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Abstract. One of the biggest problems in heterogeneous computing is how 
tasks should be mapped in these kinds of environments. Because this problem 
of mapping tasks has been shown to be NP-complete, it requires heuristic 
techniques. Therefore, we present new schedulers based on the apportionment 
methods used in elections. In order to obtain the performances of these 
schedulers we compare them with other known and used heuristics in many 
different parameters. The presented heuristics can be used when the tasks are 
big and when they can be divided in smaller sub-tasks. The idea behind the new 
schedulers is to use apportionment methods (used for elections), such as: the 
Hamilton’s method, Jefferson’s Method, Webster’s method, Huntington-Hill 
method, Balance method and pure proportional method. Intuitively the 
Hamilton’s method favors the bigger tasks (i.e. gives them more CPU power). 
The comparison in this paper shows that these apportionment methods can cope 
well with the other methods when the number of tasks in the system is no 
bigger than a certain level. The new apportionment scheduler, based on 
Hamilton’s method, copes well with the existing ones and it outperforms the 
other schedulers when some conditions are met.  

Keywords: Heterogeneous Computing, Grid Computing, Schedulers, Mapping 
Heuristics, Apportionment Methods, Simulated Annealing.  

1   Introduction 

Distributed systems appear in the computer history as a result of many factors and 
influences. One of the most important factors was the price reduction of a computer 
system; this increased the number of computers that can be integrated in distributed. 
Heterogeneous computing (HC), as a part of distributed system, uses different types 
of machines, networks and interfaces in order to maximize their combined 
performance and cost-effectiveness [1, 2, 3]. The machines in this type of systems are 
independent and for the end user of the system they look as if one machine. 
Heterogeneous computing is used for solving computationally intensive problems. 
Thus the most important parameter of one HC system is its speed. The speed of the 



HC system heavily depends on the schemes that assign tasks to machines (a.k.a. 
matching) and specify the order by which these tasks will execute on the proper 
machines (a.k.a. scheduling) [4].  This problem of matching and scheduling is known 
as mapping and it has been shown that is NP-complete [5, 6].  

Given a set of independent tasks and a set of available resources, there are 
heuristics which try to minimize the total execution time of the set by finding an 
optimal mapping of tasks to machines. This process of mapping can be dynamic (map 
tasks as they arrive) or static (mapping is done prior to the execution of any of the 
tasks) [7, 8]. Static approach is adequate if the tasks to be mapped are known in 
advance, and if a good estimation exists for the resource’s power and capacity. 
Dynamic mapping is used when if the tasks cannot be determined in advance and if 
the system performances are fluctuating. 

The issue of mapping tasks in heterogeneous systems has been of major interest [9] 
and [11]-[19]. In [11] the scheduling is based on a predictor, which predicts the 
variance to make scheduling decisions and it fine-tunes the algorithm using a 
feedback mechanism. In [12] authors compare eleven static heuristics and they give a 
common ground for comparison and insights into circumstances where one technique 
outperforms another. Dynamic mapping heuristics are studied in [9]. In this paper two 
types of mapping heuristics are considered, immediate mode and batch mode 
heuristics. Furthermore, three new heuristics are introduced. Their simulation results 
reveal that the choice of which heuristic to use depends on: the structure of the 
heterogeneity among tasks and machines, and the arrival rate of the tasks. In [13] a 
compensation based algorithm is presented which uses a feedback mechanism to 
predict the execution time of the jobs. The authors in [14] describe Grid Computing 
systems that have a game theoretic approach in processor scheduling. They also 
provide an analysis and comparison of these systems. In [15] low-complexity efficient 
heuristics for task scheduling among heterogeneous processors are presented. The 
comparison study showed that their algorithms outperform the previous approaches in 
terms of performance and cost.  In [16] the authors propose a metascheduler which 
uses various preemptive methods to minimize job execution time, such as stopping a 
bigger job so that a smaller one can proceed first. In [17] different scheduling 
schemes are characterized with respect to varying arrival times and burstiness in the 
job arrival rate. Using the insight, authors propose approaches to improve the 
strategies regarding turn-around time. In [18] authors propose, evaluate, and compare 
eight dynamic mapping heuristics. The tasks in the study have priorities and multiple 
soft deadlines. They calculate the value of the task using the priority of the task and 
the completion time of the task with respect to its deadlines. 

