
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/40427196

A Generalized Approach to Optimization of Relational Data Warehouses Using

Hybrid Greedy and Genetic Algorithms

Article in Scientific Annals of Computer Science · January 2009

Source: DOAJ

CITATIONS

0
READS

84

3 authors:

Some of the authors of this publication are also working on these related projects:

SISng - Study Information Systems of the Next Generation View project

The Potential of B-B Platforms for the Macedonian industry – Technical and Economic Aspects View project

Goran Velinov

Ss. Cyril and Methodius University in Skopje

35 PUBLICATIONS 108 CITATIONS

SEE PROFILE

Margita Kon-Popovska

Ss. Cyril and Methodius University in Skopje

32 PUBLICATIONS 211 CITATIONS

SEE PROFILE

Danilo Gligoroski

Norwegian University of Science and Technology

174 PUBLICATIONS 1,710 CITATIONS

SEE PROFILE

All content following this page was uploaded by Goran Velinov on 15 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/40427196_A_Generalized_Approach_to_Optimization_of_Relational_Data_Warehouses_Using_Hybrid_Greedy_and_Genetic_Algorithms?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/40427196_A_Generalized_Approach_to_Optimization_of_Relational_Data_Warehouses_Using_Hybrid_Greedy_and_Genetic_Algorithms?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SISng-Study-Information-Systems-of-the-Next-Generation?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Potential-of-B-B-Platforms-for-the-Macedonian-industry-Technical-and-Economic-Aspects?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Velinov?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Velinov?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Velinov?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Margita-Kon-Popovska?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Margita-Kon-Popovska?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Margita-Kon-Popovska?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danilo-Gligoroski?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danilo-Gligoroski?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Norwegian-University-of-Science-and-Technology2?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danilo-Gligoroski?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Velinov?enrichId=rgreq-d4f28082bc9a2af1305781ea7beb0817-XXX&enrichSource=Y292ZXJQYWdlOzQwNDI3MTk2O0FTOjEwNDI4MTY4MDEyMTg2MUAxNDAxODc0MDk5NDY2&el=1_x_10&_esc=publicationCoverPdf

Scientific Annals of Computer Science vol.19, 2009

“Alexandru Ioan Cuza” University of Iaşi, Romania

A Generalized Approach to Optimization of
Relational Data Warehouses Using Hybrid Greedy

and Genetic Algorithms

Goran VELINOV1, Margita KON POPOVSKA1, Danilo GLIGOROSKI 2

Abstract

As far as we know, in the open scientific literature, there is no gen-
eralized framework for the optimization of relational data warehouses
which includes view and index selection and vertical view fragmen-
tation. In this paper we are offering such a framework. We propose
a formalized multidimensional model, based on relational schemas,
which provides complete vertical view fragmentation and presents an
approach of the transformation of a fragmented snowflake schema to
a defragmented star schema through the process of denormalization.

We define the generalized system of relational data warehouses op-
timization by including vertical fragmentation of the implementation
schema (F), indexes (I) and view selection (S) for materialization. We
consider Genetic Algorithm as an optimization method and introduce
the technique of ”recessive bits” for handling the infeasible solutions
that are obtained by a Genetic Algorithm. We also present two novel
hybrid algorithms, i.e. they are combination of Greedy and Genetic
Algorithms.

Finally, we present our experimental results and show improve-
ments of the performance and benefits of the generalized approach
(SFI) and show that our novel algorithms significantly improve the
efficiency of the optimization process for different input parameters.

1Institute of Informatics, Faculty of Sciences and Mathematics, Ss Cyril and Methodius

University, Skopje, Macedonia. Email: goranv@ii.edu.mk, margita@ii.edu.mk
2Department of Telematics, Faculty of Information Technology, Mathematics and Elec-

trical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.

Email: danilog@item.ntnu.no

25

1 Introduction

This paper represents a collection and extension of four papers that we have
recently published [19, 20, 21, 22].

The performance of the system of RDW (Relational Data Warehouses)
depends on many factors which makes its optimization a very complex and
challenging problem. The main elements of a system for RDW optimiza-
tion are: definition of a solution space, objective function and choice of an
optimization method.

The solution space includes factors relevant for RDW performance as
view and index selection and view fragmentation, i.e. partitioning. In some
existing approaches the solution space for the problem of optimization of
data warehouses is simplified to a great extent, and the selection of views
or indexes is studied without considering other factors [1, 2, 6, 14, 15, 23].
These approaches are important for theoretical research, but are not appli-
cable in practice. In some papers the view selection problem is generalized
by including a proper set of indexes for each view and selection of views
and indexes is done together [10, 20]. If the selection of views and indexes
is performed separately and the set of indexes is added to the optimal set
of views, then the common set might not have optimal performances. In [3]
the problem of optimization of horizontal scheme partitioning was defined.
The optimization problem of data warehouses as a combination of mate-
rialized views, indexes and horizontal data partitioning was introduced in
[4] and the approach of vertical fragmentation was introduced in [10]. But
none of them include selections of views and indexes and complete vertical
fragmentation.

In this paper we present a solution of an optimization problem of RDW
performance, based on a multi-dimensional model that includes complete
vertical fragmentation. The model provides definition of all possible aggre-
gate views and their data dependencies. It also includes all possible states
of (de)normalization of the schema, from fully normalized snowflake to fully
denormalized star schema. The solution space of the optimization problem
includes aggregate views and all states of fragmentation (variants) through
the process of denormalization of the views. Further, we define an indexing
strategy for aggregate views, by including traditional B-tree indexes and
advanced techniques that include bitmapped indexes. We name our opti-
mization system - SFI since it includes selection of views (S), their vertical
fragmentation (F) and their indexing (I) is introduced.

The objective function evaluates the quality of a solution. In [1, 2, 9,

26

10, 23] a simplified objective function (linear cost model) was used. They
suppose that the query processing cost is the number of rows that are pro-
cessed. The linear cost model is not adequate for evaluating join queries
with complex selection predicates. The optimization is usually considered
with a certain constraints which divide all solutions (whole solution space)
into two groups of solutions: feasible and infeasible. There are two types of
constraints: real system and logical constraints. System constraints are well
studied in existing research prototypes [1, 2, 9, 10, 20, 22, 23]. They can
be disk space or maintenance cost constraints. In [1, 2, 10] the optimiza-
tion system was used under disk space constraints and formal constraints
were embedded in the penalty function. In [9, 23] the objective function
involved query processing cost under views maintenance (refreshment) cost
constraint. In [23] the constraints were incorporated into the algorithm
through a stochastic ranking procedure.

In this paper we use a non-linear cost model under the views of the
maintenance cost constraint. The system was tested for complex workload,
i.e. queries with projection, selection, join and grouping operations and with
complex selection predicates. Also the logical constraints were considered
and effects of solutions which violate logical constraints to the optimization
process were analyzed.

Some types of Genetic Algorithms - GA as optimization method were
used in [3, 14, 16, 20, 23, 24], and greedy algorithm with its variants and
some heuristic searching techniques were used in [2, 5, 8, 9, 13]. To de-
termine the suitability of the genetic algorithm and constraint handling to
the data warehouse optimization problem, we compare it to a widely used
greedy algorithm. We observe that for a generalized solution space and for
large optimization problems, the greedy algorithms presented in [13] have
poor performances compared to the genetic algorithm presented in [23].

We also adapt SRGA (Stochastic Ranking evolutionary (Genetic) Algo-
rithm) introduced in [23]. The algorithm was used in SFI system, i.e. it was
applied to generalized solution space, based on our multi-dimensional model.
Further, two novel hybrid algorithms named GGLA (Greedy-Genetic Linear
Algorithm) and GGBA (Greedy-Genetic Binary Algorithm) are presented.
Both of them are combination of Greedy and Genetic algorithms. The ge-
netic parts of the algorithms are also based on SRGA. The algorithms were
applied to the generalized solution space.

