
The 6th International Conference for Informatics and Information Technology (CIIT 2008)

©2008 Institute of Informatics.

USING FORMAL METHODS IN SOFTWARE ENGINEERING EDUCATION

Anastas Misev Boro Jakimovski

University of Sts. Cyril and Methodius University of Sts. Cyril and Methodius

Faculty of Natural Sciences and Mathematics Faculty of Natural Sciences and Mathematics

ABSTRACT

Formal methods have wide usage in software engineering.

One especially important category of software engineering

where formal methods are irreplaceable is software

engineering for critical systems. Critical systems represent

software products that require high level of correctness in

requirements specification, software design and the final

product. Using different formal methods we can help in

development of safer and more reliable critical systems. In

this paper we give an overview of the formal methods and

tool used in Software Engineering. We also present our

experience in lecturing a course in SE for CS at a post

graduate level, the methodology used in to connect the theory

with practice by presenting several formal methods. Out final

goal was the use of temporal logic in SE. We also describe

the tools used and show several case studies presented to the

students and the lessons learned during the course.

I. INTRODUCTION

Software engineering methods used in specification and

design are usually informal and can contain contradictions

and ambiguities. This later can lead to faulty design and at the

end a faulty implementation. This problem is especially

important in when developing software for critical systems.

Critical Systems (CSs) are those whose operation poses a risk

to human life, health, economy or environment. Typically,

CSs are large and complex industrial systems or products

which have been constructed through the effort of multi-

disciplinary teams. CSs represent software products that

require high level of correctness in requirements

specification, software design and final product. Using

different formal methods we can help in development of safer

and more reliable critical systems.

In this paper we give an overview of the formal methods

and tool used in Software Engineering. We also present our

experience in lecturing a course in SE for CS at a post

graduate level, the methodology used in to connect the theory

with practice by presenting several formal methods. Out final

goal was the use of temporal logic in SE. We also describe

the tools used and show several case studies presented to the

students and the lessons learned during the course. In chapter

2 we will cover most widely used formal methods in SE.

Chapter 3 will present the outline the formal methods in the

SE for Critical Systems course for Joint Master Studies in SE.

Following this in chapter 4 we conclude with our view of the

course and lessons learned for the future years.

II. FORMAL METHODS USED IN SE

A. Formal specification

Formal methods are most frequently used in the requirements

analysis and high-level design. A formal specification is a

characterization of a planned or existing system represented

in a formal language. The main reason for using formal

languages is their clear expressive power which allows for

non-ambiguity and consistency in the specification.

There are several ways to increase the certainty that a

specification expresses the intentions of its author, and that

what it says is true. This aspects include:

• parsing � allow for consistent reading of the specification

every time with focus on the syntactic correctness

• type checking � consistent usage of specified functions

(semantic correctness)

• executing all or part of the specification � allows for

exploring and debugging of the specification and

developing and evaluating of test cases.

• checking weather definitions or theorems entailed by the

specifications are well formed � meaning that the

specification can be proven to be consistent

• demonstrating consistency for axiomatic specifications �

this is usually a property of the chosen formalism that

strengthens its grounds as being formally correct and

consistent.

Many formal specification languages extend the underlying

pure logic with programming language concepts and

constructs such as type systems, encapsulation, and

parameterization. This leads to increased expressiveness of

the formal language while retaining the precise semantics of

the underlying logic. Even though a program can be viewed

as a specification, a specification is typically not a program

and often contains such non computational elements as high-

level constructs and logical elements (e.g., quantifiers). The

basic difference is that a program specifies completely how

something is to be computed, whereas a specification

expresses constraints on what is to be computed. As a result, a

specification may be partial or �incomplete" and still be

meaningful, but an incomplete program is generally not

executable. [1].

Lamport [2] identifies several functions of the formal

specification. One could be �a contract between the user of a

system and its implementer. The contract should tell the user

everything he must know to use the system, and it should tell

the implementer everything he must know about the system to

implement it. In principle, once this contract has been agreed

upon, the user and the implementer have no need for further

communication.�. He identifies three issues:

67

The 6th International Conference for Informatics and Information Technology (CIIT 2008)

• First is that the most important functions of a formal

specification is analytic - using the deductive apparatus of

the underlying formal system, a formal specification serves

as the basis for calculating, predicting, and (in the case of

executable specifications) testing system behaviour.

