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In this paper we show that parallel genetic algorithms provide an accurate analy-
tical description of the nonlinear dynamics of a Bose-Einstein condensate. We consider
a spherically symmetric condensate subject to periodic and aperiodic parametric excita-
tions and show that the standard variational equation which describe the time-evolution
of the condensate has simple analytical solutions. These solutions are obtained using
parallel genetic algorithms and allow us to quantify analytically distinct physical pro-
cesses such as resonant energy transfers and mode-lockings. The observed efficiency
of this method for the aforementioned one-dimensional variational equation suggests
that this method can be efficiently used for charting the stability spectrum of conden-
sates subject to parametric excitations and possibly for the description of optic waves
travelling in nonlinear media.

Key words: Nonlinear dynamics, Bose-Einstein condensates, analytic descrip-
tion, genetic algorithms.

1. INTRODUCTION

The experimental sturdiness of atomic Bose-Einstein condensates (BECs) [1]
has turned them into the favourite testbed of nonlinear scientists of various back-
grounds with substantial contributions coming from both experimental and theoreti-
cal research groups [2]. Part of the interest in working with these ultra-cold quantum
gases came from their experimental manoeuvrability (which generated a surge of in-
vestigations which go from nonlinear pattern formation and parametric excitations of
collective modes to solitons and vortices) and their accurate dynamical description
in a vicinity of T = 0 K using a cubic nonlinear Schrödinger equation, the so-called
Gross-Pitaevskii equation (GPE) [3, 4]. The numerous similarities between the GPE
and the equation used in optics to describe quasi-monochromatic wave trains propa-
gating in nonlinear optical media (see Ref. [5] for a review on the nonlinear wave-
forms supported by this equation), as well as the similarities with the equations used
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to model superconductivity, the water-wave problem, the Langmuir oscillations and
the Alfvén waves that arise in plasma physics (see Ref. [6] for a detailed presen-
tation), motived many of the early theoretical investigations into the nonlinear phe-
nomena. In fact, the study of BECs has attracted scientists from fields as diverse
as nonlinear mechanics and statistical physics, quantum optics and nuclear physics
and condensed matter physics and nonlinear optics, and as recognition of this almost
unprecedented scientific effervescence the experimentalists who first achieved the
Bose-Einstein condensation of atomic species in 1995 received the 2001 Nobel Prize
in Physics.

In this paper we investigate the dynamics of a spherically symmetric BEC sub-
ject to periodic and aperiodic parametric excitations through parallel genetic algo-
rithms. Unlike previous studies, we combine the habitual variational treatment of
BECs with a High Performance Computing (HPC) genetic algorithm to describe an-
alytically the dynamics of the condensate during parametric resonances [7], resonant
energy transfers [8] and mode-lockings [9]. The strong points of the genetic algo-
rithm are that it can be applied independent of the density regime of the condensate
and that it is intrinsically parallel and thereby computationally efficient on large com-
puter clusters. We emphasize that unlike other approaches which aim at reducing the
computational time by rethinking the initial quantum many-body problem itself, see,
for example the ultra-fast path-integral methods for the dynamics of quantum gases
detailed in [10] and the related ones for quantum gases in optical lattices [11], our
method addresses the actual equations which describe the dynamics of the conden-
sates without going outside of the Gross-Pitaevskii formalism. Outside of quantum
gases, we expect that genetic algorithms can be used in nonlinear optics to reduce the
computational load in the laser physics investigations such as those focused on gain
and ionization dynamics [12], chirped pulse amplification [13], the focal region of
ultrashort laser pulses [14], and compensation of laser beam spatial distortions [15].

The rest of the paper is structured as follows: in Section 2 we introduce the
variational treatment of BECs, while in Section 3 we present the fundamentals of the
genetic algorithm used to solve the variational equation. Section 4 is dedicated to
presenting our results and in Section 5 we present our concluding remarks.

2. VARIATIONAL DESCRIPTION OF BOSE-EINSTEIN CONDENSATES

The numerical treatment of the GPE is well-covered in the literature and there
exist two classical sets of programs in Fortran [16] and C++ [17] which describe the
time evolution of one-, two- and three-dimensional BECs subject to time modulation
of the confining potentials and that of the scattering length. Outside the purely nu-
meric treatment the dynamics of quasi-one-dimensional and quasi-two-dimensional
BECs can be described through simplified non-polynomial equations (see Refs. [18–
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20] for low-density condensates and Refs. [21–23] for high-density ones) and there
are similar extensions for binary condensates. The equations for low-density con-
densates have been particularly useful in the early investigations into the nonlinear
dynamics of BECs due to their reduced computational burden (see Ref. [20] and
references therein), but the recent OpenMP parallelized version of the numerical
GPE solvers make them more interesting for analytical investigations. Comple-
mentary analytical investigations have been focused on a hydrodynamic [24] and
fully-variational description [25–37] of BECs using trial wave functions which could
describe the collective properties of the condensates and the emergence of density
waves. Unlike the non-polynomial Schrödinger equations, the variational recipes
previously mentioned simplified the dynamics of the condensate to the level of a few
ordinary differential equations which can be easily solved numerically through clas-
sical methods such as Runge-Kutta and Adams-Bashforth [38]. Specific properties
condensates (such as the frequency of the collective modes and the period of the den-
sity waves) can be obtained solely by analytical means, but for all other information
concerning the dynamics of condensate one has to solve numerically the variational
equations.