The algorithms were applied to large optimization problems. For com-
parison, in [23] the SRGA algorithm was successfully applied to the solution

27

space that consists of 16 to 256 views, while in our work the algorithms were
successfully applied to the solution space (views, fragmented views and in-
dexes) up to 1110 objects. Furthermore, the system was evaluated using
non-linear objective function and tested for complex workload. To show the
efficiency of our novel algorithms we have compared them with SRGA. We
have made many experiments which verified dramatic improvements (up to
280%) of the optimization process. The conclusion is that our optimization
algorithms are much more effective and powerful then that developed in
[23].

The paper is organized as follows: in Section 2 we introduce the defini-
tion of the solution space, in Section 3 we consider the optimization prob-
lem and present generalized genetic algorithm (SRGA) and novel hybrid
algorithms (GGLA, GGBA) that successfully solves the aforementioned op-
timization problem. In Section 4 we show an experimental evidence of the
efficiency of our approach and our algorithms applied to generalized solu-
tion space and finally, in Section 5 we give conclusions and post several open
problems.

2 Definition of a Solution Space

In this section we define the generalized solution space of the optimization
system. The solution space is based on a RDW schema which includes
definition of dimension relations, all possible aggregate views, their different
states of normalization, named variants of views and relational dimensions
as well as all possible indexes.

2.1 Definition of an Implementation Schema

The warehouse data are multidimensional in nature, conceptually organized
in a multidimensional data cube. The data are stored in specialized rela-
tions (tables), called fact and dimension relations. In the most real-life im-
plementations the dimensions consist of more than one attribute, organized
in attribute hierarchy. According to the attribute hierarchy presentation
there are two schemas of implementation: star and snowflake schema.

In the star schema all attributes of each dimension are stored in one
relation, i.e. the attribute hierarchy is presented implicitly. Data in the
schema are denormalized which provides optimized complex aggregate query
processing.

28

On the other hand, in the snowflake schema, attributes of each di-
mension are normalized and stored in different relations, i.e. the attribute
hierarchy is presented explicitly. The snowflake schema offers flexibility,
however, it is often at the cost of performance since more joins for each
query are required.

In this subsection we define a multidimensional model which captures
both schemas as extreme states and furthermore all intermediate state of
(de)noramlization.

Definition 1 The dimension D is defined as the pair D = (RD, HD) with:

• RD = {R1, ..., Rk} 6= ∅ as the set of base (dimension) relations, where
each dimension relation Ri is characterized by the basic set of at-
tributes BAi = PAi∪DAi∪FAi, where PAi 6= ∅ is the set of primary
key attributes (identifying attributes), DAi 6= ∅ is the set of descriptive
attributes and FAi is the set of foreign key attributes.

• HD = {H1, ..., Hm} as the set of dependencies between dimension re-
lations named dimension hierarchy, where each Hi is characterized
by two dimension relations Rj, Rp, and it is presented by the pair
Hi(Rj , Rp), and also PAj ⊆ FAp.

We note that for each dependence Hi(Rj , Rp) the relation PAj ⊆ FAp is
satisfied. Intuitively, the dimension D is relational schema in 3th normal
form - NF and no functional dependencies exist between attributes of each
DAi. However, for the dimension D the next restriction is introduced:

The graph of dimension D, obtained by interpreting dimension rela-
tions as nodes and dependencies between them as arcs, is a directed acyclic
graph with the following elements:

• Exactly one root node, i.e. dimension relation Rr , satisfies ∀Hi(Rj , Rp) ∈
HD, Rr 6= Rj ;

• Non empty set of leaf nodes {Rl|∀Hi(Rj , Rp) ∈ HD, Rl 6= Rp};

For better formal presentation the functions fR, fPA and fBA are
defined as fR(PA) = R, fPA(R) = PA (fR = fPA−1), fBA(R) = BA,
where R is a dimension relation and PA, BA are its primary and basic set
of attributes, respectively.

29

Definition 2 The extended set of attributes EAi of dimension relation
Ri ∈ RD of dimension D = (RD, HD) is defined by the following algo-
rithm:

Find Set (Ri)
Begin

EAi = fBA(Ri)
For all Rk such that there exists Hl(Rk, Ri) ∈ HD Do

EAi = EAi∪ FindSet (Rk)
End For
Return EAi

End Find Set

The additional set of attributes AAi of dimension relation Ri is defined
as AAi = EAi\BAi. Additional sets of attributes are important to realize
our idea of denormalization of the schema of dimension relations. Actually,
for each dimension relation, attributes of its additional set can be added to
the basic set. Also, fEA function with fEA(R) = EA is defined, where R
as a dimension relation and EA as its extended set of attributes.

Definition 3 The data cube DC is defined as the pair DC = (DCD, M),
where DCD = {D1, ..., Dn} is the set of dimensions and M is the set of
measure attributes.

Definition 4 The implementation schema SC of data cube DC is defined
as the pair SC = (DC, AV), where AV = {V1, ..., Vp} is the set of aggregate
views, where each Vl is characterized by:

• set of measure attributes Ml ⊆ M , where M is the set of measure
attributes of DC;

• basic set of grouping attributes defined as BGAl = ∪Di∈DCl
D
fPA(Ri

j),

where DC l
D ⊆ DCD is a subset of dimensions of DC and Ri

j ∈ RDi
;

• if fPA(Ri
j), fPA(Ri

m) ⊆ BGAl and Ri
j , R

i
m ∈ RDi

⇒ j = m,∀j, m =
1, ..., ki, where ki is the number of relations of Di dimension.

Intuitively, aggregate views can contain different subsets of the set of mea-
sure attributes (first item) which provide vertical fragmentation of measure
attributes. Between the appropriate dimension relations and the aggregate

30

views there are 1:M relationships, which means that the primary key at-
tributes of dimension relations at the same time are grouping and foreign
key attributes in the corresponding aggregate view (second item). Group-
ing (”group by”) attributes of any aggregate view consists of primary key
attributes from at most one relation of each dimension (third item).

The set of all dimension relations in the implementation schema SC is
RSC = ∪Di∈DCD

RDi
.

To ensure that all data of data cube DC will be stored in at least one
view of implementation schema SC, it is necessary to define the view with
highest granularity of data and with all measure attributes.

Definition 5 The view Vp is primary aggregate view of the implementation
schema SC = (DC, AV) if it is characterized by Mp = M as the set of
measure attributes and by BGAp = ∪Di∈DCD

fPA(Ri
r) as the set of group-

ing attributes, where DCD is the set of dimensions of data cube DC and
Ri

r is root relation of Di dimension. All other aggregate views are named
supporting views.

In the next two definitions, similarly to the definitions for dimension
relations, we define extended and additional set of attributes of aggregate
views.

Definition 6 The extended set of grouping attributes EGAi of aggregate
view Vi is defined as EGAi = ∪fPA(R)⊆BGAi

fEA(R), where BGAi is the
basic set of grouping attributes of Vi.

The additional set of grouping attributes AGAi of aggregate view Vi is
defined as AGAi = EGAi\BGAi.

Also, the definition of data dependencies between aggregate views of a
data cube implementation schema is introduced:

Definition 7 The aggregate view Vi depends on the aggregate view Vj in the
implementation schema SC = (DC, AV) if: 1. Mi ⊆ Mj and 2. BGAi ⊆
EGAj.

Intuitively, Vi can be created using tuples of Vj . The data of Vj are at
a lower level of granularity than data of Vi. Note that using our definition
of aggregate views and the second item of the definition of view dependency
one can create structural lattice (directed graph) in a similar way as the
lattice introduced in [8].

31

Lemma 1 If the aggregate view Vi depends on the aggregate view Vj in the
implementation schema SC = (DC, AV), then EGAi ⊆ EGAj.

