
Apportionment Heuristics for Mapping Tasks in
Heterogeneous Computing Systems

Igor Mishkovski1, Sonja Filiposka2, Dimitar Trajanov2, Ljupco Kocarev2, 3,

1 Politecnico di Torino, Turin, Italy
igor.mishkovski@polito.it

2 Faculty of electrical engineering and information technologies, Skopje, Macedonia
filipos@feit.ukim.edu.mk, mite@feit.ukim.edu.mk, lkocarev@feit.ukim.edu.mk

 3 Macedonian Academy of Sciences and Arts, Skopje, Macedonia
lkocarev@manu.edu.mk

Abstract. One of the biggest problems in heterogeneous computing is how
tasks should be mapped in these kinds of environments. Because this problem
of mapping tasks has been shown to be NP-complete, it requires heuristic
techniques. Therefore, we present new schedulers based on the apportionment
methods used in elections. In order to obtain the performances of these
schedulers we compare them with other known and used heuristics in many
different parameters. The presented heuristics can be used when the tasks are
big and when they can be divided in smaller sub-tasks. The idea behind the new
schedulers is to use apportionment methods (used for elections), such as: the
Hamilton’s method, Jefferson’s Method, Webster’s method, Huntington-Hill
method, Balance method and pure proportional method. Intuitively the
Hamilton’s method favors the bigger tasks (i.e. gives them more CPU power).
The comparison in this paper shows that these apportionment methods can cope
well with the other methods when the number of tasks in the system is no
bigger than a certain level. The new apportionment scheduler, based on
Hamilton’s method, copes well with the existing ones and it outperforms the
other schedulers when some conditions are met.

Keywords: Heterogeneous Computing, Grid Computing, Schedulers, Mapping
Heuristics, Apportionment Methods, Simulated Annealing.

1 Introduction

Distributed systems appear in the computer history as a result of many factors and
influences. One of the most important factors was the price reduction of a computer
system; this increased the number of computers that can be integrated in distributed.
Heterogeneous computing (HC), as a part of distributed system, uses different types
of machines, networks and interfaces in order to maximize their combined
performance and cost-effectiveness [1, 2, 3]. The machines in this type of systems are
independent and for the end user of the system they look as if one machine.
Heterogeneous computing is used for solving computationally intensive problems.
Thus the most important parameter of one HC system is its speed. The speed of the

HC system heavily depends on the schemes that assign tasks to machines (a.k.a.
matching) and specify the order by which these tasks will execute on the proper
machines (a.k.a. scheduling) [4]. This problem of matching and scheduling is known
as mapping and it has been shown that is NP-complete [5, 6].

Given a set of independent tasks and a set of available resources, there are
heuristics which try to minimize the total execution time of the set by finding an
optimal mapping of tasks to machines. This process of mapping can be dynamic (map
tasks as they arrive) or static (mapping is done prior to the execution of any of the
tasks) [7, 8]. Static approach is adequate if the tasks to be mapped are known in
advance, and if a good estimation exists for the resource’s power and capacity.
Dynamic mapping is used when if the tasks cannot be determined in advance and if
the system performances are fluctuating.

The issue of mapping tasks in heterogeneous systems has been of major interest [9]
and [11]-[19]. In [11] the scheduling is based on a predictor, which predicts the
variance to make scheduling decisions and it fine-tunes the algorithm using a
feedback mechanism. In [12] authors compare eleven static heuristics and they give a
common ground for comparison and insights into circumstances where one technique
outperforms another. Dynamic mapping heuristics are studied in [9]. In this paper two
types of mapping heuristics are considered, immediate mode and batch mode
heuristics. Furthermore, three new heuristics are introduced. Their simulation results
reveal that the choice of which heuristic to use depends on: the structure of the
heterogeneity among tasks and machines, and the arrival rate of the tasks. In [13] a
compensation based algorithm is presented which uses a feedback mechanism to
predict the execution time of the jobs. The authors in [14] describe Grid Computing
systems that have a game theoretic approach in processor scheduling. They also
provide an analysis and comparison of these systems. In [15] low-complexity efficient
heuristics for task scheduling among heterogeneous processors are presented. The
comparison study showed that their algorithms outperform the previous approaches in
terms of performance and cost. In [16] the authors propose a metascheduler which
uses various preemptive methods to minimize job execution time, such as stopping a
bigger job so that a smaller one can proceed first. In [17] different scheduling
schemes are characterized with respect to varying arrival times and burstiness in the
job arrival rate. Using the insight, authors propose approaches to improve the
strategies regarding turn-around time. In [18] authors propose, evaluate, and compare
eight dynamic mapping heuristics. The tasks in the study have priorities and multiple
soft deadlines. They calculate the value of the task using the priority of the task and
the completion time of the task with respect to its deadlines.

