
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353013708

Microservice based architecture for the genetic algorithm

Conference Paper · April 2018

CITATIONS

0
READS

64

1 author:

Goran Petkovski

Ss. Cyril and Methodius University in Skopje

6 PUBLICATIONS   2 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Goran Petkovski on 06 July 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353013708_Microservice_based_architecture_for_the_genetic_algorithm?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353013708_Microservice_based_architecture_for_the_genetic_algorithm?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Petkovski?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Petkovski?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ss_Cyril_and_Methodius_University_in_Skopje?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Petkovski?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Goran-Petkovski?enrichId=rgreq-55eaaae9985d23a77fa0acdb9ba314f2-XXX&enrichSource=Y292ZXJQYWdlOzM1MzAxMzcwODtBUzoxMDQyNDgxNjk3Mjc1OTA1QDE2MjU1NTg0MTM5MTI%3D&el=1_x_10&_esc=publicationCoverPdf


Microservice based architecture for the genetic
algorithm

Evgenija Stevanoska, Kristijan Spirovski, Goran Petkovski,Boro Jakimovski, Goran Velinov
Faculty of Computer Science and Engineering

University Sts Cyril and Methodius
Skopje, Macedonia

{evgenija.stevanoska, kristijan.spirovski, goran.petkovski}@students.finki.ukim.mk, {boro.jakimovski, goran.velinov}@finki.ukim.mk

Abstract—Microservice architecture is becoming more popular
and more frequently used, mainly because of its numerous ad-
vantages over monolith approach. Namely, the developed systems
nowadays need more agile distribution of the processing power,
and due to their size, a way to deploy, maintain and test individual
components separately. Each algorithm/software composed of
individual and independently executable parts that do not share
many parameters are good candidates for a solution based on
a microservice architecture. This paper presents a microservice
approach when building an architecture for the genetic algorithm.
We identified eight independent parts of the genetic algorithm,
and each one is represented as a microservice. This design leads
to a solution that has low coupling and high cohesion. The advan-
tages of this approach include distributing the computations on
more physical locations, and furthermore, scaling only the parts
of the system which require more performance (which means
need large processing power or are frequently executed).

Keywords—microservice, genetic algorithm, Spring Boot,
Spring Cloud

I. INTRODUCTION

The large number of NP-hard problems that can’t be solved

in polynomial time imposes the need to use an alternate

approach for finding near optimal solutions to the optimization

problems in efficient time. Popular choices for that task

are meta-heuristic optimization algorithms. One of the oldest

and still very popular meta-heuristic algorithm is the genetic

algorithm (GA), which models the evolution of the population

by applying mutation and crossover to the individuals in the

population. The nature of the genetic algorithm offers easy

identification of the independent parts and their parallel and

distributed execution. These characteristics make the genetic

algorithm suitable for a microservice based implementation.

A microservice is an independent service which is re-

sponsible for one functionality and it collaborates with other

microservices using a strongly defined interface, often using

messages with a predefined structure. Microservice architec-

ture is an approach for developing applications using small, in-

dependent services. Each microservice is executed as a small,

independent process. Nowadays, the microservice architecture

becomes more popular, and the advantages over the monolith

approach are obvious.

Microservice based implementation of the genetic algorithm

allows individual components to be executed on more physical

locations. Furthermore, not all components have the same

processing needs. This approach allows us to identify the most

computationally extensive components and assign them more

processing power, which leads to easy scalability, where each

component has only the resources needed for optimal execu-

tion. The components of the algorithm can be independently

executed. The nature of the microservice architecture allows

parallel execution of the independent parts.

This paper presents a microservice based implementation of

the genetic algorithm. The goal is to show that GA is suitable

for a microservice approach and to give a prototype of the

implementation (which is defined by the choice of independent

components). We implemented eight microservices that com-

municate through messages (REST API). The microservices

are implemented in Spring Framework using Spring Boot and

Spring Cloud libraries, and they are deployed to Pivotal.

