
Horizontal Partitioning by Predicate Abstraction
and its Application to Data Warehouse Design

Aleksandar Dimovski1, Goran Velinov2, and Dragan Sahpaski2

1 Faculty of Information-Communication Technologies, FON University, Skopje,
1000, Republic of Macedonia

2 Institute of Informatics, Faculty of Sciences and Mathematics, Ss. Cyril and
Methodius University, Skopje, 1000, Republic of Macedonia

Abstract. We propose a new method for horizontal partitioning of re-
lations based on predicate abstraction by using a finite set of arbitrary
predicates defined over the whole domains of relations. The method is
formal and compositional: arbitrary fragments of relations can be parti-
tioned with arbitrary number of predicates. We apply this partitioning
to address the problem of finding suitable design for a relational data
warehouse modeled using star schemas such that the performance of a
given workload is optimized. We use a genetic algorithm to generate an
appropriate solution for this optimization problem. The experimental re-
sults confirm effectiveness of our approach.

Keywords: Data Warehouse, Horizontal Partitioning, Predicate Ab-
straction.

1 Introduction

Given a database shared by distributed applications in a network, the perfor-
mance of queries would be significantly improved by proper data distribution
to the physical locations where they are needed most. This can be achieved
by using partitioning (or fragmentation). Partitioning is the process of splitting
large relations (tables) into smaller ones so that the DBMS does not need to re-
trieve as much data at any one time. There are two ways to partition a relation:
horizontally and vertically. Horizontal partitioning involves splitting the tuples
(rows) of a relation, placing them into two or more relations with the identical
structure. Vertical partitioning involves splitting the attributes (columns) of a
relation, placing them into two or more relations linked by the relation’s primary
key. Advantages that partitioning brings are the following: it can significantly
impact the performance of the workload, i.e. set of queries that executes against
the database system by reducing the cost of accessing and processing data; it al-
lows parallel processing of data by locating tuples where they are most frequently
accessed, etc.

Data Warehouses (DW) store active data of business value for an organiza-
tion. Relational DW often contain large relations (fact relations or fact tables)

and require techniques both for managing these large relations and for provid-
ing good query performance across these large relations. Our goal is to find an
optimal partitioning scheme of a data warehouse for a given representative work-
load by using partitioning on relations and indexes. An important issue about
partitioning is to which degree should it occur. We need to find a suitable level
of partitioning relations within the range starting from single attribute values
or tuples to the complete relations. The space of possible physical partitioning
scheme alternatives that need to be considered is very large. For example, each
relation can be partitioned in many different ways.

In this paper we describe a new formal approach for horizontal partitioning
and its application for optimizing data warehouse design in a cost-based manner.
Horizontal partitioning is based on predicate abstraction which maps the domain
of a relation to be partitioned to an abstract domain following a finite set of
arbitrary predicates chosen over the whole concrete domain. To address the above
optimization problem, we first choose a set of predicates to horizontally partition
some (or all) dimension relations of a DW with star scheme, and then split the
fact relation by using the predicates specified on dimension relations. This creates
a number of sub-star fragments of the data warehouse we consider, where each
sub-star fragment consists of a partition of the fact table and corresponding
to it partitions of dimension relations. Then we use a genetic algorithm, known
evolutionary heuristic, to find a suitable solution which minimizes the query cost.
Our method does not guarantee an optimal partitioning, but the experimental
results suggest that it produces good solutions in practice.

Organization After discussing related work, in Section 2 we formally present a
procedure for horizontal partitioning of relations based on predicate abstraction.
Section 3 contains brief review of relational DW with star scheme model. In
Section 4, the optimization problem is defined and a genetic algorithm addressing
it is described. We present experimental results in Section 5. Finally, in Section
6, we conclude and discuss future work.

Related Work The work on optimal partitioning of a database design for a given
representative workload and its allocation to a number of processor nodes has
been extensive [13, 19]. The ideas were then adapted to the setting of a data
warehouse [1, 6]. In [7] is proposed a technique for materializing data warehouse
views in vertical fragments, aimed to tightly fit the reference workload. In our
previous works, we develop a technique for optimizing a data warehouse scheme
by using vertical partitioning [16, 17], and then extend it by defining multiversion
implementation scheme in order to take into account the dynamic aspect of a
warehouse due to the changes of the scheme structure and queries [15].