For the purpose of this paper we will focus on a condensate with spherical sym-
metry subject to periodic and aperiodic modulation of the scattering length following
the treatment in Refs. [9, 8]. To describe analytically the dynamics of the condensate
we consider the standard three-dimensional GP Lagrangian density [1] (written here
for convenience with m= ℏ= 1 all throughout the article)

L(r, t) = i

2
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ψ
∂ψ∗

∂t
−ψ∗∂ψ

∂t

)
+
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loaded in a trap of the form
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1

2
Ω2r2. (2)

Given the symmetry of the system the most convenient ansatz is

ψ(r, t) =A(t)exp

[
− r2

2w(t)2
+ ir2β(t)

]
, (3)

where A(t) is the complex-valued wave-function at the centre of the cloud, w(t) is
the width of the condensate and β(t) is the canonical conjugate of w(t). Follow-
ing the standard variational recipe we arrive at a second-order ordinary differential
equation
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which is usually written as

d2

dτ2
v+v =

1

v3
+
P (t)

v4
, (5)

where v = w
√
Ω and τ =Ωt.

3. GENETIC ALGORITHMS

A system of ordinary (SODE) or partial differential equations is so an ubiqui-
tous model in applied science that is so naturally met with equally diverse methods
for its solution, ranging from standard Runge-Kutta [39] to more exotic use of neural
networks [40]. The genetic algorithms (GA), are a class of optimization processes
based on the evolution of a large number of candidate solutions, specific for the pro-
blem in hand, through evolutionary inspired operations of crossover, mutation and
replication and ultimately of surviving of the best solution [41]. These strategies
for solving various scientific and engineering problems are usually more robust and
reliable in optimization tasks when the complexity of the solution is unknown be-
forehand and one expects that it is highly non-trivial.

In context of physics, evolutionary methods were successfully applied to a rep-
resentative selection of problems, from solving of general eigenvalue problem with
GA [42], via direct solving of the Schrödinger equation [43, 44], to more complex
systems with two electrons [45] or hydrogenic impurity in a quantum dot [46]. Vari-
ous combinations with other computational techniques were also widely addressed.
To this end the community developed a few rather sophisticated software packages.

In this work we have used the free PGAPack Parallel Genetic Algorithms Li-
brary, release 1.0, developed mainly by David Levine from Argonne National Library
[47]. This software package offers the user wide range of choices of the parameter
values, operators and algorithms for the selection, crossover and mutation phases of
each GA implementation, in an integrated and portable way and it may be called
from Fortran and executed on platforms with one or several processors.

The user of PGAPack supply a function with several parameters to be opti-
mized under fixed conditions. As initial guess we have used functions with several
real parameters. With each run these parameters have been initialized to a population
of strings, with values from a fixed interval, specific for each parameter, and allow
for the program to extend the range of possible values on parameter values fly, if
needed, during the optimization process. From the available mutation and crossover
types we opted for uniform varieties in both cases as this choice is neutral in respect
of searching flexibility.

As a measure, relative to the rest of population of parameters, how well each
set of parameters is fit we used a cost-function, rule to assign to each string a non-
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negative, real-valued fitness. This problem-specific metric consists of two parts. The
first, boundary part, includes the squared distances of the candidate solution, from
the initial values and from boundary points, if there are any, as well as from a set of
fixed points of the solution to be found, itself. In our problem we have expressed our
differential equation as a system of two first order equations, with respective initial
conditions and explicitly found the derivatives from the general form ansatz. The
second part of the cost-function then consists of the squared distances between the
values of the candidate solution and the analytical solution from the system of diffe-
rential equations at a fixed number of points, in our case 2000 which span the time
interval. These two-parts of the cost-function, equation part and boundary part com-
pete in optimization process with different weights, in our calculations 1:300, which
means the boundary part has 300 times more “to say” if the candidate solution is fit
enough or not, compared to equation part. As an additional restrain we included an
ad-hoc penalty in the fitness part if the candidate solution generates function values
outside some fixed range where we expect that there should not be any.