The paper is organized as follows: Section II gives an

explanation and a definition to microservoces and microservice

architecture, and it also lists the advantages over the monolith

approach. Section III contains a description and pseudo-code

of the genetic algorithm. The proposed implementation is

given in Section IV, which contains information about the

micriservices, and also a list of the used technologies. Finally,

the last section gives the conclusion.

II. MICROSERVICES

The term microservices was first introduced in 2011 at an

architecture workshop, as a way of describing the common

idea of the members of the workshop for a new software

architecture. Since then, they are implemented in many popular

and commonly used software solutions. For example, Netflix

uses microservice architecture known as Grained SOA [1].

Microservices are small processes that can be independently

deployed, scaled and tested. Each microservice has only one

functionality and responsibility, which means it can be easily

updated and understood by a programmer [2]. Functionalities

that are not strongly connected are modeled using different

microservices, thus, the microservice architecture supports the

high cohesion-loose coupling paradigm.

Microservice architecture is an application whose compo-

nents (modules) are implemented using microservices. The

The 15th International Conference for Informatics and Information Technology (CIIT 2018)

43



microservices communicate using predefined interface (often

using messaging concept). The microservice approach has

numerous advantages: [3]

• Each microservice implements a limited number of func-

tionalities, leading to a small codebase, and thus low

probability of a bug in the code. Furthermore, if a bug

exists, its scope is limited to the microservice, which

leads to an easy identification of the part of the code

causing the bug. The fact that microservices are indepen-

dent means that they can be easily tested, and their scope

easily understandable even if they are isolated from the

system, leading to a higher code reusability. Usually, each

microservice is developed and deployed by one team, and

the team is responsible for maintaining it.

• Each microservice can be easily replaced while other

services work normally. If an application based on a

microservice architecture needs to be updated, the process

can be performed by gradually replacing each microser-

vice (or furthermore, uploading the new version alongside

with the old one), and then updating all the microservices

that are dependent of the replaced microservice.

• Consequence of the previous point is the fact that the

replacement of one microservice doesn’t cause down-time

to the whole system. A reboot is needed only on the

microservices of the replaced module.

• Microservice architecture scaling doesn’t mean doubling

all components’ instances. Namely, it offers the oppor-

tunity to the developers to monitor the load to each

microservice, and to scale only the microservices that

need higher processing power.

• The only limitation that microservices have is the tech-

nology used for communication. Other than that, the

developers are free to choose the optimal resources for a

microservice, which includes the framework, the imple-

mentation language etc.

The microservice approach has few disadvantages, caused

mainly by the message-based communication between the

microservices. They include:

• Sending messages through the network is slower than in-

memory calls. To achieve comparable performances with

monolith architecture, the number of calls through the

network should be limited.

• Special attention should be paid on security of the com-

munication. The messages are usually send in json or xml

format, which can be easily intercepted. To maximize the

security, the communication should be encrypted.

These facts are highlighting the advantages of the microser-

vice architecture over a monolith one, making the former one

more popular and commonly used. Namely, monolith systems

are often enormous, which makes them hard to maintain.

Finding a bug in such system takes longer because of the

inability to easily identify the part of the code causing the bug.

Attention should be paid on dependencies between different

libraries, because adding or updating a library to a newer

version could cause inconsistency in the system. A change in

one part of the system causes reboot on the whole application,

which means greater downtime. Furthermore, the scalability of

a monolith application is limited to making more instances of

the whole application, and balancing the load between them.

Obviously, this approach is not efficient when the traffic is

increased for one part of the application. Also, monolith ar-

chitecture uses one language for the whole application, which

eliminates the opportunity to choose the most convenient

language and framework for each functionality.

Compared to the standard service oriented architectures,

Microservices show a large number of common parts. Namely,

they are both relying on as the main component, but they vary

in terms of service characteristics (for example, service size

and functionalities each service models).