Predicate abstraction (or boolean abstraction) has been widely used in model
checking [8]. The idea of predicate abstraction is to map concrete states of a
system to abstract states according to their evaluation under a finite set of
predicates. Automatic predicate abstraction has been developed for verifying
infinite-state systems such as software programs [2, 5].

Horizontal partitioning has also been used for optimizing the performance of
queries [4, 12, 14]. However, the method has not been formalized before, and in
such way, it has not been applied in a concrete algorithm. The work presented
in this paper is close to [3], which also uses horizontal partitioning for selecting
an optimal scheme of a warehouse. However, our work brings several benefits.

– We formally define the method of horizontal partitioning of a relation by
using the notion of predicate abstraction.

– In our optimizing procedure we use arbitrary predicates which can be defined
over the whole domain of a relation, not as in [3] where only atomic predicates
applied to single attributes are used.

– Our partitioning method is compositional, which enables partitioning arbi-
trary fragments of relations with arbitrary number of predicates.

– A global index table is created which maintains pointers to each of the sub-
star fragments.

In our experiments we use genetic algorithms that are also used for optimiza-
tion of a data warehouse schema in [3] and [18]. We conducted the experiments
using the Java Genetic Algorithm Framework JGAP [11].

2 Horizontal Partitioning by Predicate Abstraction

Let R be a relation, and A1, ..., An be its attributes with the corresponding do-
mains Dom(A1), ..., Dom(An). A predicate represents a pure boolean expression
over the attributes of a relation R and constants of the attributes’ domains. An
atomic predicate p is a relationship among attributes and constants of a relation.
For example, (A1 < A2) and (A3 >= 5) are atomic predicates. Then, the set of
all predicates over a relation R is:

φ ::= p | ¬φ |φ1 ∧ φ2 |φ1 ∨ φ2

We define horizontal partitioning as a pair (R,φ), where R is a relation and φ
is a predicate, which partitions R into at most 2 fragments (sub-relations) with
the identical structure (i.e. the same set of attributes), one per each truth value
of φ. The first fragment includes all tuples t of R which satisfy φ, i.e. t ² φ. The
second fragment includes all tuples t of R which do not satisfy φ, i.e. t 2 φ. It
is possible one of the fragments to be empty if all tuples of R either satisfy or
do not satisfy φ. Note that, the partitioning (R, φ) is identical to (R,¬φ). If we
apply the predicate true (or false) to a relation, then it remains undivided.

Example 1. Let R = (A1 int, A2 int, A3 date) be a relation. It can be divided
into 2 partitions by using one of the following predicates:

– φ = (A1 = A2), which results into a fragment where the values of A1 and
A2 are equal for all tuples, and a fragment where those values are different.

– φ = (A3 >=′ 01 − 01 − 07′) ∧ (A3 <′ 01 − 01 − 09′), which results into
a fragment where the values of A3 are in the range from ′01 − 01 − 07′ to
′01 − 01 − 09′, and a fragment where those values are not in the specified
range. ¤

Embedded horizontal partitioning is also allowed. We can apply horizontal
partitioning using a predicate φ2 to each of the fragments obtained by a par-
titioning (R,φ1), denoted as (R,φ1, φ2). In this way, we can split the initial
relation R into at most 4 fragments:

R1 = {t ∈ R | t ² φ1 ∧ φ2}
R2 = {t ∈ R | t ² φ1 ∧ ¬φ2}
R3 = {t ∈ R | t ² ¬φ1 ∧ φ2}
R4 = {t ∈ R | t ² ¬φ1 ∧ ¬φ2}

Embedded horizontal partitioning can go on to an arbitrary depth m, such
that in each level an arbitrary predicate is applied to the obtained fragments.
Embedded horizontal partitioning of a relation R with depth m is denoted as
(R, φ1, φ2, ..., φm) where φ1, φ2, ..., φm are arbitrary predicates. The partitioning
with depth m splits the initial relation R into at most 2m fragments.