Proof: Let assume that ∃Dk ∈ DCi
D with the extended set of attributes

EAk and ∃BAl ⊆ EAk and BAl ⊆ EGAi\EGAj . Let Rk
r be the root

relation of Dk, then from Definition 1 and 4, BAr ⊆ BGAi, where BAr =
fBA(Rk

r) and BGAi is the basic set of attributes of Vi. Then BAr ⊆ EGAj

and from construction of EGAj (Definition 2 and 6) ⇒ BAl ⊆ EGAj , which
is a contradiction. �

2.2 Vertical Fragmentation of Views

Our idea is to start from the fully normalized data cube schema and con-
sider all possible states of denormalization. We have used a theorem which
formally proves that the dimension relation of a star schema can be consid-
ered as a view defined on the respective relations of the snowflake schema
(see [18]). There are two possible levels of denormalization. The first one is
the denormalization of dimensional relations. For each dimension relation,
it is possible to add any subset of its set of additional attributes to its basic
set of attributes.

Definition 8 The dimension relation Ri derived from the dimension rela-
tion R by adding (possible empty) subset AAi ⊆ AA to BA is a variant
of original relation R, where R is characterized by BA as the basic set of
attributes and by AA as the additional set of attributes.

The relation variant Ri is characterized by its basic set BAi = BA∪AAi and
note that BA ⊆ BAi ⊆ EA. The second level is the denormalization of the
aggregate views. In a similar way, for each aggregate view, it is possible to
add any subset of its set of additional attributes to its basic set of grouping
attributes.

Definition 9 The aggregate view V i derived from the aggregate view V
by adding (possible empty) subset AGAi ⊆ AGA to BGA is a variant of
the original view V , where V is characterized by BGA as the basic set of
grouping attributes and by AGA as the additional set of grouping attributes.

The aggregate view variant V i is characterized by its basic set BGAi =
BGA ∪ AGAi and note that BGA ⊆ BGAi ⊆ EGA.

32

Theorem 1 If the aggregate view Vk depends on the aggregate view Vn then
any variant of Vk depends on any variant of Vn.

Proof: All variants of the same aggregate view have the same set of measure
attributes, so it is necessary to prove only the second condition of Definition
7. From the construction of extended set of attributes (Definition 2 and 6)
and from Definition 9 of view variants follows that extended set of attributes
is the same for all variants of the same view. So BGAk ⊆ BGAi

k ⊆ EGAk

and BGAk ⊆ EGAn, then from Lemma 1, follows BGAi
k ⊆ EGAn. �

The previous theorem assures that data dependencies between view
variants are the same as view dependencies defined in Definition 7.

We note that the number of variants of aggregate views depends ex-
ponentially on the number of elements of their additional set of grouping
attributes. But, to simplify the problem, i.e. to decrease the number of
variants, according to a priori defined heuristic, it is possible to group ad-
ditional attributes of the same set in subsets of attributes. In this case the
number of variants will depend exponentially on the number of new subsets.

2.3 Indexes

The next step in definition of solution space is determining the indexing
strategy, which is very important since indexes can improve query execution
time substantially.

Definition 10 The index I on the aggregate view Vj in the implementation
schema SC = (DC, AV) is defined as the tuple I = (Vj , IAI , IAk

I), where
Vj ∈ AV , IAI ⊆ EGAj, IAI 6= ∅ is the set of indexed attributes and IAk

I

is the ordered sequence of all elements of IAI .

We note that EGAj is the extended set of grouping attributes of the ag-
gregate view Vj . Intuitively, there can be several B-tree indexes on a given
view, i.e. one index for every subset of the attributes of an extended set
and every ordering of the subset.

Definition 11 The index I is applicable on the variant V i
j of aggregate

view Vj if IAI ⊆ BGAi
j, where IAI 6= ∅ is the set of indexed attributes

and BGAi
j ⊆ EGAj is the basic set of attributes of V i

j and EGAj is the
extended set of grouping attributes Vj.

33

The index I is named as fat index on V i
j if IAI = BGAi

j and index I is
named as slim (one-attribute) index if |IAI | = 1, i.e. cardinality of IAI is
1. The set of indexes in implementation schema SC is SI.

According to the theory of indexing, the novel bitmapped indexes are
very suitable for processing of data cube based queries. A bitmap index
is usually defined for one attribute. However it is easy to process complex
conditions involving more than one attribute. Thus, in experiments of this
work one-attribute bitmap indexes were considered. Note that the number
of one-attribute bitmap indexes of aggregate view Vj is equal to the number
of elements of its extended set of grouping attributes EGAj . In rest of this
paper terms (one-attribute) bitmap index and index will be used simulta-
neously. The sequence of all indexes of aggregate view Vj is disposed in
advance.

Definition 12 The view length LVj
of aggregate view Vj is defined as LVj

=
1 + k + m + n, where k is the number of elements of the additional set of
grouping attributes of the view AGAj, m is the number of elements of the
set of measure attributes and n is the number of bitmap indexes of the view,
i.e. number of elements of the extended set of grouping attributes EGAj.

The parameters LVj
are necessary to calculate the number of bits

(genes) for representation of the solutions in our algorithms.

2.4 Workloads

A DW responds to a large number of data cube based ad-hoc queries, i.e. to
dynamic and in principle unpredictable queries. However, lot of them can
be determined a priori and can be formalized. In [17] processing of grouping
queries on DW was researched, while in [8] all possible slice queries based
on data cube views were considered. Selection (”where clause”) attributes
are disjoint from grouping attributes. That means they first select data by
a certain set of attributes and after that they group them by another set of
attributes. But in [8] different data operators, i.e. predicates in selection
expressions are not considered. The predicates in selection expressions are
also important for query processing time, i.e. different predicates returns
different numbers of tuples. Therefore, in this paper, in our query definition,
a set of different predicates is included.

Definition 13 The query Q in the implementation schema SC = (DC, AV)
is defined as the tuple Q = (MQ, GAQ, PQ, FQ), where MQ ⊆ M is the set

34

of measure attributes, GAQ ⊆ EGAp is the set of grouping attributes, PQ

is the selection expression and FQ is the expected frequency of the query.

The selection expression PQ of the query Q is in the form:
p1ANDp2AND...ANDpm, where pi : AiθV aluei, θ ∈ {=, <, >,≤,≥} is
a data operator, V aluei ∈ Dom(Ai). The set SAQ defined as SAQ =
{A1, ..., Am} is the set of selection attributes and SAQ ⊆ EGAp (EGAp is
the extended set of attributes of the primary view). The data operators are
divided in two groups: equality and inequality data operators. Inequality
operators usually return result which contains more then one tuple, so af-
ter selection by certain set of attributes it is reasonable to group resulting
data by the same set of attributes. By this reason, sets of grouping and
selection attributes are not disjoint. The set of all possible queries in the
implementation schema SC is SQ.

Definition 14 The ratio of equality operator ER in the selection expression
of query Q is defined as k/n, where n > 0 is the number of data operators,
i.e. the number of elements of the set of selection attributes SAQ and k is
the number of equality operators.

The ratio of equality operator is necessary to estimate the number of tuples
returned in each step of query execution, i.e. to calculate query execution
cost. This is important to develop a realistic query evaluator.

Definition 15 The query Q is computable from (can be answered by) the
aggregate view V in the implementation schema SC = (DC, AV) if: 1.
MQ ⊆ MV and 2. GAQ ∪ SAQ ⊆ EGAV , where MV , EGAV is the set of
measures and the extended set of grouping attributes of V , respectively.

The previous definition is necessary to determine the set of views from which
each query can be answered. The next step is to determine such view from
which query is answered by the lowest execution cost.

Theorem 2 If the query Q is computable from the aggregate view V then
Q is computable from any variant of V .

Proof: The first condition of Definition 15 is satisfied because all variants
of the same aggregate view have the same set of measure attributes and
proof of the second condition directly follows from Definition 9 of variants
of views. �

35

The important issue is how to select such a variant of each dimensional
relation, such a set of views for materialization (each view presented with
its proper variant) in order to minimize the total query processing time of
queries with a certain constraint.