The advantages of microservice architecture over the SOA

include:

• Microservices can operate and be deployed independently

(unlike SOA), which makes it easier to deploy a new

version of the application and scale only the necessary

parts.

• they are better at fault tolerance. If a microservice fails,

it only affects the part where the microservice is used,

all other micriservices function independently. In SOA,

Enterprise Service Bus (ESB) becomes a single point of

failure.

• In SOA the data is shared and accessible from all services,

making the services tightly coupled.

• Containers can be easily used with microservices (and

not with SOA).

These facts just confirm that microservice architecture is

gaining its rightful popularity, and is a good and commonly

used architectural choice in newly developed systems.

III. GENETIC ALGORITHM

GA is a common heuristic optimization method based on the

principle of natural evolution. In nature, the individuals evolve

following the principles of natural selection and survival of the

fittest. Theoretical basis of the genetic algorithm are introduced

by Holland [4]. GA follows this principles of evolution in order

to find a near optimal solution to an optimization problem.

A. Description of the Algorithm

Genetic algorithms encodes a potential solution to a specific

problem on a simple chromosome-like data structure and ap-

plies recombination operators to these structures so as to pre-

serve critical information. An implementation of a GA begins

with an initial population of (typically random) chromosomes.

Each chromosome is evaluated using a fitness function that is

specific to the problem being solved. Then, based on the fitness

values, the GA allocates reproductive opportunities in a way

that the ones that represent a better solution are given more

chances to reproduce than the chromosomes that represent

poorer solutions. On the chosen subset of chromosomes (to be

part of the next generation) following operators for simulating

the evolution process through generations are used in order to

create the next generation:

The 15th International Conference for Informatics and Information Technology (CIIT 2018)

44



• Selection. Every GA uses a selection mechanism to

decide which individuals will comprise the mating pool

which will form the basis of the next generation and will

be used to generate new offspring. When dealing with

a problem of minimization, the individuals with lower

fitness values will have a better chance to be selected for

the mating pool [5].

• Crossover. Crossover is the process of randomly se-

lecting two parent chromosomes from the mating pool,

exchanging genetic material between them and produc-

ing new offspring chromosomes. This process tends to

increase the quality of the populations and force conver-

gence.

• Mutation. This operator represents a small change on

the genetic material of a chromosome. It is performed

by changing one or more components of a chromosome.

Mutation is used to improve the diversity of the chromo-

somes in the population. It lowers the probability of the

algorithm being trapped in local optima, hence it plays

an important role in any GA.

B. Parameters of the Genetic Algorithm

As previously mentioned, the genetic algorithm takes few

input parameters which have a direct impact of the GA’s

behavior and the quality of the found solutions.

The population size and the number of generations.

These two parameters influence the trade-off between the

quality of the found solution and the execution time. Increasing

the number of chromosomes in the population is proportionally

increasing the size of the search space that the algorithm

covers, and thus it increases the probability of finding a better

solution.

Crossover probability. This parameter controls the portion

of the population which is directly inherited from the last

generation, (and thus the portion of the newly formed individ-

uals). Usually, 20% of the individuals go to the next generation

unchanged, and the remaining 80% of the population are filled

by applying the crossover operators on the best individuals

from the previous generation.

Mutation probability. As previously mentioned, mutation

is a mechanism for avoiding local optima traps. With certain

probability, each newly created individual is subject to muta-

tion. Usually, this parameter is in the scale of 10%.

Dimension of the search space. This parameter depends

only on the concrete application of the algorithm (the op-

timization problem that it tries to solve) and the defined

encoding of the solutions as vectors.

C. Characteristics of the Genetic Algorithm

The genetic algorithm is easy to implement and to under-

stand. The nature of the algorithm allows simple parallelism

and distributed execution. The best found solution is always

part of the last generation, and no additional memory for

storing is needed. The number of values exchanged between

the microservices are relatively small. Mutation and crossover

allow the algorithm to escape a local optima and to find a

good solution. The algorithm includes a probability model, so

it is recommended to execute the algorithm more times from

different initial populations. One of the main disadvantages of

the algorithm is the execution time.

