 0 4 3 2    0 1 0 2 4 3 5   
  1 3 2 1 0 4    1 2 4 0 3 5 1   
  2 4 3 0 2 1    2 3 1 4 5 2 0   
  3 0 1 2 4 3    3 4 2 5 0 1 3   
  4 2 4 3 1 0    4 5 3 1 2 0 4   

  5 0 5 3 1 4 2   
           

order 7, coef. per. growth 7 order 8, coef. per. growth 7.57 
                    
  0 1 2 3 4 5 6   0 1 2 3 4 5 6 7  
 0 1 4 5 3 0 2 6  0 3 1 0 4 7 6 5 2  
 1 4 0 1 2 3 6 5  1 5 7 6 2 1 3 4 0  
 2 0 3 6 5 1 4 2  2 2 3 5 6 0 4 1 7  
 3 2 1 3 6 5 0 4  3 7 4 1 0 2 5 3 6  
 4 3 2 4 0 6 5 1  4 0 2 3 5 6 1 7 4  
 5 5 6 2 1 4 3 0  5 1 6 7 3 4 0 2 5  
 6 6 5 0 4 2 1 3  6 6 5 4 7 3 2 0 1  
          7 4 0 2 1 5 7 6 3  
                    

order 9, coef. per. growth 8.86 order 10, coef. per. growth 9.43 
                      
 0 1 2 3 4 5 6 7 8   0 1 2 3 4 5 6 7 8 9 
0 6 0 8 4 1 5 2 3 7  0 1 2 6 5 0 3 8 7 4 9 
1 2 3 6 7 5 1 0 8 4  1 3 0 1 8 5 7 9 4 2 6 
2 5 8 1 2 0 4 3 7 6  2 9 7 4 6 2 8 3 5 0 1 
3 1 6 2 5 7 0 8 4 3  3 6 8 3 4 1 0 7 2 9 5 
4 8 7 3 0 6 2 4 1 5  4 7 1 5 0 8 2 4 9 6 3 
5 7 4 5 1 3 8 6 2 0  5 8 6 0 2 9 1 5 3 7 4 
6 3 1 4 6 8 7 5 0 2  6 2 3 7 9 6 4 0 1 5 8 
7 4 5 0 8 2 3 7 6 1  7 4 9 8 1 7 5 6 0 3 2 
8 0 2 7 3 4 6 1 5 8  8 0 5 9 3 4 6 2 8 1 7 

 9 5 4 2 7 3 9 1 6 8 0 

Figure 4: Examples of quasigroups with very high coefficients of period growth 

7 Security and Efficacy of the QPRSG 

The QPRSG is cryptographically secure PRSG if the quasigroup used to build the 
generator remains unknown. This follows from Theorem 2 proved in [5] for finding a 
quasigroup of a given QPRSG. Namely, one needs to make at last at many trials as 
there are quasigroups of order n in order to seek out the seed of the generator.  
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For examples, if QPRSG employs quasigroup of order 10, then more than 1030 tri-
als are made to discover the quasigroup, which is a computationally infeasible prob-
lem. As an illustration, we may use quasigroups of order 256 (if 10 is not sufficiently 
large) where the number of trial increases to 1060000. If quasigroup is known, than the 
PRSG is cryptographically non-secure generator [5].  

In order to assess the efficacy of the QPRSG we took two different quasigroups of 
order 16 as presented on Figure 5. The first quasigroup has a coefficient of period 
growth about 1.6 and the second quasigroup has a coefficient of period growth about 
15.4 for 5 applications of the transformation. 