Example 2. Let we have the relation R from Example 1.
(
R, (A3 >=′ 01− 01−

07′)∧(A3 <′ 01−01−09′), A3 <′ 01−01−07′
)

splits R into at most 3 fragments:

– R1 with tuples satisfying A3 <′ 01− 01− 07′.
– R2 with tuples satisfying ′01− 01− 07′ <= A3 <′ 01− 01− 09′.
– R3 with tuples satisfying A3 >=′ 01− 01− 09′.

Note that, the final number of fragments depends on the structure of R. For
example, if there are no tuples that satisfy (A3 >=′ 01 − 01 − 09′) then the
fragment R3 will be empty. ¤

2.1 Predicate Abstraction

Given a relation R = (A1, ..., An) and a set of predicates P = {φ1, φ2, ..., φm},
we define the concrete domain of R as:

Dom(R) = Dom(A1) × Dom(A2) × . . . ×Dom(An)

and the abstract domain of R with respect to P, denoted as AbsDom(R)P , as
the set of bitvectors of length m (one bit per predicate φi ∈ P, for i = 1, . . . , m):

AbsDom(R)P = {0, 1}m

The abstraction function is the mapping from the concrete domain Dom(R)
to the abstract domain, assigning a tuple t in R the bitvector representing the
Boolean covering of t:

α : Dom(R) → AbsDom(R)P ,
t = (a1, . . . , an) 7→ (v1, . . . , vm), t ² v1 · φ1 ∧ . . . ∧ vm · φm

where 0 · φ = ¬φ and 1 · φ = φ. The concretization function is the mapping

γ : AbsDom(R)P → Dom(R),
(v1, . . . , vm) 7→ {t | t ² v1 · φ1 ∧ . . . ∧ vm · φm}

Given a relation R = (A1, ..., An) and a set of predicates P = {φ1, φ2, ..., φm},
the horizontal partitioning (R, φ1, . . . , φm), or (R,P) for short, splits R into at
most 2m fragments:

R(v1,...,vm) = {t |α(t) = (v1, . . . , vm)}

We form an index table with 2m entries representing all possible bitvectors of
length m:

{(v1, . . . , vm) | vi ∈ {0, 1}, i = 1, . . . , m}
An index entry (v1, . . . , vm) specifies the tuples of R satisfying the entry value
with respect to the set of predicates P. So, each single entry (v1, . . . , vm) from
the index table points to exactly one fragment R(v1,...,vm). If some fragment is
empty, then there will be no pointer to it. Then, local index tables are created
on each of the fragments.

Example 3. Let us have the relation R from Examples 1 and 2. The partitioning(
R, (A3 >=′ 01− 01− 07′)∧ (A3 <′ 01− 01− 09′), A3 <′ 01− 01− 07′

)
splits R

into the following fragments: R(0,0) with tuples satisfying A3 >=′ 01− 01− 09′;
R(0,1) with tuples satisfying A3 <′ 01 − 01 − 07′; R(1,0) with tuples satisfying
′01−01−07′ <= A3 <′ 01−01−09′; R(1,1) with tuples satisfying both predicates,
which is an empty set. The index table contains 4 entries: (0, 0), (0, 1), (1, 0),
and (1, 1) pointing to the corresponding fragments. ¤

2.2 Predicate Selection

We can obtain a set of predicates P = {φ1, ..., φm} applicable to a relation R for
horizontal partitioning by extracting them from a set of given (input) queries.
The predicates are specified in the selection clause of a query. As we have seen,
the number of horizontal fragments is in the worst case exponential in the number
of predicates involved. Therefore, it is important to use as few predicates as
possible. Given P and R we want to generate a set of complete and minimal
predicates Pcomin and then partition R by using (R,Pcomin). A set of predicates
is complete if it partitions the relation into a set of mutually disjoint fragments
such that the access frequency of all tuples within a fragment is uniform for all
queries. A set of predicates is minimal if the resulting partitioning is obtained by
minimal number of predicates. There might be some redundant predicates in P
for our horizontal partitioning algorithm, which lead to no additional fragments.