These characteristics are the reason why genetic algorithm is

one of the most commonly used meta-heuristic optimization

algorithms today, 25 years after its introduction. Especially

the easy distribution and parallelization make the algorithm

suitable for a microservice implementation, which is the main

motivation for this paper.

IV. IMPLEMENTATION

In the proposed implementation, GA is divided into seven

independent components, each implemented as a different

microservice. Also, another microservice is added, which is

visible to the user, and its goal is to catch the calls to the

genetic algorithm and sends a request to the corresponding

services. The complete architecture is given on Fig. 1. Each

microservice is represented with a rectangle. The arrows are

showing service calls (the service which is on the side of the

arrow is called by the service on the other end). The green parts

contain information about the input parameters and the output

value of each microservice. The next paragraphs contain a

detailed description of each microservice.

GA Service. This is the main service visible to the user.

As an input it takes a parameter object, and is responsible for

calling and coordinating of the other services. At the end of

the optimization process it returns the best solution to the user.

Initialization. This microservice takes a parameter object

as an input (which contains the parameters described above),

and based on the values of the size of the population and

the dimension of the chromosomes randomly initializes the

first generation. The result of this microservice is an initial

population, which is a set of chromosomes randomly placed in

the search space. Furthermore, this service stores the parameter

object which is used by all other microservices. This approach

achieves greater speed by sending fewer parameters between

service calls. Namely, this service implements REST API

which is used to return the parameter object or to change

some value of the parameters.

Evolve. The service is responsible for evolution of the

generations. As input it takes the initial population, evolves

it through more iterations, and returns a list which contains

the best solution of each generation.

Select best. This microservice implements the selection

mechanism of the best chromosomes in the population. As

input it takes the current generation and outputs a subset of

chromosomes which will be part of the next generation. This

set forms the basis for the next generation, namely, the rest of

the next population will be formed by applying crossover and

mutation on the individuals contained in the chosen subset. In

the literature many selection operators are introduced, which

are suitable for different applications, by making a trade-off

between the execution time and the probability of returning

exactly the best k solutions. For example, tournament selection

[6] (with complexity O(k)) makes k iterations, and in each

The 15th International Conference for Informatics and Information Technology (CIIT 2018)

45



Fig. 1. Implemented microservices and their communication. The green parts present data flow (Input and output parameters of each service)

iteration randomly chooses two chromosomes in constant

time, evaluates them and chooses the better one with greater

probability to be part of the next generation. On the other

end is the selection method which operates with O(nlog(n))
complexity, where n is the population size. It sorts all the

individuals in the populations, and chooses the best k to

continue to the next generation.

Evaluate result. This microservice is responsible for eval-

uating the quality of each solution, and it is specific for each

optimization problem. It takes chromosome as an input, and

returns a float value representing the quality of the solution.

Crossover population. After it is decided which individual

will continue to the next generation, this microservice is

responsible for completing the next generation by performing

a crossover on chromosomes of the chosen subset. Namely, cp
times it chooses a pair of individuals, and puts their offspring

in the next generation. Its input is a generation, it evolves it

and returns the new generation.

Crossover individual. The input of this service is a pair

of chromosomes, and it implements a crossover technique,

which is used to generate offspring to the input chromosomes.

The return value is the generated offspring. There are many

possible off-the-shelf choices for crossover operator, suitable

for different applications. One of the commonly used are Cycle

Crossover (CX), Order Crossover (OX) and Partially Matched

Crossover (PMX) [7] [8].

Mutator. This service performs a mutation changes on

one chromosome. The mutation process usually makes small

changes to one or more components of the chromosome. Its

input parameter is the original chromosome, and the modified

one is returned after the mutation is performed. The most

commonly used mutation operators are Insertion mutation,

Simple Inversion Mutator and Swap mutator. [7] [8].