3 Definition of an Optimization System

3.1 A Practical Example

For better representation of our formal model the practical example of sale
database system is considered. The three dimensional data cube SALE
with SALED = {I, S, D} and M = {S quantity, S amount, S price} is
considered. The dimension relations, organized in dimension hierarchies, are
shown in Figure 1. Simplified schema of the data cube, with all dimension
relations and only with two views (the primary view and one supporting
view of the schema) formally is described by:

Item (I_id, It_id, I_name);

Item_type(It_id, It_name)

Supplier (S_id, C_id, S_name);

City (C_id, Co_id, C_name);

Country (Co_id, Co_name);

Date (D_id, W_id, M_id, D_date);

Week (W_id, D_week);

Month (M_id, Y_id, D_month);

Year (Y_id, D_year);

Sale_ISD (I_id, S_id, D_id, S_quantity, S_amount, S_price);

Sale_ItS (It_id, S_id, S_quantity, S_price);

and graphically is shown in Figure 2.
Set of relations of dimension I is RI = {Item, Item type}. Relation

Item is characterized by PA={I id}, DA={I name}, FA={It id}, BA={I id,
I name, It id}, EA={I id, I name, It id, It name} and AA={It name}.
Number of variants of Item relations is 21 = 2. Dimension hierarchy of
dimension I is defined as HI = {It − I}, where It − I : Item type →
Item, i.e. It − I(Item type, Item). According to the dimension hierar-
chies, the number of aggregate views of schema of the data cube SALE
is 60. Primary aggregate view is Sale ISD and is characterized by set
of measure attributes MSale ISD = {S quantity, S amount, S price} and
by BGASale ISD = {I id, S id, D id} as basic set of grouping attributes.

36

Item_type

Item Supplier

Country

City

Date

Week

Year

Month

M:1 relationship

Figure 1: Dimension hierarchies for
I, S and D dimensions

Supplier

Sales-ItS

Item

Sales-ISD

Date

Year

Week

Month

Country City Item_type

Figure 2: Simplified schema of data
cube SALE

Extended set of grouping attributes is EGASale ISD={I id, I name, It id,
It name, S id, S name, C id, C name, Co id, Co name, D id, D date, W id,
D week, M id, D month, Y id, D year}, i.e. all attributes. Number of vari-
ants of aggregate view Sale ISD is 215 = 32768. Supporting aggregate
view Sale ItS is characterized by set of measure attributes MSale ItS =
{S quantity, S price} and by BGASale ItS = {It id, S id} as basic set of
grouping attributes. Extended set of grouping attributes is EGASale ItS=
{It id, It name, S id, S name, C id, C name, Co id, Co name}. Number
of variants of Sale ItS is 26 = 64.

Note that Sale ItS is computable from Sale ISD. Actually, if Sale ISD
is given by its zero variant Sale ISD0, this means that the view Sale ItS
can be created by the following SQL statement:

CREATE MATERIALIZED VIEW Sale_ItS AS

SELECT I.It_id, F.S_id, SUM(F.S_quantity) S_quantity,

AVG(F.S_price) S_price

FROM Sales_ISD F, Item I

WHERE I.I_id=F.I_id

GROUP BY I.It_id, F.S_id;

To create (compute) Sale ItS it is necessary to join aggregate view Sale ISD
and dimension relation Item. But if Sale ISD is given by its variant
Sale ISD1 characterized by BGA1

Sale ISD = {I id, It id, It name, S id,
S name, D id} then the view Sale ItS can be created by the following
SQL statement:

CREATE MATERIALIZED VIEW Sale_ItS AS

SELECT F.It_id, F.S_id, SUM(F.S_quantity) S_quantity,

AVG(F.S_price) S_price

FROM Sales_ISD F

37

GROUP BY F.It_id, F.S_id;

Note that maintenance cost of Sale ISD is increased by adding the new
attributes, but at the same time maintenance cost of Sale ItS is decreased.
Also note that view Sale ItS is presented by its zero variant BGASale ItS =
BGA0

Sale ItS = {It id, S id}.
If we assume that the view Sales ItS is presented by its zero variant, i.e.

materialized by above SQL statement, then to process the following query,
named QSale (sales of type items ”Milk Products” by supplier names), it is
necessary to join proper dimension relations to the materialized view:

SELECT F.It_id, F.S_id, S.S_name, SUM(F.S_quantity) S_quantity

FROM Sales_ItS F, Item_type It, Supplier S

WHERE It.It_name="Milk Products" AND F.It_id=It.It_id

AND F.S_id=S.S_id

GROUP BY F.It_id, F.S_id, S.S_name;

Formally, the query QSale can be described by following sets: MQSale =
{S quantity} as set of measure attributes, GAQSale = {It id, S id, S name},
PQSale : It name = ”MilkProducts” as selection expression and set of
selection attributes SAQSale = {It name}. Expected query frequency id
FQSale = 1. To reduce the processing time required for joining views and di-
mension relations, frequently accessed attributes can be stored into materi-
alized views. Thus, another possible way to create view Sales ItS, from vari-
ant of Sales ISD with BGA2

Sale ISD = {I id, It id, It name, S id, S name,
D id}), i.e. another variant of Sales ItS is:

CREATE MATERIALIZED VIEW Sale_ItS AS

SELECT F.It_id, F.It_name, F.S_id, F.S_name,

SUM(F.S_quantity) S_quantity, AVG(F.S_price) S_price

FROM Sales_ISD F

GROUP BY I.It_id, It.It_name, F.S_id, S.S_name;

The second variant Sales ItS1 of the view Sales ItS is characterized by the
set BGA1

Sale ItS = {It id, It nameS id, S name} of grouping attributes. It
is easy to note that the number of tuples is the same as the first variant of the
view. To process previous query now it is not necessary to join dimension
relations to fact relation and the SQL statement for the query is:

SELECT F.It_id, F.It_name, F.S_id, F.S_name, F.S_quantity

FROM Sales_ItS F

WHERE F.I_tname="Milk Products";

38

The advantage of using the second variant is decreasing the processing
time of the queries, but the disadvantage is increasing the storage space,
i.e. maintenance cost. In [5] some frequently accessed dimension keys and
attributes are stored in various materialized views. However, a serious prob-
lem is to consider set of all possible variants of the data cube views and to
find the optimal one with largest benefit of query processing and minimal
maintenance cost.

3.2 An Objective Function

In this section we will propose a suitable evaluation function of the opti-
mization process. Let SCM be the state of the data cube schema SC with
the set AVM ⊆ AV of candidate views for materialization where each of
them is presented by exactly one of its variants and the set SIM ⊆ SI
of its candidate indexes. Let also all dimension relations be presented by
their appropriate variants. Then maintenance-cost constrained optimiza-
tion problem is the following one: Select a state SCM of data cube schema
SC that minimizes

τ(SC, SCM , SQ) =
∑

Q∈SQ FQ ∗ P (Q, SCM),

under the constraint U(SC, SCM) ≤ S, where SQ is the set of predefined
queries, FQ is query frequency and P (Q, SCM) denotes the minimum pro-
cessing cost of the query Q in the SCM state of implementation schema
SC.

Let U(SC, SCM) be total maintenance cost defined as:

U(SC, SCM) =
∑

R∈RSC
GR ∗ m(R, SCM) +

∑
V ∈AVM

GV ∗ m(V, SCM) +∑
I∈SIM

GI ∗ m(I, SCM),

where GR, GV and GI is update frequency of relations, views and indexes,
respectively. Let m(R, SCM), m(V, SCM) and m(I, SCM) be the minimum
cost of maintaining relations, views and indexes, respectively in presence of
state SCM .

We note that P (Q, SCM) is objective function of the problem. To cal-
culate values of the functions P (Q, SCM), m(R, SCM), m(V, SCM) and
m(I, SCM) we developed algorithms based on common query execution
(processing) theory, presented in [7] and also on some ideas from [1, 2,
11, 14], as well as [17].

39

The common method for dealing with constrained optimization prob-
lems is to introduce a penalty function to the objective function. We de-
fined the penalty function as φ(SC, SCM) = Max{U(SC, SCM) − S, 0}.
The function is used in the Algorithm 2 for comparing pairs of two adjacent
chromosomes.