Example 4. Let we have the relation R from the previous Examples. Consider
predicates φ1 = (A3 >=′ 01− 01− 07′)∧ (A3 <′ 01− 01− 09′) and φ2 = (A3 <′

01− 01− 07′). Then (R, φ1, φ2) splits R into 3 fragments as in Example 2. But
if we have predicate φ3 = (A3 >=′ 01− 01− 09′), then (R, φ1, φ2, φ3) generates
again the same 3 fragments as before. So, φ3 is a redundant predicate. Also
the partitionings (R, φ1, φ3) and (R,φ2, φ3) are identical to (R, φ1, φ2, φ3). This
means that any one of the predicates φ1, φ2, and φ3 can be eliminated. ¤

The procedure ComputeMin for computing a minimal set of predicates
based on a given complete set of predicates and a relation is presented in Figure 1.
It checks for each of the predicates whether it can be eliminated or not. We say
that a predicate φ is relevant to a set of predicates P if there are two tuples t
and t′ of a fragment F , where F ∈ (R,P), such that t ² φ and t′ 2 φ. Note that,
it is still possible that some fragments produced from (R,Pmin) to be empty.

The procedure computes a set of minimal predicates Pmin for a given complete set
of predicates P = {φ1, ..., φm} and a relation R.

1 Let P = {φ1, ..., φm} be a set of predicates. Let i := 1 and Pmin := ∅.
2 If i > m, return Pmin.
3 If (φi ∈ Pmin) or (¬φi ∈ Pmin), then φi is redundant. Set i := i + 1, and repeat

from 2.
4 Otherwise, if φi is relevant to Pmin, then Pmin := Pmin ∪ {φi}. If there exists a

φ ∈ Pmin that is not relevant to Pmin \ {φ}, then set Pmin = Pmin \ {φ}. Set
i := i + 1, and repeat from 2.

5 If φi is not relevant to Pmin, then φi is redundant. Set i := i + 1, and repeat
from 2.

Fig. 1. ComputeMin procedure

2.3 Derived Horizontal Partitioning

Derived Horizontal Partitioning is defined on a relation table which refers to
another relation by using its primary key as reference. Since this relationship
will be used during execution of join operations over the two relations, it is of
advantage to propagate a horizontal fragmentation obtained for one relation to
the other relation and to keep the corresponding fragments at the same place.

Let R = (A1, . . . , An) and S = (B1, . . . , Bm) be relations, Aj (1 ≤ j ≤ n)
be a primary key of R, and Bi (1 ≤ i ≤ m) be a foreign key of S referring to
Aj . Given a horizontal fragmentation of R into R1, . . . , Rk, then this induces the
derived horizontal fragmentation of S into k fragments:

Sl = S nRl, l = 1, . . . , k

where the semi-join operator n is defined as S nR = πB1,...,Bm(S on R), i.e. the
result is the set of all tuples in S for which there is a tuple in R that is equal on
their common attributes.

3 Data Warehouse Schema

In the core of any data warehouse is a concept of a multidimensional data cube.
The data in the cube is stored in specialized relations, called fact and dimen-
sion relations. Fact relations contain basic facts about a model, and they are

referencing any number of dimension relations. On the other hand, dimension
relations contain extra information about the facts. There are two schemes of
implementation: star and snowflake scheme. In the star scheme all attributes
of each dimension are stored in one relation, while in the snowflake scheme at-
tributes in each dimension are normalized and stored in different relations. In
this paper we consider data warehouse with star scheme.

Let (F, D1, D2, . . . , Dk) be a star scheme. Given a set D = {D1, D2, . . . , Dk}
of dimension relations, let us suppose that each of them Di (1 ≤ i ≤ k) is hori-
zontally partitioned by using a set of predicates Pi into ni fragments. Then, a fact
relation F is partitioned using derived horizontal partitioning in the following
way:

Fj =
(
...(F nD1r1)n . . .nDkrk

)

where 1 ≤ ri ≤ ni, 1 ≤ i ≤ k, and 1 ≤ j ≤ ∏k
i=1 ni. So the fact rela-

tion will be partitioned into
∏k

i=1 ni fragments. Given a fact relation partition
Fj =

(
...(F n D1r1) n . . . n Dkrk

)
, we can create a sub-star scheme fragment

(Fj , D1r1 , . . . , Dkrk
). If each dimension Di is partitioned into ni (1 ≤ i ≤ k)

fragments, then there will be
∏k

i=1 ni sub-star schemes in the implementation
scheme of a data warehouse.