However, a formal specification may also serve an

important descriptive function, that is, provide a basis for

documenting, communicating, or prototyping the

behaviour and properties of a system.

• Second, a (completed) specification represents the

formalization of a consensus about the behaviour and

properties of a system.

• Third, while in principle, analyzed contract precludes the

need for further communication among the interested

parties, in practice, moving from informal requirements to

a formal specification and high-level design is an iterative

rather than a linear process; issues exposed in the

development of the formal specification may need to be

factored back into the requirements, and similarly, issues

raised by the high-level design may percolate back to

impact either the formal specification, the requirements, or

both.

B. Formal analysis

Formal analysis refers to a broad range of tool-based

techniques that can be used to explore, debug, and verify

formal specifications, and to predict, calculate, and refine the

behaviour of the specified systems.

There are three categories of formal analysis techniques:

• Automated deduction or theorem proving

• Finite state methods

• Direct execution, simulation and animation

Automated deduction or theorem proving refers to the

automation of deductive reasoning in formal specification

methods that support such apparatus. Deductive methods are

especially useful when reasoning about infinite-state systems.

They are typically preferred for abstract, high-level

specifications and data-oriented applications.

Finite-state methods refer to techniques for the automatic

verification systems with finite states and also some infinite-

state systems can be reduced by some tools to finite-state

equivalents. Given a formula specifying a desired system

property, these methods determine its truth or falsity in a

specific finite model. Some of most commonly used finite-

state methods are:

• Temporal logic

• LTL (Linear-time Temporal Logic)

• Branching Time Temporal Logic

• µ-Calculus

The final category of formal analysis techniques is the

direct execution, simulation and animation which are used to

observe the behaviour of the model of a system. This aspect

of formal analysis is the least formal technique which

simulates the formal specification of the system. The reason

for using observational techniques is because typically,

models used for verification cannot expose their own

inaccuracy and, conversely, models used for conventional

simulation cannot confirm their own correctness [3]. This is

very important in development of system specification since it

assures that the system is specified according to the

requirements, in other words it allows the specification and

underlying model to be �debugged� relatively early in the SE

life cycle.

III. COURSE ORGANIZATION

The postgraduate course named Software Engineering for

Critical Systems aims to introduce and critically analyse CSs.

It explores the requirements for the engineering of CSs and

the role of formal approaches in their life cycle. One of the

important learning outcome of the course is for the students to

critically evaluate the use of formal methods in the life cycle

of CSs and the use of temporal logic for the engineering and

re-engineering of CSs.

An important aspect in the development of a CSs is how

to cope with their �evolution� [4]. The evolution of a software

system could be due to several factors such as changes in the

original requirements, adopting a different hardware platform

or to improve its efficiency. These kind of changes become

more emphasised when developing time-critical systems.

Because of their complexity, the likelihood of subtle errors is

much greater and some of these errors could have

catastrophic consequences such as loss of life, money, time or

damage to the environment.

The structure of the course is such that it emphasises the

combination of theoretical aspects (like formal methods) with

practical issues of software engineering. It is an example of

how theory can be applied in practice, a feature that many

theoretical courses omit. In this paper we give a focus on the

tutorials and labs that are accompanying the course which

covered the formal analysis of SE for CSs.

The course tutorials final goal is the usage of Interval

Temporal Logic (ITL)[5] as finite-state formal analysis

method because of the existence of its executable subset

Tempura. The tutorials are structured with an intention to

gradual introduce several formalisms that students already

know and try to connect them to formal analysis aspects of

SE. Thus the first several tutorial topics include:

• First Order Logic � covering the rationale, syntax,

semantics, usage and knowledge engineering using first

order logic;

• Logics and Programming � covering the notion of function

of a program and Hoare logic;

• Introduction to Temporal Logic � covering basic principals

of temporal logic and elementary syntax of TL.

After introducing the connection between logics and

programming the tutorials focus on ITL as the formal analysis

method used in this course. The topic include:

• Introduction to ITL � covers the semantic model of ITL,

transition from informal to formal specification using ITL;

• ITL Syntax � covers the syntax of non-temporal ITL

expressions and formulas, satisfiability and validity of ITL

formulas, temporal ITL expressions and formulas;

• Derived ITL formulas � covers the more complex temporal

formulas.