3.3 Handling of Logical Constraints

As we said, each view is presented by exactly one bit, followed by bits used
to present its additional attributes (view variants), its measure attributes
and its indexes. If a view is not selected for materialization, all its bits
which present view variants are irrelevant for evaluation of the current so-
lution, i.e. adding additional attributes to the view is logically infeasible.
We have named those bits as recessive bits. In this case the bits which
present measure attributes and indexes of the view are also recessive bits.
Thus, there are three types of recessive bits: for representations of view
variants, for the measures attributes and for the indexes, named as variant,
measure and index bits, respectively. Note that the number of recessive bits
is very large in regard of other bits. They are irrelevant for evaluation of
the current solution, but they are important for optimization process in the
next generations, i.e. they are important for GA operations: crossover and
mutation. This means that recessive bits comprise large genetic material
and by their handling we can change the direction and we can improve the
performances of the optimization process.

For example, if the view is not chosen for materialization in the first
generation and all recessive bits have value 0, then if in the second genera-
tion a bit that presents a view mutate to 1, then that view will be chosen
for materialization and it will be presented by a basic variant, without ad-
ditional attributes and without indexes. For the opposite situation, if all
recessive bits have value 1, then after a mutation, the view will be presented
by variant with all additional attributes and with all indexes. In this paper
we examine three different strategies for recessive bits handling. By the first
strategy (RBR) recessive bits are generated randomly and can be changed
by operation of mutation. By next two strategies all recessive bits have
fixed value 1 (RB1) and 0 (RB0), respectively and can not be changed by
operation of mutation. Effects of each strategy to the optimization process,
according to the different parameters, are shown in next section.

40

3.4 The Generalized Genetic Algorithm

In this paper SRGA (Stochastic Ranking Genetic Algorithm) is adapted and
applied to the solution space generalized by including view fragmentation
and index selection, so also we named the algorithm as GGA (Generalized
Genetic Algorithm).

First, we present the solution space for SRGA by an array of bits, i.e. by
a chromosome. We start with the representation of dimension relations (as
special types of views for materialization), including their different variants.
The number of bits that are needed to present each dimension relation
with all its variants is log2 n + 1, where the n is the number of all possible
variants and log2 n is equal to the number of elements of an additional set
of attributes. Thus, the first bit is used to present a dimension relation
and other n bits to present additional attributes. As we said, all dimension
relations must be materialized, thus each of them has a value of 1. If an
attribute of the additional set is to be added to its dimension relation, it
has a value of 1 and if it is not added it has a value of 0. Aggregate
views are presented in similar way, i.e. for each view, one bit is used for
its representation (by 1 if it is selected or by 0 if it is not selected for
materialization) and n bits are used to present its additional attributes.
The attributes of additional sets of aggregate views are presented in the
same way as attributes of additional sets of dimension relations. Finally,
for each aggregate view, the measure attributes are presented. A measure
attribute, if it is added to the appropriate view has a value of 1 and if it
is not added, then it has a value of 0. Note that for each view at least
one measure attribute must be added. The representation of each view is
followed by representation of its possible indexes. Each index is presented
exactly by one bit, i.e. by 1 if it is selected or by 0 if it is not selected. The
number and sequence of all indexes are disposed in advance.

For example, the view length of aggregate view Sales ItS is LSale ItS =
1 + 6 + 2 + 8 = 17. If Sales ItS is presented by the 10101001010101000,
then the first bit is used for representation of the view - it is selected for
materialization. The next 6 bits are used for representation of the addi-
tional attributes - the view is presented by its variant with 2 additional
attributes (S name, C name). The next 2 bits are used for representation
of the measure attributes - the view has 1 measure attribute (S quantity)
The last 8 bits are used for representation of the indexes - 3 indexes for
It id, S id and C id attributes are selected for materialization. If the view
is not materialized, all its variant, measure and index bits are irrelevant for

41

evaluation of the current solution.
Input parameters of the SRGA algorithm are: NC - Number of Chro-

mosomes (population size), NG - Number of Generations, LC - Length of
Chromosome (number of bits needed to present whole solution space), PC
- Probability of mutation of Chromosomes, PG - Probability of mutation of
Genes, RSC - set of dimension Relations, AV - set of Aggregate Views (in-
cluding dimension relations as special types of views), SI - Set of Indexes,
SQ is Set of Queries and PF is a Probability for rank-based selection, in-
troduced in [23]. POP (i) presents ith generation of the population.

The initial population is randomly generated by the procedure Cre-
ate population according to the rules presented above. Each of its chro-
mosomes is evaluated for a predefined workload, i.e. set of queries SQ by
the procedure Evaluate population. We note that Evaluate population is
implementation of the function τ(SC, SCM , SQ) and by POP (i) are pre-
sented NC particular states of implementation schema SC, each chromo-
some of the population presents a different state. The procedure Evalu-
ate population materialization evaluates maintenance solution cost for each
chromosome of the population POP (i, LC) - it is implementation of the
function U(SC, SCM).

Algorithm 1: SRGA(NC,NG,LC,PC, PG,AV, SI, SQ, PF)
Begin

Create population(POP (1), NC,LC,AV, SI);
Evaluate population(POP (1), SQ);
Evaluate population materialization(POP (1));
For i = 2 to NG Do

Perform crossover(POP (i − 1), NC);
Perform mutation(POP (i), PC, PG,NC);
Evaluate population(POP (i), SQ);
Evaluate population materialization(POP (i));
POP (i) := Mergepopulations(POP (i − 1), POP (i));
Perform selection(POP (i), NC, SQ,PF);

End For;
End GGLA;

In order to obtain a population with better characteristics, the proce-
dures Perform crossover, Perform mutation and Perform selection perform
GA operations - crossover, mutation and selection, respectively. We note
that by applying the Perform crossover(POP (i− 1), NC) procedure to the
(i − 1)-th generation of population, NC new chromosomes of i-th genera-
tion of the population are generated. We used a special case of multi-point

42

crossover operation where the number of crossover points is n − 1, where
n is the number of genes, i.e. blocks with length of 1 gene. This crossover
is known as uniform crossover. The procedures Perform mutation, Eval-
uate population and Evaluate population materialization are applied to the
new i-th generation. Probability to choose a chromosome for mutation is
given by the parameter PC, and probability to mutate genes inside of a
chosen chromosome is given by the parameter PG. Formally, the procedure
Merge populations adds chromosomes from previous (i−1)-th to the newest
i-th generation.

The key difference from most GAs is the Perform selection procedure,
based on the stochastic ranking algorithm presented in [23]. The algorithm
is presented in the next subsection. It is similar to bubble-sort algorithm
used for ranking the union of chromosomes of last two generations. But in
[23] the algorithm is used just for selection of views and it is applied to small
solution space. In this paper the algorithm is applied to the generalized
solution space which includes selection of views and indexes and selection
of view fragments. Also, the algorithm is used to find a near optimal model
of data cubes consist of a large number of objects.

3.5 The Stochastic Ranking Procedure

Finding a penalty coefficient optimal value is difficult and the penalty meth-
ods setting a static or dynamic penalty coefficient value do not work well for
the constrained optimization problems. In [23] is presented a new constraint
handling technique, named stochastic ranking, to balance the dominance of
the objective and penalty functions for the view selection problem. The
novel idea of this technique is the introduction of a probability Pf for rank-
based selection. During the course of ranking, it is necessary to compare
pairs of two adjacent individuals. If they are both feasible solutions, natu-
rally, they will be compared according to the objective function. However,
when either of them is infeasible, the probability of comparing them accord-
ing to the objective function is Pf , while the probability of comparing them
according to the penalty function will be 1 − Pf . Since is a probability, it
gives an opportunity for both the objective and penalty functions to rank a
pair. When Pf > 1/2, the ranking is biased toward the objective function.
When Pf < 1/2, the ranking is biased toward the penalty function. So
Pf can balance the objective and penalty functions more directly, explicitly
and conveniently. Moreover, we do not have any extra computing cost for
setting penalty coefficient values since we do not use any penalty terms.