In case of an ideal solution, the cost-function, constructed in this way, should
be equal to zero. It means that at each of the 2000 points, the candidate analytical
solution with an optimized set of parameters, satisfies perfectly our equation (correct
functions and their derivatives) as well as the initial conditions and matches the set
of fixed points, with no penalty whatsoever. In practice this convergence toward
analytical solution is compromised at several levels. First, the proposed analytical
ansatz may not be a solution of the equation at hand and the equation itself may not
have such solution at all. This weakness may be addressed with more general form
of a function with larger set of parameters to choose from but this “solution” may
be time-consuming without proof that the proposed function is good enough. On
the other hand, the convergence may be slow due to large number of local minima
in the optimization space where the program gets stuck. One of the remedy for this
problem, larger mutation rate, may be prohibitively time-consuming too.

So, as a first step toward our solution we have expressed equation (5) as a
system

dv1
dt

+v− 1

v3
− P [1+εsin(γt2)]

v4
= 0 ;

dv

dt
= v1 (6)

to be solved in interval t ∈ [a,b], in our numerical experiments set to [0,200].
We have run numerical experiments with several sets of ansatz functions of the

form:

y(x) =

n∑
i

(
ai+ bisin(cix+di)+ eisin(gix

2+hi)
)

1+e(ji(ki−x))
(7)

where ai, bi, . . . are parameters to be optimized; n was in a range of 1 to 5, 9n being
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the total number of parameters. And,

y(x) =

[
ax+

√
((xb sin(cx+d))2+e)

][√(
(sin2(fx+g)+h)

)]
(8)

where a,b,c . . . are parameters to be optimized. The form of a chromosome in pop-
ulation is a vector of respectively 9n or 8 real numbers.

The ansatz functions are analytic and their first derivative yp(x) and higher
ones, can easily be found and they have been implemented in the code when cost
function has been calculated. The cost function itself, in our runs, consists of three
parts: C1 to C3, represented by

C1 =
N∑
i

(y(ti)−yp(ti))2+((yp(ti)+y(ti))∗y(ti)4−y(ti)−P [1+εsin(γt2i )])2

(9)
where ti are the first points of the N equidistant subintervals of [0,200].

C2 = yp(t1)
2+(y(t1)−2.52444)2+

n∑
k

(y(tk)−yex(tk))2 (10)

where tk are n selected time moments for which the exact values yex of the solution
are supposed to be known; in our numerical experiments we choose n = 10 from
a total of N = 2000 points. And, the third part of the cost function was a penalty,
large arbitrary constant, C3 = 109 which was added ad-hoc if the candidate solution
happens to be larger or smaller then supposed values of the solution. This last part
effectively "squeezes" the values of the candidate solution within some vertical span
of possible values. The final form of the cost function combines C2 part with a
weight, as explained previously, as C = C1 +w2C2 +C3, w2 being in general in
range 300 to 3∗105.

4. RESULTS

To test the efficiency of the genetic algorithms detailed above for the solution of
the ordinary differential equations which describe the nonlinear dynamics of BECs,
we have chosen a challenging scenario in which the two-body scattering length is
modulated as P (t) = P0 · (1+ ϵsin(γt2)). Such a modulation is well known to give
rise to both frequency mode-locking and resonant energy transfer (see Ref. [9] and
Ref. [8]) and is therefore the ideal test case.

The results presented in Figure 1 show that genetic algorithms have provided a
solution which captures the full physics of the problem, albeit with some quantitative
discrepancies. Notice that the condensate has an almost negligible dynamics until
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Fig. 1 – The dynamics of the width of the condensate for P =100, ϵ=0.01 and γ =0.05. Time is mea-
sured in milliseconds. The condensate starts to oscillate periodically at roughly 25 milliseconds which
is precisely when the effective frequency of the drive matches the natural frequency of the condensate.
This example corresponds to 24.500 atoms of 23Na loaded into a magnetic trap with a frequency of 159
Hz and has been initially addressed in Ref. [9].

the effective frequency of the drive 2γt matches the natural frequency of the system
and that just when the two have almost equal value we observe a sudden increase
of the oscillation amplitude due to resonant energy transfer, while for larger effective
driving frequencies the condensates shows oscillations at the natural frequency of the
system. These two effects are linear in nature and have been explained in detail in
Ref. [8] using Fresnel functions. The advantage of our description is that it offers
almost the same quantitative results using, however, substantially simpler functions
which are amenable to subsequent analytic manipulations.

5. CONCLUSIONS

In this paper we have shown that parallel genetic algorithms provide an ac-
curate analytical description for the frequency mode-locking and resonant energy
transfer that take place in a spherically symmetric Bose-Einstein condensate sub-
ject to parametric excitations. The quasi-analytic solutions we have determined so
far suggest that parallel genetic algorithms are powerful computational instruments
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which allow one to quantify analytically numerous physical processes in ultra-cold
quantum gases.
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