68

The 6th International Conference for Informatics and Information Technology (CIIT 2008)

The final part of the tutorials is to animate the formal

specification using the executable subset of ITL named

Tempura[5, 6]. Tempura is a tool maintained by STRL[7] that

enables animation of some ITL formulas into an

corresponding sequence of states named an interval, that

satisfies the needed properties.

Tempura offers a means for rapidly developing, testing and

analysing suitable ITL specifications. As with ITL, Tempura

can be extended to contain most imperative programming

features and yet retain its distinct temporal feel. The use of

ITL, together with its subset of Tempura, offers the benefits

of traditional proof methods balanced with the speed and

convenience of computer-based testing through execution and

simulation [6].

The tutorials covering Tempura are party hands-on lab

exercises covering the following topics:

• Tempura[6] � covering the executable ITL subset, tempura

interpreter;

• Anatempura � covering the extension of Tempura tool that

supports validation and verification of the software system

in the form of simulation and run-time testing in

conjunction with its formal specification.

The coursework given to the students includes several

exercises introduced during the tutorials and final project. We

start with simple assignments, mainly modification of the

examples. Gradually, we move to more complicated

examples, using real life systems. In we show a list of some

exercises given to the students.

Fig. 1. Example exercise from the course

Final coursework project aim is to help the students

develop an understanding of safety-critical system. For the

past cycle, the objective of the coursework was to develop a

software simulation of an insulin pump. The specification of

the coursework was given in textual form as well as partially

in Z specification.

The deliverables of the coursework included:

• ITL specification of the system

• UML design of the software

• Java source code of the insulin pump software

• User manual

• Description of the algorithm

• Anatempura test cases that interact with the Java code and

execute different usage scenarios

IV. CONCLUSION

Considering that this course was an elective, not many

students attended it. The main reason was that it was partly a

theoretical course. Even though the students that attended the

course found it to be a great course, with much applicability

and benefits. They also appreciated the connection between

the theory and practice, because in their previous education

the theory oriented courses lacked applicability.

At the end of the course, judging from the coursework

results it turned out that ITL was the hardest part of the course

work. Only 40% of the students had manifested satisfactory

level of ITL knowledge. This indicates that it can be quite

difficult for the students to understand formal methods. To

improve this, more case studies should be demonstrated to

them, especially from real life systems.

During the tutorials have concluded several key points:

• Tutorials should be based on student interactions since

theoretical tutorials lead to lost of attention among

students.

• Theoretical concepts should be explained through practical

usage;

• Even highly complex theory such as ITL can be

successfully comprehended by students if appropriate real-

life case studies are presented.

• Usage of tools for animation of formal specification

significantly alleviates the process of understanding of

theoretical concepts to the students.

We will include all of these conclusions into the future

tutorials of the mentioned course. We hope that we can

increase the level of ITL knowledge and even more

demonstrate that this and other theoretical concepts can have

great applicability in practice.

V. REFERENCES

1. NASA, Formal Methods Specification and Analysis

Guidebook for the Verification of Software and Computer

Systems, Volume II: A Practitioner�s Companion [NASA-

GB-001-97], (1997).

2. L. Lamport. A Simple Approach to Specifying Concurrent

Systems. Communications of the ACM, p32, (1989).

3. C. Landauer. Discrete Event Systems in Rewriting Logic.

In J. Meseguer, editor, First International Workshop on

Rewriting Logic and its Applications, p309, Elsevier

Science B.V., Electronic Notes in Theoretical Computer

Science, Volume 4. (1996)

4. S. Zhou, H. Zedan, A. Cau, Run-time Analysis of Time-

critical Systems, Appeared in Journal of System

Architecture, Elsevier B.V., volume 51, number 5, p. 331,

(2005)

5. The ITL homepage. URL

http://www.cse.dmu.ac.uk/STRL/ITL//index.html

6. B. Moszkowski, Executing Temporal Logic Programs,

Cambridge University Press, Cambridge UK, (1986).

7. The Software Technology Research Laboratory (STRL)

homepage. URL http://www.cse.dmu.ac.uk/STRL/

69