A. Used Technologies

All previously described microservices are implemented us-

ing Spring framework (Spring cloud part [9]), which contains a

large number of libraries used in building a distributed system.

This platform offers a simple way to deploy the application to

the Cloud. Spring Cloud has powerful libraries which can be

used in discovering microservices, managing the configuration,

distributed messaging, load balancing etc. The mentioned

libraries are developed and used by industry leaders, such as

Netflix and other companies whose solutions are implemented

using the microservice architecture. The libraries used in the

proposed implementation are:

Eureka [10] is a part of Spring Cloud which offers discov-

ering of the microservices, in order to balance the workload

between them and to successfully manage the application

The 15th International Conference for Informatics and Information Technology (CIIT 2018)

46



when some of the microservices are down. Eureka can be

seen as a service registry.

To use this library, a service which works as a monitoring

service for all other microservices needs to be created. Namely,

when a new service is started (introduced to the system), it tries

to register to the main Eureka service. The main task of the

monitoring service is to check if each registered microservice

is active and to show this information to administrator. Each

registered microservice is called an Eureka client. Each Eureka

client is registered with its host and port, as well as additional

meta-data. The meta-data can contain service name, which

can be used for robust code on the client side and easier

communication between the microservices. Additionaly, when

a service is re-deployed, and the service is given a new IP

address, the only change happens in the Eureka service. The

other services still can call the new service by its unique name,

and their code base remains unchanged.

RabbitMQ library is used for secure and reliable com-

munication between the microservices. Namely, RabbitMQ

[11] is a message broker, which means that it is a module

which translates the messages from the senders format to the

format used by the receiver. Furthermore, the messages are

exchanged in the following way: RabbitMQ builds a message

queue, and then each service which needs to send a message

connects to the queue and uploads the message. The message

is saved until the recipient service is connected to the queue

and receives the message. Further processing of the message

is left to the service that received it. RabbitMQ implements

many message protocols, but the most popular and commonly

used is Advanced Message Queuing Protocol (AMQP).

Zuul [12] is a service used for dynamically routing, mon-

itoring and improving security of the microservices. This

service allows the inner ports of the services to be hidden,

and it is used as a ”front door” (known as ”gate keeper”)

for all the client requests for other services. This means that

its role is to accept the incoming requests and to redirect

them to the right services. With this controlling strategy of the

requests to the inner microservices it is possible to have further

understanding about the health of the implemented system, as

well as its protection from various malicious attacks. Zuul

offers dynamically reading, compiling and executing of series

of filters which are used to control the HTTP requests and

responses. Zuul allows the client not to know the specific ports,

but to focus on the provided API, and relies on Zuul to make

the call to the corresponding microservice.

Pivotal Cloud Foundry [13] is used as a platform for de-

ploying of the microservices. This platform is chosen because

it offers many implemented solutions for microservice man-

agement, for example on demand scaling, dailover/resilience,

road balancing, monitoring etc.

Fig. 2 illustrates the communication between the used

technologies. Namely, the client requests first are coming to

the Zuul service, because the ports and addresses of the indi-

vidual microservices are not known to the user. This service

distributes the request to the corresponding microservices and

returns the results to the user. To achieve that, it relies on

Eureka, which has a completely registry of the services. The

communication between the services (including the Eureka

service) is performed using RabbitMQ and its implemented

message queue.

Note. All microservices communicate using the Rest Tem-

plate. This allows simple request building and parsing of the

answers. In the proposed implementation all the messages are

in json format.

The performances of a microservice approach on the genetic

algorithm implementation depends heavily on the compu-

tational performance of the evaluation function, and other

specific components of GA. Namely, the network latency is

a big problem, and can overpower the save in execution time

by the distributed execution. That means, in order to obtain

an improvement with a microservice approach, we need to

test on a very complex evaluation function. Unfortunately, we

were not able to do this, due to the high cost of the used

platform for large scaling. Our services were deployed on the

free version, with 1GB of RAM and single core CPU. Of

course, for some applications, this approach will have poorer

performances, but the point is that the presented approach has

different advantages, for example flexibility and easy scaling

up and down.