More formally, if dimension relations are partitioned by sets of predicates
Pi = {φi,1, φi,2, . . . φi,mi} for 1 ≤ i ≤ k, then each dimension relation Di will be
divided into at most 2mi fragments, and the fact table into at most 2

∑k
i=1 mi frag-

ments. We can form a global index table with 2
∑k

i=1 mi entries representing all
possible bitvectors of length

∑k
i=1 mi. An index entry (v1,1, . . . , v1,m1 , . . . , vk,mk

)
specifies the tuples of dimension relations satisfying the entry value with respect
to the corresponding set of predicates. Each single entry (v1,1, . . . , v1,m1 , . . . , vk,mk

)
from the index points to exactly one sub-star scheme created by dimension rela-
tions Di(vi,1,...,vi,mi

) for 1 ≤ i ≤ k, and a fact sub-relation
(
...(FnD1(v1,1,...,v1,m1))n

. . .nDk(vk,1,...,vk,mk
)

)
. Then, local index tables are created on each of the sub-star

schemes.

4 Optimization Problem

As we have seen the number of generated sub-star schemes grows rapidly as the
number of fragments of dimensions increases. Thus, it will be difficult for the
data warehouse administrator (DWA) to maintain all these sub-star schemes.
We want to compute an (near) optimal number of fragments such that the
performance of queries will be good and the cost of maintaining and managing
so many fragments will be acceptable. The latter is addressed by allowing to
choose in our procedure a maximal number of sub-star scheme fragments that
DWA can maintain. We now formally define the problem of finding an optimal
partitioning implementation scheme of a data warehouse.

4.1 The Optimization Problem

Let (F,D1, D2, . . . , Dk) be a star scheme, Q = {Q1, Q2, . . . , Ql} be a set of
queries, and Cost be a cost evaluation function. The optimization problem is
defined as follows. Find a set of sub-star fragments S = {S1, S2, . . . , SN} such
that the cost

Cost(S,Q) is minimal

subject to the constraint N ≤ W , where W is a threshold representing a maximal
number of fragments that can be generated. The cost evaluation function is
defined according to the linear cost model [9]. The cost of answering a query
Qi, denoted as Cost(S, Qi), is taken to be equal to the space ocupied by the
fragment Sj ∈ S from which the query is answered, i.e. proportional to the total
number of rows of the fragment Sj .

4.2 The Optimization Procedure

We now describe an optimization procedure for obtaining an optimal partitioning
implementation scheme given a workload:

1 Extract all predicates P used by Q.
2 Find a complete set of predicates Pi ⊆ P (1 ≤ i ≤ k) corresponding to each

dimension relation Di.
3 Use ComputeMin(Pi,Di) procedure to find a minimal set of predicates for

each relation.
4 Apply a genetic algorithm to find an optimal partitioning scheme.

Genetic algorithm (GA) [10] is a search method for finding approximate so-
lutions to optimization problems. It uses techniques inspired by evolutionary
biology such as mutation, selection, crossover, and survival of the fittest. Can-
didate solutions to a given problem, also called chromosomes, are represented
most commonly as bit strings, but other encodings are also possible. The algo-
rithm starts from a population of randomly generated solutions and happens in
iterations (i.e. generations). In each generation, the cost of every solution in the
population is evaluated, multiple solutions are selected from the current pop-
ulation based on their cost, and modified (recombined and possibly randomly
mutated) to form a new population. The new population is then used in the next
iteration. The algorithm terminates when either a maximum number of gener-
ations has been produced, or a solution with satisfactory cost has been found.
We now present the design of our genetic algorithm.

Representation of Solution Let Pi = {φi,1, φi,2, . . . φi,mi} (1 ≤ i ≤ k) be a
complete and minimal set of predicates that needs to be applied to the dimension
Di for horizontal partitioning. A possible solution of our problem is a set of
N (N ≤ W) different sub-star fragments. Each fragment Sj (1 ≤ j ≤ N) is
represented by a bit array (or, bit-vector).