In the simulations in this paper, it is assumed that no communication exists between
the tasks, the tasks are very big (i.e. the tasks have many instructions) and that they
can be additionally divided into smaller sub-task, each machine in the system
executes one task at a time in the order in which tasks are assigned. The dynamic
mapping applied in this paper is non-preemptive and it works in batch mode [9]. In
the batch mode the scheduler does not map the tasks as they arrive, but instead it
maps the tasks in prescheduled times, also called mapping events. The key feature of
the scheduler is to finish the execution of the tasks as soon as possible, i.e. to reduce
the makespan [10].

The major contribution of this work is introducing new heuristic which is based on
apportionment methods. Another gain of this paper is that the comparison between the
new heuristic and the existing ones is done using many different parameters, such as:
the system load; the average number of busy machines; the average turnaround time
of the executed tasks; the average response time of the executed tasks; how many
tasks were finished; the number of deployments of the tasks that were involved and
the load balance among the machines. Another important parameter that we consider
is the heuristic execution times. This parameter tells how much time is needed for a
certain heuristic to map the arrived tasks on the available machines. .

The remainder of the paper is organized as follows. Description of the
apportionment methods used in elections and summary of their characteristics is
found in Section 2. Section 3 describes how apportionment methods can be adjusted
for the purpose of mapping tasks in heterogeneous computing environments. In
Section 4 the simulation scenario is presented and this section examines the obtained
results from the simulation study. In Section 5 the conclusion and future work are
presented.

2 Methods of Apportionment

The problem of how many representatives should be allotted to some important
institution (i.e. US Congress) exists since the beginning of democracy and elections.
One might come up with an idea of one man, one vote, i.e. pure proportional method.
But candidates are human beings and they cannot be divided. Thus, because this
apportionment cannot be done perfectly it must be done in a manner as near
perfection as can be. These methods of apportionment should fulfill certain rules in
order to be objective [20], as example we refer to the US Congress:

1. No state’s number of representatives should decrease, if the total number of
representatives increases.

2. Every state should have within one (exclusive) of their quotient. For example if a
state should receive 3.4 representatives it can receive 3 or 4. If the state should
receive exactly 3 representatives, it should receive 3, but not 2 or 4. In future, we
will call having this property -satisfying Quota.

3. All states abide by the same formula for representation.
4. Methods do not artificially favor large states at the expense of the smaller ones

and vice versa.

2.1 Hamilton’s method (HM)

The algorithm of this method is as follows:
1. Calculate the Standard Divisor (SD).
2. Calculate each state’s Standard Quota (SQ).
3. Initially assign each state its Lower Quota (LQ).
4. If there are surplus seats, give them, one at a time, to states in descending order

of the fractional parts of their Standard Quota.

The standard divisor is the average number of people per seat over the entire
population and it can be calculated as SD=TP / p, where, TP is the total population
and p is the number of seats in the congress.

The standard quota is the fraction of the total number of seats a state would be
entitled if the seats were not indivisible and it is calculated as SQ=SP / SD, where, SP
is the state population.

The lower quota (LQ) is the standard quota rounded down.
But this method violates the rule number one: an increase in the total number of

seats to be apportioned causes a state to lose a seat (a.k.a. Alabama paradox).

2.2 Jefferson’s method (JM)

Jefferson came up with what is known as the method of greatest divisors. Suppose
we are given state populations p1, p2, .., pN and representative apportionment a1, a2, ..,
aN. We can calculate a divisor L(s) = a(s)+1 for each state s. Then states can be
ranked using the p(s)/L(s) ratios. The higher this ratio, the more deserving this state is
to get another representative. In this method everybody starts with zero
representatives. The representatives are always assigned to the state with the current
highest ratio (rank-index). The first N representatives are assigned one to each state.
This is naturally enforcing US Constitution rule about each state having a minimum
of one representative. The divisor choice L(s) = a(s)+1 is natural, because it ranks
how much better off the state will be if it was given one more representative. The
divisor choice Jefferson’s Method uses is arbitrary, since other methods use divisors
such as () () 1/ 2L S a s - the Webster’s method (WM), or () ()*(() 1)L S a s a s -

the Huntington-Hill method (HHM). The Jefferson’s method favors large states and it
does not satisfy lower quota. Webster’s method does not satisfy upper or lower quota,
but it does not favor large or small states and the Huntington-Hill method favors small
states.