V. CONCLUSION

This paper shows that Genetic Algorithm is suitable for

a microservice based implementation, because it consists

of many independent components with different processing

power needs. Advantages of this approach are numerous: for

each component, information about its workload is available,

leading to easily scaling of the components that need more

processing power. The main disadvantage is the message

based communication between the microservices, which is

significantly slower compared to the in-memory calls. Further-

more, each new implementation of the crossover and mutation

operators needs to be implemented as a new microservice and

deployed, which is more complex and less generic that simply

adding a new function in the monolith architecture.

As further work is left to develop the prototype into a

more complex and fully implemented application, which offers

many possibilities for different operators used by the genetic

algorithm. In addition, the scaling of the components of the

proposed implementation (at the moment) is done by hand,

namely the administrator observes which components have

high workload, and by hand initializes more processing units

with this components. A way should be found to automate

this process. Additionally, experiments should be introduced

to examine the needed processing power, in order to achieve

performance gain by the presented approach.

REFERENCES

[1] A. Wang and S. Tonse, ”Announcing Ribbon: Tying the Netflix
Mid-Tier Services Together”, Medium, 2018. [Online]. Available:
http://techblog.netflix.com/2013/01/announcing-ribbon-tying-netflix-
mid.html. [Accessed: 25- Mar- 2018].

[2] J.Thnes, ”Microservices.” IEEE Software vol 32 no. 1 pp. 116-116, 2015
[3] N. Dragoni, ”Microservices: yesterday, today, and tomorrow.” Present and

Ulterior Software Engineering. Springer, Cham, pp.195-216. 2017.

The 15th International Conference for Informatics and Information Technology (CIIT 2018)

47



Fig. 2. Overview of the interactions between the used technologies.

[4] J. Holland, ”Genetic algorithms.” Scientific american vol 267 no. 1 pp.
66-73, 1992

[5] L, Kwang, and M. A. El-Sharkawi, ”Modern heuristic optimization
techniques: theory and applications to power systems”. John Wiley and
Sons vol 39, 2008.

[6] B. Miller and D. E. Goldberg. ”Genetic algorithms, tournament selection,
and the effects of noise.” Complex systems vol 9 no. 3 pp. 193-212 1995

[7] S.N. Sivanandam and S. N. Deepa. ”Genetic algorithm optimization prob-
lems.” Introduction to Genetic Algorithms. Springer Berlin Heidelberg pp.
165-209, 2008.

[8] L.Y. Kwang, and M. A. El-Sharkawi, ”Modern heuristic optimization
techniques: theory and applications to power systems.” vol. 39. John
Wiley and Sons, 2008.

[9] ”Spring Cloud”, Projects.spring.io, 2018. [Online]. Available:
http://projects.spring.io/spring-cloud/. [Accessed: 25- Mar- 2018].

[10] ”Introduction to Spring Cloud Netflix - Eureka — Baeldung”, Baeldung,
2018. [Online]. Available: http://www.baeldung.com/spring-cloud-netflix-
eureka. [Accessed: 25- Mar- 2018].

[11] ”RabbitMQ - Messaging that just works”, Rabbitmq.com, 2018. [On-
line]. Available: https://www.rabbitmq.com/. [Accessed: 25- Mar- 2018].

[12] ”Netflix/zuul”, GitHub, 2018. [Online]. Available:
https://github.com/Netflix/zuul. [Accessed: 25- Mar- 2018].

[13] ”Pivotal Cloud Foundry (PCF)”, Pivotal.io, 2018. [Online]. Available:
https://pivotal.io/platform. [Accessed: 25- Mar- 2018].

The 15th International Conference for Informatics and Information Technology (CIIT 2018)

48

View publication statsView publication stats

https://www.researchgate.net/publication/353013708