(v1,1, . . . , v1,m1 , . . . , vk,1, . . . , vk,mk
)

containing one bit for each predicate used in the partitioning. Each bit in the
solution is set to 1, if the respective predicate is satisfied by all tuples in Sj ;
otherwise it is set to 0. So, we have that

Sj = F(v1,1,...,v1,m1 ,...,vk,mk
) = {t |α(t) = (v1,1, . . . , v1,m1 , . . . , vk,mk

)}

or

Sj = F(v1,1,...,v1,m1 ,...,vk,mk
) =

(
...(F nD1(v1,1,...,v1,m1))n . . .nDk(vk,1,...,vk,mk

)

)

The entry from the local index table which points to Sj will be its bit array
representation (v1,1, . . . , v1,m1 , . . . , vk,1, . . . , vk,mk

). In this way, we obtain that
the search space of our optimization problem is 2N

∑k
i=1 mi , or in the worst case

it is 2W
∑k

i=1 mi .
A chromosome consists of N composite genes, where each composite gene is

a bit-vector representing one fragment Sj as described above. One chromosome
represents one possible solution to the problem.

Genetic Algorithm Operators A single point crossover operator is used,
which chooses a random bit from two parent chromosomes, i.e. solutions, and
then performs a swap of that bit and all subsequent bits between the two parent
chromosomes, in order to obtain two new offspring chromosomes.

The mutation operation is performed over each gene of a chromosome and
mutates them with a given probability. Because the genes are represented as bit
arrays, a mutation of a gene means fliping the value of every bit with the given
probability.

We use a natural selection operator where a chromosome is selected for sur-
vival in the next generation with a probability inversely proportional to the cost
of the solution represented by the chromosome. A strategy of elitist selection is
also used where the best chromosome of the population in the current generation
is always carried unaltered to the population in the next generation.

The termination of the GA is established as follows. We perform a number
of GA experiments, and we determine the number of iterations that are needed
for the GA, such that no significant improvement in the solution quality can be
detected for a specified number of iterations.

5 Experimental Results

The experiments were performed by using four sets of 25, 50, 100 and 200 distinct
queries on a star scheme with 4 dimensions, which contain 11 attributes, and 1
fact table with size of 1.25 ∗ 109 rows. Each query contains a selection clause of
the form: φ1 ∧ ... ∧ φn. The sets of 25, 50, 100 and 200 queries are composed
of 178, 341, 711 and 1387 predicates, respectively. The number of predicates in
a query is generated using a gaussian distribution with mean 7 and standard
deviation 1. The attribute and its value in a given predicate are generated using

a uniform distribution on the set of attributes and the domain of the selected
attribute, respectively. The termination condition of all the experiments is set
to 200 iterations and the population size is set to 200 chromosomes.

In Figure 2, we show the query execution cost for different query sets and
different values of the threshold W . The query execution cost is represented in
percentage relative to the worst query execution cost (on a star scheme with
no partitioning) for the given query set. We can see that the query execution
cost on a partitioned star schema is reduced by the order of 103 compared to an
unpartitioned schema. Also, note that the query cost reduces when the threshold
increases.

1 4 8 16 32 64
W - threshold of number of partitions

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

R
el
a
ti
v
e
Q
u
er
y
E
x
ec
u
ti
o
n
C
o
st Q25

Q50

Q100

Q200

Fig. 2. The query cost for different values of the threshold W

In Figure 3, we compare the relative query execution costs on three query
sets composed of 100 queries each, which contain predicates generated using a
gaussian distribution with mean 3, 7 and 15 and standard deviation 1, on the
same star schema used in Figure 2. The three sets of queries with 3, 7 and
15 average number of predicates per query are composed of 305, 711 and 1100
predicates, respectively. It can be seen that the query execution cost reduces
more rapidly when the average number of predicates in the generated queries is
smaller.

6 Conclusion

In this paper we present a novel formal approach for horizontal partitioning
of relations based on predicate abstraction. Then, we show how to use this
approach for finding an optimal data warehouse design which takes account
of the performance of queries and the maintenance cost.