3 Using Methods of Apportionment as Heuristics for Mapping
Tasks

The difference between mapping tasks in HC environments and allocation of places
in some institution is that in HC environment machines can be divided among
multiple tasks. Thus, the pure proportional model (PPM) can take part in the process
of mapping tasks. With this proportional method each task gets a portion of the
heterogeneous system as a whole. The portion that task i gets for the system is equal
to:

 i
i

j
j

size
port

size
 (4)

where, sizei is the size of the task i and the sum in the nominator is the sum of the
instructions of the arrived tasks. It is obvious that with this method one machine can
be shared among many tasks and the tasks are executed in Round-Robin fashion. This

additionally requires time for context switch which certainly reduces the overall
performance of the system. Having this fact in mind in this part we will briefly
present how these apportionment methods used in the US Congress can be adjust for
mapping tasks in HC environment.

The analogy is that instead the US Congress is now the HC environment and the
available seats are the machines in the HC environment. The states are replaced by the
tasks and the total population of a state is an equivalent to the number of instructions
that a certain task has.

For example we will use the Hamilton’s method. TP is the sum of the number of
instructions of the available tasks and p is the number of available processors. Then
the standard quota is calculated as the fraction of the total number of processors a task
would be entitled to if the processors were not indivisible and for tasks I, i.e. SQi=TSi
/ SD. The lower quota (LQ) is the standard quota rounded down.

For example, in Table 1 the task mapping is shown for 5 processors and 10 users in
the system and where every user has a different task to be executed on the system.

Table 1 Hamilton's method example

Task # of million instructions SQ LQ Leftover Surplus Final
mapping

1 6 0.02 0 0.02 0
2 271 0.68 0 0.68 1
3 85 0.21 0 0.21 0
4 153 0.39 0 0.39 0
5 200 0.50 0 0.50 0
6 406 1.02 1 0.02 1
7 161 0.41 0 0.41 0
8 242 0.61 0 0.61 1(3) 1
9 217 0.55 0 0.55 1(4) 1
10 243 0.61 0 0.61 1(2) 1

Totals 1831 5 1 4 4 5
As we can see, only tasks 2, 8, 9 and 10 would be executed in the system for that

certain round, while the other tasks have to wait for another round. Intuitively, this
heuristics gives excellent performance when the arrival of the tasks is not so dense
and there is a big number of free machines. In this case one bigger task can be divided
to several smaller ones and they can be executed in parallel on the machines in the
HC environment. On the other hand, there will be some delay because of the task
partitioning. If this delay is not so big then this is a perfect case when this
apportionment heuristics can be used. But, when the number of tasks is very big and
the HC environment is overloaded then these heuristics act as Biggest Job First
heuristic. Thus, in their nature these heuristics change their attitude dynamically, i.e.
in an overloaded cluster they use one-to-one mapping, and many-to-one mapping
when the number of free machines is bigger. The Jefferson’s approach will favour
bigger tasks.

4 Simulation Model and Results

In order to analyze how the proposed heuristics cope with other heuristics used for
mapping tasks in HC environments we have implemented the following ones: OLB (
Opportunistic Load Balancing), MET (Minimum Execution Time), MCT (Minimum
Completion Time), Min-min , Max-min , SA (Simulated Annealing).

All of these heuristics do not consider the case when tasks are very big and they can
be divided in a certain number of sub-tasks. In that event, one task can be executed on
a certain number of processors – space sharing. This can be done in computing
systems where communication delays can be neglected. If this is a case one of the
proposed apportionment mappings (in Section II and III) can be used for mapping
tasks in HC environments.

All of the schedulers have been simulated in Matlab. Firstly, we create a virtual
system with p heterogeneous machines and u users of the systems. We differentiate
between small and big users of the system. The big users (called predators) generate
big tasks with greater probability than the small users (called victims). The simulation
is discrete, i.e. we use time steps in our simulation and every time step can last a
certain number of seconds. The arrival time of the tasks is simulated using a uniform
distribution. Each task is characterized by its size expressed in instructions and
machines are characterized by how many instructions in second they can execute. In
every time step the simulator schedules the arrived task to a certain machine
depending on the chosen scheduler.

We analyze the schedulers using these eight parameters:
1. The system load;
2. The average number of busy machines;
3. The average turnaround time of the executed tasks;
4. The average response time of the executed tasks;
5. The number of finished tasks;
6. Provided that all tasks were finished, the time when they finished;
7. The number of deployments of the tasks that were involved
8. The load balance among the machines.
The simulation lasts 1000 rounds, the number of users in the system is 25 and every

user generates 4 tasks. The number of the machines present in the system is 10. There
are 20 predators and 5 victims. There are 20 users that generate big tasks (from 100 to
1000 million instructions) with probability of 0.9 and small tasks (from 1 to 100
million instructions) with 0.1. There are 5 users that generate small tasks with
probability 0.9 and big ones with 0.1. The CPU power of each machine is obtained
from the normal distribution where the mean is 10 million instructions in second and
the variance is 3 million instructions.