43

In this paper the stochastic ranking algorithm is implemented by the
Perform selection procedure (see Algorithm 2). The probability Pf is pre-
sented by the parameter PF . In our experiments we set the parameter value
dynamically during the optimization process. For example, we usually set
PF < 1/2 to reduce the ratio of infeasible solutions to the whole in the
several final generations.

Finally, we note that the constraints of the optimization process are
incorporated into the algorithm through a stochastic ranking procedure.

The input population POP (i) consists of 2∗NC chromosomes as union
set of chromosomes from two generations. The procedure Delete Chromosome
eliminates NC worse chromosomes from the population. To select the chro-
mosomes for elimination we use the negative (elimination) selection method
presented in [12]. The reasons for that are: the population consists of 2∗NC
chromosomes, so in this case elimination selection is faster than generation
selection; elitism is inherently involved in elimination selection.

Algorithm 2: Perform Selection(POP (i), NC, SQ,PF)
Begin

For k = 1 to NC Do
Swap:=False;
For j = 1 to NC ∗ 2 − 1 Do

If (φ(POP (i, j)) = φ(POP (i, j + 1)) = 0) or
(Random(0, 1) > PF) Then
If τ(POP (i, j), SQ) > τ(POP (i, j + 1), SQ) Then

Swap Chromosomes(POP (i, j), POP (i, j + 1));
Swap:=True;

End If
Else

If φ(POP (i, j)) > φ(POP (i, j + 1)) Then
Swap Chromosomes(POP (i, j), POP (i, j + 1));
Swap:=True;

End If;
End If;

End For;
If Swap=False Then

Exit For;
End If;

End For;
Delete Chromosome(POP (i), NC);

End Perform Selection;;

44

3.6 The Novel Greedy-Genetic Algorithms

In this section we will present two novel hybrid algorithms for optimization
of RDW. Our algorithms are hybrid because they are combination of greedy
and genetic algorithms.

The Algorithm 3 is named GGLA - Greedy-Genetic Linear Algorithm.
The parameter NF represents Number of Fragments of the solution space,
which is equal to the number of steps of greedy procedure. All other input
parameters of the algorithm are the same as in Algorithm 1.

Parameters of the Algorithm 4 are: NL - New Length of chromosome
(input), CL - Current Length of the chromosome (input/output), AVB - set
of chosen views (input/output), AVC - set of chosen views in current step
(output), AV - set of Aggregate Views (input).

Algorithm 3: GGLA(NC,NG,LC,PC, PG,NF,AV, SQ)
Begin

AVB := ∅; CL := 0;
Choose views(Round(LC/NF), CL,AVB , AVC , AV);
Extend chromosome(POP (1), AVC , NC);
Evaluate population(POP (1), SQ);
Evaluate population materialization(POP (1));
j := 2;
For i = 2 to NG Do

If Mod(i, Round(NG/NF)) = 1 Then
Choose views(Round(LC ∗ j/NF), CL,AVB , AVC , AV);
Extend chromosome(POP (i), AVB , NC);
j := j + 1;

End If;
Perform crossover(POP (i − 1), NC);
Perform mutation(POP (i), PC, PG,NC);
Evaluate population(POP (i), SQ);
Evaluate population materialization(POP (i));
Perform selection(POP (i), NC);

End For;
End GGLA;

The GGLA algorithm is graphically shown in Figure 3. Before the
optimization process starts, we order all aggregate views by their ratio of
usability (UR), i.e their importance. The general idea is in certain steps
(NF) by greedy procedure to choose the subsets of views with all their bits
(Algorithm 4, i.e. procedure Choose views) and to add them to already
selected ones, i.e. to concatenate their randomly generated bits to the

45

F1 FNFF2
...

F1

.

.

.

F1 F2 ... FNF

F1 F2

1-st Greedy step

2-nd Greedy step

NF-th Greedy step

Figure 3: GGLA - Greedy-Genetic
Linear Algorithm

F1 FNF-1F2

...
.

.

.

F1

FNF

FNF/2

F1

2-nd

-th Greedy step1
2

+NFLog

F1 FNF-1F2 FNF

1-st

Figure 4: GGBA - Greedy-Genetic
Binary Algorithm

already created chromosomes (Extend chromosome procedure). By those
procedures we roughly modulate the solution space.

After each step of greedy procedure, we perform fine optimization by
using GA (few generations on current solution space). The procedure Eval-
uate population evaluates the quality of solutions and the procedure Evalu-
ate population materialization evaluates the maintenance solution cost. The
procedures Perform crossover, Perform mutation and Perform selection per-
form GA operations - crossover, mutation and selection, respectively.

Agorithm 4: Choose views(NL,CL,AVB , AVC , AV)
Begin

AVC := ∅;
While NL > CL Do

AVB := AVB ∪ Vi, where Vi has maximal URi in AV \AVB ;
AVC := AVC ∪ Vi;
CL := CL + LVi

End While;
End Choose views;

The next algorithm is named GGBA - Greedy-Genetic Binary Algo-
rithm. All input parameters are the same as in Algorithm 3.

The GGBA algorithm graphically is shown in Figure 4. POP (i, AVk)
presents the ith generation of the population and consists of a fragment of
chromosomes represented by AVk subset of views. POP2(i) presents ith

generation of the population and consists of whole chromosomes (created
by concatenation of all fragments of POP population), represented by set
of all aggregate views AV . The population POP2 is necessary to evaluate
the maintenance solution cost. The variable NS is the number of steps of
the greedy procedure.

46

Algorithm 5: GGBA(NC,NG,LC,PC, PG,NF,AV, SQ)
Begin

Divide views(NF,AV);
For k = 1 to NF Do

Create population(POP (1, AVk), NC);
Evaluate population(POP (1, AVk), SQ);
Concat whole chr(POP (1, AVk), POP2(1));

End For;
Evaluate population materialization(POP2(1));
NS := log2NF + 1;
For i = 2 to NG Do

If Mod(i, Round(NG/NS)) = 1 Then
For k = 1 to NF/2 Do

Concat chr(POP (i, AVk), AV2∗k−1, AV2∗k);
End For;
NF := NF/2;

End If;
For k = 1 to NF Do

Perform crossover(POP (i − 1, AVk), NC);
Perform mutation(POP (i, AVk), PC, PG,NC);
Evaluate population((POP (i, AVk), SQ);
Concat whole chr(POP (i, AVk), POP2(i));

End For;
Evaluate population materialization(POP2(i));
For k = 1 to NF Do

Perform selection((POP (i, AVk), NC);
End For;

End For;
End GGBA;

In the procedure Concat chr we define a new set of aggregated views
AVk := AV2∗k−1∪AV2∗k and new population POP (i, AVk) which consists of
chromosome fragments created by concatenation of chromosome fragments
of POP (i, AV2∗k−1) and POP (i, AV2∗k) populations. The chromosome frag-
ments of both populations are ordered from the best to the worst evaluated
and concatenated fragments at the same position. We named this concate-
nation strategy best-to-best. In similar way, the procedure Concat whole chr
creates POP2(i) as concatenation from populations of all subsets of views
POP (i, AVk). Here we also use best-to-best concatenation strategy. All
procedures with the exception of Evaluate population materialization can
be parallelized for different fragments of chromosomes, i.e. subsets AVk of
AV which gives the total improvement of the performances of the algorithm.