 
Quasigroup of order 16 with very low coefficient of period growth 1.6  

for 5 applications of the transformation 
8 6 14 5 15 7 1 0 13 11 3 9 10 4 2 12 
5 7 13 1 0 6 11 4 9 2 10 3 14 15 12 8 
3 5 10 2 1 9 14 11 8 12 4 6 7 0 13 15 
14 13 4 12 2 10 3 7 5 15 0 11 1 8 6 9 
7 1 2 10 12 13 6 9 0 14 15 4 11 3 8 5 
6 12 5 7 8 14 4 10 15 1 2 13 0 9 11 3 
4 0 1 9 11 8 10 15 2 6 5 12 13 14 3 7 
11 4 7 6 5 3 8 2 10 0 13 15 9 12 14 1 
0 14 3 15 13 4 2 1 11 9 6 8 12 5 7 10 
10 9 6 11 4 5 0 3 14 7 12 1 8 13 15 2 
13 15 12 0 10 2 9 14 6 4 8 7 3 1 5 11 
2 3 15 13 6 11 5 8 12 10 9 14 4 7 1 0 
15 10 8 4 9 12 7 6 1 3 14 2 5 11 0 13 
9 2 0 14 7 1 13 12 3 8 11 5 15 10 4 6 
1 11 9 8 3 15 12 5 4 13 7 0 2 6 10 14 
12 8 11 3 14 0 15 13 7 5 1 10 6 2 9 4 

 
Quasigroup of order 16 with very high coefficient of period growth 15.4  

for 5 applications of the transformation 
8 0 3 15 9 14 10 12 11 4 2 7 6 1 5 13 
3 8 2 6 14 12 15 9 4 0 5 1 13 7 10 11 
0 5 14 8 1 4 2 10 13 11 7 3 9 15 12 6 
11 1 12 7 0 10 4 2 6 3 8 15 14 9 13 5 
6 10 1 3 12 2 7 15 5 14 9 4 11 13 0 8 
4 2 15 1 7 0 3 8 14 9 13 10 5 6 11 12 
9 4 11 10 3 6 0 13 15 5 12 8 1 14 7 2 
12 6 4 9 2 13 11 5 7 10 1 14 3 0 8 15 
5 11 8 2 13 15 6 14 3 12 0 9 7 4 1 10 
13 3 9 5 15 8 1 6 2 7 11 0 12 10 4 14 
15 9 10 11 6 1 12 7 0 2 14 13 8 5 3 4 
7 15 5 13 10 9 8 4 12 1 3 6 2 11 14 0 
2 7 13 14 8 3 5 0 9 15 10 11 4 12 6 1 
10 14 0 12 11 7 13 1 8 6 4 5 15 3 2 9 
1 13 6 4 5 11 14 3 10 8 15 12 0 2 9 7 
14 12 7 0 4 5 9 11 1 13 6 2 10 8 15 3 

Figure 5 Quasigroups used for the Diehard statistical test for randomness 

In order to pass the Diehard statistical tests [10] the QPRSG constructed with the 
first quasigroup had to perform at least 16 applications of the transformation. The 
QPRSG that employed the second quasigroup required only 7 applications of the 
transformation.  

The QPRSG obtained with the first quasigroup takes twice more operations than 
the QPRSG obtained with the second quasigroup. Thus, the efficacy of the QPRSG is 
greatly affected by the choice of the quasigroup. 
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8 Conclusion 

In this paper we investigated a new type of PRSG [3,5]. We gave the required back-
ground and one possible implementation of a QPRSG. The implementation of PRSG 
using quasigroup processing is highly scalable and fairly unpredictable. It has passed 
all publicly available random sequence generator tests. 

It was shown that the performance of the PRSG depends on the order of the qua-
sigroup used and the number of applications of the quasigroup transformation. We 
introduced a new property of the quasigroups called coefficient of period growth. The 
period of the QPRSG depends greatly of this coefficient. 

Although we applied some restrictions on the quasigroups, it was not possible to 
significantly improve the coefficient of period growth. In any case, there is experi-
mental evidence that there exist enough quasigroups that provide exponential growth 
of the QPRSG. Thus, it is possible to approximate an ideal PRSG with great success, 
since we can obtain QPRSG with arbitrary large periods. 
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