In the simulations in this paper, it is assumed that no communication exists between 
the tasks, the tasks are very big (i.e. the tasks have many instructions) and that they 
can be additionally divided into smaller sub-task, each machine in the system 
executes one task at a time in the order in which tasks are assigned. The dynamic 
mapping applied in this paper is non-preemptive and it works in batch mode [9]. In 
the batch mode the scheduler does not map the tasks as they arrive, but instead it 
maps the tasks in prescheduled times, also called mapping events. The key feature of 
the scheduler is to finish the execution of the tasks as soon as possible, i.e. to reduce 
the makespan [10].  



The major contribution of this work is introducing new heuristic which is based on 
apportionment methods. Another gain of this paper is that the comparison between the 
new heuristic and the existing ones is done using many different parameters, such as: 
the system load; the average number of busy machines; the average turnaround time 
of the executed tasks; the average response time of the executed tasks; how many 
tasks were finished; the number of deployments of the tasks that were involved and 
the load balance among the machines. Another important parameter that we consider 
is the heuristic execution times. This parameter tells how much time is needed for a 
certain heuristic to map the arrived tasks on the available machines.   . 

The remainder of the paper is organized as follows. Description of the 
apportionment methods used in elections and summary of their characteristics is 
found in Section 2. Section 3 describes how apportionment methods can be adjusted 
for the purpose of mapping tasks in heterogeneous computing environments. In 
Section 4 the simulation scenario is presented and this section examines the obtained 
results from the simulation study. In Section 5 the conclusion and future work are 
presented. 

2   Methods of Apportionment 

The problem of how many representatives should be allotted to some important 
institution (i.e. US Congress) exists since the beginning of democracy and elections. 
One might come up with an idea of one man, one vote, i.e. pure proportional method. 
But candidates are human beings and they cannot be divided. Thus, because this 
apportionment cannot be done perfectly it must be done in a manner as near 
perfection as can be. These methods of apportionment should fulfill certain rules in 
order to be objective [20], as example we refer to the US Congress: 

1. No state’s number of representatives should decrease, if the total number of 
representatives increases. 

2. Every state should have within one (exclusive) of their quotient. For example if a 
state should receive 3.4 representatives it can receive 3 or 4. If the state should 
receive exactly 3 representatives, it should receive 3, but not 2 or 4. In future, we 
will call having this property -satisfying Quota. 

3. All states abide by the same formula for representation. 
4. Methods do not artificially favor large states at the expense of the smaller ones 

and vice versa. 

2.1  Hamilton’s method (HM) 

The algorithm of this method is as follows: 
1. Calculate the Standard Divisor (SD). 
2. Calculate each state’s Standard Quota (SQ).  
3. Initially assign each state its Lower Quota (LQ). 
4. If there are surplus seats, give them, one at a time, to states in descending order 

of the fractional parts of their Standard Quota. 



The standard divisor is the average number of people per seat over the entire 
population and it can be calculated as SD=TP / p, where, TP is the total population 
and p is the number of seats in the congress.  

The standard quota is the fraction of the total number of seats a state would be 
entitled if the seats were not indivisible and it is calculated as SQ=SP / SD, where, SP 
is the state population.  

The lower quota (LQ) is the standard quota rounded down.  
But this method violates the rule number one: an increase in the total number of 

seats to be apportioned causes a state to lose a seat (a.k.a. Alabama paradox). 

2.2  Jefferson’s method  (JM) 

Jefferson came up with what is known as the method of greatest divisors. Suppose 
we are given state populations p1, p2, .., pN and representative apportionment a1, a2, .., 
aN. We can calculate a divisor L(s) = a(s)+1 for each state s. Then states can be 
ranked using the p(s)/L(s) ratios. The higher this ratio, the more deserving this state is 
to get another representative. In this method everybody starts with zero 
representatives. The representatives are always assigned to the state with the current 
highest ratio (rank-index). The first N representatives are assigned one to each state. 
This is naturally enforcing US Constitution rule about each state having a minimum 
of one representative. The divisor choice L(s) = a(s)+1 is natural, because it ranks 
how much better off the state will be if it was given one more representative. The 
divisor choice Jefferson’s Method uses is arbitrary, since other methods use divisors 
such as ( ) ( ) 1/ 2L S a s  - the Webster’s method (WM), or ( ) ( )*( ( ) 1)L S a s a s   - 

the Huntington-Hill method (HHM). The Jefferson’s method favors large states and it 
does not satisfy lower quota. Webster’s method does not satisfy upper or lower quota, 
but it does not favor large or small states and the Huntington-Hill method favors small 
states. 