A possible direction for extension is to combine our partitioning method with
vertical partitioning, and see its effects on the problem of computing an optimal

1 4 8 16 32 64
W - threshold of number of partitions

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

R
el
a
ti
v
e
Q
u
er
y
E
x
ec
u
ti
o
n
C
o
st

QAP3

QAP7

QAP15

Fig. 3. The cost of query sets with different average number of predicates

data warehouse design. It is also interesting to extend the proposed approach to
dynamically evolving data warehouse, which can change its scheme structures
and its queries.

References

1. S. Agrawal, V. Narasayya, and B. Yang. Integrating Vertical and Horizontal Par-
titoning into Automated Physical Database Design. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, (2004), 359–370.

2. T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for
Model Checking C Programs. In Proceedings of the International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS), LNCS
2031, (2001).

3. L. Bellatreche and K. Boukhalfa. An Evolutionary Approach to Schema Partitioning
Selection in a Data Warehouse. In Proceedings of International Conference on Data
Warehousing and Knowledge Discovery (DAWAK), LNCS 3589, (2005), 115–125.

4. L. Bellatreche, K. Karlapalem, and A. Simonet. Algorithms and Support for Hor-
izontal Class Partitioning in Object-Oriented Databases. In the Distributed and
Parallel Databases Journal 8(2), (2000), 155–179.

5. A. Dimovski, D. R. Ghica, and R. Lazić. Data-Abstraction Refinement: A Game
Semantic Approach. In Proceedings of the International Static Analysis Symposium
(SAS), LNCS 3672, (2005), 102–117.

6. P. Furtado. Experimental Evidence on Partitioning in Parallel Data Warehouses.
Proceedings of the 7th ACM international workshop on Data warehousing and
OLAP (DOLAP), (2004), 23–30.

7. M. Golfarelli, V. Maniezzo, S. Rizzi. Materialization of Fragmented Views in Multi-
dimensional Databases. Data & Knowledge Engineering, Volume 49, Issue 3, (2004),
325–351.

8. S. Graf and H. Saidi. Construction of Abstract Atate Graphs with PVS. In Pro-
ceedings of the International Conference on Computer Aided Verification (CAV),
LNCS 1254, (1997), 72–83. Springer.

9. V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes
efficiently. In Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, ACM Press SIGMOD Record 25(2), (1996), 205–216.

10. J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1995.

11. K. Meffert. JGAP - Java Genetic Algorithms and Genetic Programming Package.
http://jgap.sf.net.

12. M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-
Hall, 1999.

13. D. Sacca and G. Wiederhold. Database Partitioning in a Cluster of Processors. In
Proceedings of the ACM Transactions on Database Systems (TODS), Vol. 10(1),
(1985), 29–56.

14. A. Sanjay, V. R. Narasayya, and V. R. Yang. Integrating Vertical and Horizon-
tal Partitioning into Automated Physical Database Design. In Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, ACM Press
SIGMOD Record, (2004), 359–370.

15. D. Sahpaski, G. Velinov, B. Jakimovski, and M. Kon-Popovska. Dynamic Evo-
lution and Improvement of Data Warehouse Design. In Proceedings of Balkan
Conference in Informatics, IEEE Computer Society’s Conference Publishing (IEEE
BCI), (2009), 115–125.

16. G. Velinov, D. Gligoroski, and M. Kon-Popovska. Hybrid Greedy and Genetic
Algorithms for Optimization of Relational Data Warehouses. In Proceedings of
Multi-Conference: Artificial Intelligence and Applications (IASTED), (2007), 470–
475.

17. G. Velinov, B. Jakimovski, D. Cerepnalkoski, and M. Kon-Popovska. Framework
for Improvement of Data Warehouse Optimization Process by Workflow Gridifi-
cation. In Proceedings of Conference on Advances in Databases and Information
Systems (ADBIS), LNCS 5207, (2008), 295–304.

18. J.X. Yu, X. Yao, C. Choi, and G. Gou. Materialized Views Selection as Constrained
Evolutionary Optimization. In Proceedings of IEEE Transactions on Systems, Man
and Cybernetics, Part C: Applications and Reviews, Volume 33(4), (2003), 458–468.

19. D. Zilio. Physical Database Design Decision Algorithms and Concurrent Reor-
ganization for Parallel Database Systems. Ph. D. Thesis, University of Toronto,
1998.