First, we investigate the percentage of the simulation when the system was busy. In
fig. 1 we can see that with the proportional scheduler the system is kept busy near
100% of the time, while with the Hamilton’s method (HM) this percentage is lower
(about 50%), the other schedulers kept the system busy for almost all of the time. This
means that in this scenario HM leaves space (i.e. computational power) for other tasks
and it used only half of the time steps to execute the given set of tasks.

Another parameter is the average number of machines that were kept busy during
the simulation. In fig 2 we can see that the PPM scheduler keeps most of the machines

busy, the HM keeps busy about 4 machines, while the MET scheduler keeps busy
only the best machine for the whole simulation.

Fig.3 shows how many tasks were finished during the simulation. We can see that
the worst performance is given by the MET scheduler, while only HM and PPM
succeed to execute all the given tasks.

Another important parameter is the average turnaround time achieved by a certain
scheduler (fig. 4). As expected, the best performance is given by the HM scheduler,
and the worst performance is obtained using MET and then by Min-min. The HM is
better than the rest because it may map one task to a number of machines and it is
better from PPM because no time is lost for context switch which is needed for the
Round-Robin used in the PPM. However, PPM and HM must divide the task and this
means that we assume that tasks can be parallelized.

Fig.5 shows that the HM finishes all the tasks earlier than the other schedulers that
succeed to finish all the tasks before the last round. The MET heuristic does not to
finish all the tasks till the end of the simulation.

The average rounds that the tasks spend in the queue (i.e. the time between its
deployment and arrival) is shown in fig.6. We can see that the HM copes well with
the other heuristics. The best performances are given by Max-Min and the worst by
Min-Min.

Depending on the type of the scheduler, tasks can be deployed to one or to many
machines. Here the PPM and the HM scheduler do not cope with the rest of the
schedulers (fig. 7). These results are obvious and mean that if all of these schedulers
were implemented, the most time will be lost for deploying the tasks using the PPM
and HM method.

From the next figure we can see that the HM and PPM schedulers give good load
balance among the machines, expectedly the worst load balance is given by the MET
scheduler. We can see that good balance is also shown by the following: Min-Min,
Max-Min, Simulated Annealing and MCT favors machines 3, 4 and 8 because these
machines work on higher frequencies than others.

In fig. 9 the heuristics execution time is shown. The graph was made relative to
Min-Min heuristics because this heuristic shows worse results than the other
heuristics. It is obvious that the MCT heuristic loses the smallest amount of time for
scheduling and it is also easy to implement. It is worth mentioning that the Simulated
Annealing is very dependable on its scheduling parameters (i.e. heating rate and
number of rounds). In this simulation the HM heuristic shows similar results as
Simulated Annealing.

For broader analysis we reduced the number of machines present in the system
from 10 to 5. This means that the system was more overloaded than in the first
scenario and that the HM scheduler will dynamically change the mapping from one
task-to-many machines to one task-to-one machine and that it is similar to bigger
tasks first kind of scheduler and certainly its performances will degrade. Results
showed that Max-Min outperforms others in most of the performances and that HM
copes well with the others in load balance. HM also finished the jobs earlier that the
other schedulers.

Fig. 1. The load of the system Fig. 2. Average number of busy machines

Fig. 3. Number of finished jobs Fig. 4. The average turnaround time

Fig. 5. Finishing round Fig. 6. Average response time

Fig. 7. Number of deploys Fig. 8. Load balance among the machines

Fig. 9. Execution time for different heuristics

5 Conclusion

In this paper we have implemented new heuristic based on the apportionment
method used in elections. We also implemented other schedulers which are known
and used in HC environments. The mappings were dynamic in batch mode. The
implemented method is called the Hamilton’s method. The other mappings were:
OLB, MET, MCT, Min-min, Max-min and Simulated Annealing. We also suggested
a way how and when these apportionment methods can be used in mapping tasks in
HC environments. Additionally, they can be used in every situation where resources
need to be shared.