47

0

50

100

150

200

250

300

00
:0
0:0

0

00
:3
2:1

9

01
:0
0:3

2

01
:2
5:1

9

01
:4
8:4

7

02
:1
8:2

0

02
:4
6:3

5

03
:1
2:3

6

03
:3
6:3

6

04
:1
0:4

8

08
:4
5:3

5

13
:3
1:2

8

Optimization process time

V
e
lu

e
o

f
e
v
a
lu

a
ti

o
n

fu
n

c
ti

o
n

GG

SRGA

Figure 5: SRGA is better than GG
for large optimizations problems

100

200

300

400

500

600

700

800

25% 50% 75% 100%

% of maximal mentenance cost

B
e
n

if
it

o
f

p
ro

c
e
s
s
in

g
c
o

s
t

SFI

SF

SI

S

Figure 6: Benefit of processing cost
versus maintenance cost constraint

4 Experimental Results

In this section we present our experimental system and some of the experi-
mental results obtained by it. For the efficiency of the optimization process
using GA several input parameters are important. In our previous work we
have already described some experiments with a wide range of their val-
ues. In this paper we fixed the parameters to the following values: Number
of Chromosomes (Population Size)- NC = 20, Probability of Chromosome
mutation - PC = 0.5 and Gene mutation - PG = 0.05, so the overall prob-
ability of mutation is 2.5%.

To determine the suitability of the GA and constraint handling to the
RDW optimization problem, we compare it to a widely used greedy algo-
rithm (see Figure 5). The SRGA was compared to the greedy algorithm
presented in [13] - GG (Greedy by Gupta). On the x-axis, the optimization
process time is shown, even on the y-axis, the benefit of query process-
ing cost (value of the evaluation function) is shown. We observe that for
the generalized solution space and for large optimization problems, greedy
algorithms have poor performances compared to the SRGA.

In order to show the efficiency of vertical view fragmentation of the
approach of view selection with vertical view fragmentation and indexes
(SFI), we compared it to the approaches without fragmentation (SI), with-
out indexes (SF) and without fragmentation and indexes (S). Exactly 1280
experiments were performed with SRGA. For all experiments the termina-
tion condition of optimization process was 50 generations.

A comparison of the benefit of processing cost of all approaches, on
different levels of maintenance cost constraints, is shown in Figure 6. The
optimization process is considered with four different values of maintenance

48

0%

20%

40%

60%

80%

100%

120%

71 226 586 1110

Chromosome length (solution space size)

B
e
n

if
it

o
f

p
ro

c
e
s
s
in

g
c
o

s
t

(r
e
la

ti
v
e
ly

to
th

e
b

e
s
t)

SFI

SF

SI

S

Figure 7: Benefit of processing cost
versus solution space size

0

5

10

15

20

25

30

35

0% 33% 67% 100%

% of equality operators in query selection

expression

A
v
e
ra

g
e

b
e
n

if
it

o
f

p
ro

c
e
s
s
in

g
c
o

s
t

SFI

SF

SI

S

Figure 8: Benefit of processing cost
versus % of equality operators

cost from 25% to 100% of the maximal maintenance cost. The next impor-
tant parameter of the optimization process is the solution space size, i.e.
chromosome length. Comparison of different approaches according to the
solution space size is shown in Figure 7. On y-axis the benefit of query
processing cost relatively to the best approach is shown. Evidently, in all
cases SFI approach has the highest benefit of processing cost.

In our experiments we considered four different parameters in query
definition: number of grouping (projection) attributes, number of selection
attributes, ratio of the equality operators and number of measure attributes.
For all parameters the SFI approach has the highest benefit of processing
cost. The average benefit of processing cost of queries with 3 attributes in
the selection expression for different ratios of the equality operators in the
expression is shown in Figure 8.

As we have described in the previous section, recessive bits are irrel-
evant for evaluation of the current solution, but they could be important
for optimization process in the next generations. In this work we examine
three different strategies for recessive bits generation. By the first strat-
egy (RBR), recessive bits are generated randomly and can be changed by
operation of mutation. In the next two strategies, all recessive bits have
fixed value 1 (RB1) and 0 (RB0), respectively and can not be changed by
mutation operation. The benefit of the processing cost for each strategy
according to the different values of maintenance cost is shown in Figure
9. Comparison of different strategies according to the solution space size
is shown in Figure 10. In both cases the best strategy is RB1, i.e. to fix
recessive to value 1. This doesn’t mean that RB1 leads to the extreme solu-
tion in which all additional attributes and all indexes are selected, because

49

550

600

650

700

750

800

850

900

25% 50% 75% 100%

% of maximal maintenance cost constranit

B
e
n

if
it

o
f

p
ro

c
e
s
s
in

g
c
o

s
t

RB1

RBR

RB0

Figure 9: Benefit of processing cost
versus maintenance cost constraint

80%

85%

90%

95%

100%

105%

71 226 586 1110

Chromosome length (solution space size)

B
e
n

if
it

o
f

p
ro

c
e
s
s
in

g
c
o

s
t

(r
e
la

ti
v
e
ly

to
th

e
b

e
s
t)

RB1

RBR

RB0

Figure 10: Benefit of processing cost
versus solution space size

the maintenance cost constraints in next generations eliminate infeasible
solutions that would be otherwise obtained by RB1.

To compare our novel algorithms (GGLA and GGBA) with SRGA,
exactly 192 experiments were performed. For all experiments termination
condition of optimization process was 64 generations. All algorithms were
applied to the generalized solution space based of our system SFI.

We experimented with different values of the parameter NF - Number
of Fragments. For GGLA the number of fragments is equal to the number
of steps of the greedy procedure, while for GGBA the number of steps of the
greedy procedure is given by log2NF +1. A comparison of the optimization
process execution time of all three algorithms, for different number of frag-
ments NF , is shown in Figure 11. The optimization process was considered
with four different values of NF parameter, from 4 to 32. Improvements
of GGLA and GGBA over SRGA are evident when we increase the values
of the parameter. The value of the parameter is limited by the number of
generations of the optimization process (in our case 64). However, usually
the number of generations increases by the increasing of the complexity of
the problem, i.e. its solution space size.

A comparison of the different algorithms according to the solution space
size is shown in Figure 12. For better representation of the performances
of the algorithms on the same chart, we scaled values of the optimization
process execution time. On the y-axis the benefit of optimization process
execution time relatively to the worst algorithm is shown. Evidently, in all
cases GGBA algorithm has the highest improvement of the optimization
time. Note that improvements of both GGLA and GGBA algorithms rise
by increasing the solution space size, which is another important feature:

50

500

1000

1500

2000

2500

3000

P4 P8 P16 P32

Number of fragments of the solution space

O
p

ti
m

iz
a
ti

o
n

p
ro

c
e
s
s

ti
m

e
(i

n

s
e
c
o

n
d

s
)

SRGA

GGLA

GGBA

Figure 11: SRGA vs GGLA vs
GGBA (time vs number of frag-
ments)

20%

40%

60%

80%

100%

120%

L71 L226 L586 L1110

Solution space size

O
p

ti
m

iz
a
ti

o
n

p
ro

c
e
s
s

ti
m

e

(r
e
la

ti
v
e
ly

to
th

e
w

o
rs

t)

SRGA

GGLA

GGBA

Figure 12: SRGA vs GGLA vs
GGBA (optimization time vs solu-
tion space)

the scalability of our algorithms and their appropriateness for practical im-
plementation.

In our algorithms we use a priori knowledge about usability of aggregate
views and implement that knowledge as a heuristic in the greedy procedure
for choosing views. Using greedy algorithm in the first step enables us
to decrease the genetic material, i.e. the number of calculation in genetic
part of GGLA algorithm and the possibility to parallelize some segments
of genetic part in the GGBA algorithm. Finally, we note that values of
given solutions by using GGLA and GGBA are in the range of 98%-101%
of solutions given by using SRGA.

5 Conclusion and Open Problems

The performance of the system of RDW depends on several factors and the
problem of its optimization is very complex and making a perfect system is
still a challenge. In this paper we have focused on generalization of the op-
timization problem and improvement of the optimization process of RDW.
We fully analyzed the problem by including lot of factors relevant for opti-
mization of the system, i.e. view selection, vertical view fragmentation and
index selection. Further we have focused on improvement of the efficiency
of the optimization process.