Additionally, we made a comparison of these heuristics in different parameters: the
system load; the average number of busy machines; the average turnaround time of
the executed tasks; the average response time of the executed task; the number of
finished task; provided that all tasks were finished, the time when they finished; the
number of deployments of the tasks that were involved and the load balance among
the machines. The comparison is made using simulation in matlab and the results
show that the Hamilton’s method copes well with the other schedulers and it has good
load balance. Moreover it finishes all the tasks earlier than any other scheduler.

 This comparison shows under which circumstances one should choose the right
scheduler in Heterogeneous Computer Systems.

In our future work we intend to compare this schedulers with all of the remaining
schedulers (i.e. HEFT, CPOP, Sufferage, A*, Tabu etc.) and to use some other of the
apportionment methods described in Section III as a heuristic for mapping tasks in
heterogeneous computing systems.

References

1. M. M. Eshaghian, Ed., Heterogeneous Computing, Artech House, Norwood, MA, 1996.
2. R. F. Freund and H. J. Siegel, Heterogeneous processing, IEEE Comput. 26, 6 (June 1993),

13_17.
3. M. Maheswaran, T. D. Braun, and H. J. Siegel, Heterogeneous distributed computing, in

Encyclopedia of Electrical and Electronics Engineering (J. G. Webster, Ed.), Wiley, New
York, Vol. 8, pp. 679_690, 1999.

4. T. D. Braun, H. J. Siegel, N. Beck, L. Bo_ lo_ ni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, and B. Yao, A taxonomy for describing matching and scheduling
heuristics for mixed-machine heterogeneous computing systems, in “1998 IEEE SRDS,”
pp. 330_335, 1998.

5. D. Fernandez-Baca, Allocating modules to processors in a distributed system, IEEE Trans.
Software Engrg. 15, 11 (Nov. 1989), 1427_1436.

6. IBARRA, O H, AND KIM, C E Heuristic algorithms for scheduling independent tasks on
nonidentical processors J. ACM 24, 2 (April 1977), 280-289.

7. T. D. Braun, H. J. Siegel, N. Beck, L. Bo_ lo_ ni, M. Maheswaran, A. I. Reuther, J. P.
Robertson, M. D. Theys, B. Yao, R. F. Freund, and D. Hensgen, A comparison study of
static mapping heuristics for a class of meta-tasks on heterogeneous computing systems, in
“8th IEEE HCW '99,” pp. 15_29, 1999.

8. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, Task matching and
scheduling in heterogeneous computing environments using a genetic-algorithm-based
approach, J. Parallel Distrib. Comput. 47, 1 (Nov. 1997), 8_22.

9. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F. Freund, Dynamic Mapping of a
Class of Independent Tasks onto Heterogeneous Computing Systems, Journal of Parallel
and Distributed Computing, vol. 59, no. 2, Nov 1999, pp. 107-131.

10. M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, Englewood Cliffs,
NJ, 1995.

11. L. Yang, J. Schopf, I. Foster, “Conservative Scheduling: Using Predicted Variance to
improve Scheduling Decisions in Dynamic Environments”, ACM/IEEE SC2003
Conference (SC’03).

12. T. Braun, et al.. A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed
Computing, 61(6):810–837, 2001.

13. Y. Tao, X. Wang and J. Gozali, “A Compensation-based Scheduling Scheme for Grid
Computing”, 7th ICHPCG in Asia Pacific Region, 2004.

14. Sara Forghanizadeh, Grid Processor Scheduling based on Game Theoretic Approach,
CPSC532A Final Project, Fall 2005

15. Salim Hariri Haluk Topcuoglu and Min-You Wu. Task scheduling algorithms for
heterogeneous processors. 8th IEEE HCW’99, pages 3–14, April 1999.

16. S. Vadhiyar, J. Dongarra, A Metascheduler for the Grid, 11th IEEE international
Symposium on High Performance Distributed Computing HPDC-2002.

17. Praveen Holenarsipur , Vladimir Yarmolenko , José Duato , Dhabaleswar K. Panda , P.
Sadayappan, Characterization and enhancement of Static Mapping Heuristics for
Heterogeneous Systems, Proc. of the 7th Int. Conf. HPC, p.37-48, December 17-20, 2000.

18. Jong-Kook Kim et al., Dynamic Mapping in a Heterogeneous Environment with Tasks
Having Priorities and Multiple Deadlines, Proc. of the 17th Int. Symp. on PDP, p.98.1,
April 22-26, 2003.

19. http://www.ctl.ua.edu/math103/apportionment/appmeth.htm
20. Roman Shapiro, Methods of Apportionment, Apportionment of Representatives in the

United States Congress House of Representatives and avoiding the ‘Alabama Paradox’.
Engineering, University of Bridgeport, USA 5-13 Dec. 2008.