By doing so we have achieved the following:

• We introduced a generalized model of optimization of RDW, named
SFI, which is comprise of selection of views (S), their vertical frag-
mentation (F) and their indexing (I).

51

• By using a GA we have addressed and solved the problem of general-
ized model of optimization of RDW.

• We have introduced a new technique of “recessive bits” and we have
analyzed the effects of those bits to the optimization process.

• We have performed a large set of experiments and confirmed the ben-
efits of the SFI model according to several parameters.

• We have defined two novel algorithms GGLA and GGBA and we have
successfully applied them for fast finding optimal solutions in the gen-
eralized solution space.

We have achieved significant performance improvements of the opti-
mization process compared to the stochastic ranking genetic algorithm and
we have verified those improvements by performing a large set of experi-
ments. The result is an optimization algorithm that is much more effective
and powerful than that developed in [23]. For comparison, the GA algo-
rithm developed in [23] was successfully applied to a solution space that
consists of 16 to 256 views, while our algorithm can be successfully applied
to the solution space (views, fragmented views and indexes) of up to 1110
objects. Furthermore, the system was tested for complex queries with pro-
jection, selection, join and grouping operations and with complex selection
predicates.

In the future, we plan to extend our multidimensional model by in-
cluding horizontal partitioning and definition of a clustering strategy and
to define an optimization process by applying the algorithms to the extended
space. There is also the possibility to analyze different strategies for han-
dling the recessive bits and the possibility to parallelize the algorithms on
different levels such as: evaluation of chromosome within populations, paral-
lelization of populations or parallel optimization of different data cubes. In
this paper static algorithms are considered. Our plan is to develop dynamic
algorithms for RDW design optimization.

Acknowledgements

This work was supported by NATO ICS.EAP.CLG.983334 project.

52

References

[1] K. Aouiche, J. Darmont, O. Boussaid, F. Bentayeb. Automatic Selec-
tion of Bitmap Join Indexes in Data Warehouses. Proc. of the 7th Inter-
national Conference on Data Warehousing and Knowledge Discovery,
DAWAK 05. Copenhagen, Denmark, pp. 64-73, 2005.

[2] K. Aouiche, P. Jouve, J. Darmont. Clustering-Based Materialized View
Selection in Data Warehouses, Proc. of the 10th East-European Confer-
ence on Advances in Databases and Information Systems, ADBIS’06.
Thessaloniki, Greece, pp. 81-95, 2006.

[3] L. Bellatreche, K. Boukhalfa. An Evolutionary Approach to Schema
Partitioning Selection in a Data Warehouse. Proc. of the 7th Inter-
national Conference on Data Warehousing and Knowledge Discovery,
DAWAK’05, Copenhagen, Denmark, pp. 115-125, 2005.

[4] L. Bellatreche, M. Schneider, H. Lorinquer, M. Mohania. Bringing
Together Partitioning, Materialized Views and Indexes to Optimize
Performance of Relational Data Warehouses. Proc. of the 6th Inter-
national Conference on Data Warehousing and Knowledge Discovery
DAWAK’04, Zaragoza, Spain, pp. 15-25, 2004.

[5] G.K.Y. Chan, Q. Li, L. Feng. Optimized Design of Materialized Views
in a Real-Life Data Warehousing Environment. International Journal
of Information Technology, vol. 7, no. 1, pp. 30-54, 2001.

[6] R. Chirkova, Y.A. Halevy, D. Suciu. A formal perspective on the view
selection problem. Proc. of the 27th International Conference on Very
Large Data Bases VLDB’02, Hong Kong, China, pp. 216 - 237, 2002.

[7] R. Elmasri, S.B. Navathe. Fundamentals of Database Systems. Fourth
Edition, Addison-Wesley Publishing Company Inc., 2003.

[8] H. Gupta, V. Harinarayan, A. Rajaraman, J.D. Ullman. Index Selec-
tion for OLAP. International Conference on Data Engineering ICDE,
Birmingham, England, 1997.

[9] H. Gupta, S. Mumich. Selection of Views to Materialize Under a Main-
tenance Cost Constraint. Proc. of the 7th International Conference on
Database Theory, ICDT’99, Jerusalem, Israel, pp. 453-470, 1999.

53

[10] M. Golfarelli, V. Maniezzo, S. Rizzi. Materialization of fragmented
views in multidimensional databases. Data & Knowledge Engineering,
Volume 49, Issue 3, pp. 325-351, 2004.

[11] M.Golfarelli, S.Rizzi, E.Saltarelli. Index Selection Techniques In Data
Warehouse Systems. Proc. of the International Workshop on Design
and Management of Data Warehouses DMDW’02, Toronto, pp.33-42,
2002.

[12] M. Golub. Improving the Efficiency of Parallel Genetic Algorithms.
Ph.D. thesis, Zagreb University, Croatia, 2001.

[13] H. Gupta, Selection And Maintenance of Views in a Data Warehouse,
Ph.D. dissertation, Stanford University, USA, 1999.

[14] J. Kratica, I. Ljubic, D. Tosic. A Genetic Algorithm for the Index Se-
lection Problem. Proc. of the Applications of Evolutionary Computing:
EvoWorkshops 2003, Essex, UK, pp. 280-290, 2003.

[15] Y. Kotidis, N. Roussopoulos. DynaMat: A Dynamic View Management
System for Data Warehouses. Proc. of the ACM SIGMOD International
Conference on Management of Data, Philadelphia, Pennsylvania, USA,
1999.

[16] M. Lee, J. Hammer, Speeding Up Warehouse Physical Design Using A
Randomized Algorithm, Proc. of the International Workshop on Design
and Management of Data Warehouses DMDW’99, Heidelberg, pp.1-
9,1999.

[17] A. Tsois, N. Karayannidis, T. Sellis, D. Theodoratos. Cost-based op-
timization of aggregation star queries on hierarchically clustered data
warehouses. Proc. of the International Workshop on Design and Man-
agement of Data Warehouses DMDW’02, Toronto, Canada, pp. 62-71,
2002.

[18] P. Vassiliadis, Formal Foundations for Multidimensional Databases (ex-
tended version). NTUA Technical Report, 1998.

[19] G. Velinov, M. Kon-Popovska, D. Gligoroski. Vertical Fragmentation
in Relational Data Warehouses. Proc. of the ROSYCS 2006, Database
Theory and Practice in the context of (Semantic) Web Technologies,
Iasi, Romania, pp. 109-122, 2006.

54

[20] G. Velinov, M. Kon-Popovska, D. Gligoroski. Optimization of Rela-
tional Data Warehouses. Proc. of the 4th European Conference on In-
telligent Systems and Technologies, ECIT2006, Iasi, Romania, 2006.

[21] G. Velinov, D. Gligoroski, M. Kon-Popovska. Recessive Bits in Genetic
Algorithm for Some Optimization Problems in Relational Data Ware-
houses. Proc. of the Third International Bulgarian-Turkish Conference
- Computer Science’06, Istanbul, Turkey, pp. 101-106, 2006.

[22] G. Velinov, D. Gligoroski, M. Kon-Popovska, Hybrid Greedy and Ge-
netic Algorithms for Optimization of Relational Data Warehouses,
Proc. of the 25th IASTED International Multi-Conference: Artificial
intelligence and applications, Innsbruck, Austria, pp. 470-475, 2007.

[23] J.X. Yu, X. Yao, C. Choi, G. Gou. Materialized Views Selection as Con-
strained Evolutionary Optimization. IEEE Transactions on Systems,
Man and Cybernetics, Part C: Applications and Reviews, Volume 33,
No. 4, pp. 458-468, 2003.

[24] C.Zhang, X. Yao, J. Yang. An Evolutionary Approach to Materijalized
Views Selection in a Data Warehouse Environment, IEEE Transactions
on Systems, Man and Cybernetics, Part C: Applications and Reviews,
Volume 31, No. 3, pp. 282-294, 2001.

55

View publication statsView publication stats

https://www.researchgate.net/publication/40427196