3   Using Methods of Apportionment as Heuristics for Mapping 
Tasks  

The difference between mapping tasks in HC environments and allocation of places 
in some institution is that in HC environment machines can be divided among 
multiple tasks. Thus, the pure proportional model (PPM) can take part in the process 
of mapping tasks. With this proportional method each task gets a portion of the 
heterogeneous system as a whole. The portion that task i gets for the system is equal 
to: 

                         i
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where, sizei is the size of the task i and the sum in the nominator is the sum of the 
instructions of the arrived tasks. It is obvious that with this method one machine can 
be shared among many tasks and the tasks are executed in Round-Robin fashion. This 



additionally requires time for context switch which certainly reduces the overall 
performance of the system. Having this fact in mind in this part we will briefly 
present how these apportionment methods used in the US Congress can be adjust for 
mapping tasks in HC environment. 

The analogy is that instead the US Congress is now the HC environment and the 
available seats are the machines in the HC environment. The states are replaced by the 
tasks and the total population of a state is an equivalent to the number of instructions 
that a certain task has. 

For example we will use the Hamilton’s method. TP is the sum of the number of 
instructions of the available tasks and p is the number of available processors. Then 
the standard quota is calculated as the fraction of the total number of processors a task 
would be entitled to if the processors were not indivisible and for tasks I, i.e. SQi=TSi 
/ SD. The lower quota (LQ) is the standard quota rounded down.  

For example, in Table 1 the task mapping is shown for 5 processors and 10 users in 
the system and where every user has a different task to be executed on the system. 

Table 1 Hamilton's method example 

Task # of million instructions SQ LQ Leftover Surplus Final 
mapping 

1 6 0.02 0 0.02  0 
2 271 0.68 0 0.68  1 
3 85 0.21 0 0.21  0 
4 153 0.39 0 0.39  0 
5 200 0.50 0 0.50  0 
6 406 1.02 1 0.02  1 
7 161 0.41 0 0.41  0 
8 242 0.61 0 0.61 1(3) 1 
9 217 0.55 0 0.55 1(4) 1 
10 243 0.61 0 0.61 1(2) 1 

Totals 1831 5 1 4 4 5 
As we can see, only tasks 2, 8, 9 and 10 would be executed in the system for that 

certain round, while the other tasks have to wait for another round. Intuitively, this 
heuristics gives excellent performance when the arrival of the tasks is not so dense 
and there is a big number of free machines. In this case one bigger task can be divided 
to several smaller ones and they can be executed in parallel on the machines in the 
HC environment. On the other hand, there will be some delay because of the task 
partitioning. If this delay is not so big then this is a perfect case when this 
apportionment heuristics can be used. But, when the number of tasks is very big and 
the HC environment is overloaded then these heuristics act as Biggest Job First 
heuristic. Thus, in their nature these heuristics change their attitude dynamically, i.e. 
in an overloaded cluster they use one-to-one mapping, and many-to-one mapping 
when the number of free machines is bigger. The Jefferson’s approach will favour 
bigger tasks. 



4   Simulation Model and Results 

In order to analyze how the proposed heuristics cope with other heuristics used for 
mapping tasks in HC environments we have implemented the following ones: OLB  ( 
Opportunistic Load Balancing), MET (Minimum Execution Time), MCT (Minimum 
Completion Time), Min-min , Max-min , SA (Simulated Annealing). 

All of these heuristics do not consider the case when tasks are very big and they can 
be divided in a certain number of sub-tasks. In that event, one task can be executed on 
a certain number of processors – space sharing. This can be done in computing 
systems where communication delays can be neglected. If this is a case one of the 
proposed apportionment mappings (in Section II and III) can be used for mapping 
tasks in HC environments.  

All of the schedulers have been simulated in Matlab. Firstly, we create a virtual 
system with p heterogeneous machines and u users of the systems. We differentiate 
between small and big users of the system. The big users (called predators) generate 
big tasks with greater probability than the small users (called victims). The simulation 
is discrete, i.e. we use time steps in our simulation and every time step can last a 
certain number of seconds. The arrival time of the tasks is simulated using a uniform 
distribution. Each task is characterized by its size expressed in instructions and 
machines are characterized by how many instructions in second they can execute. In 
every time step the simulator schedules the arrived task to a certain machine 
depending on the chosen scheduler. 

We analyze the schedulers using these eight parameters: 
1. The system load; 
2. The average number of busy machines;  
3. The average turnaround time of the executed tasks;  
4. The average response time of the executed tasks;  
5. The number of finished tasks;  
6. Provided that all tasks were finished, the time when they finished;  
7. The number of deployments of the tasks that were involved 
8. The load balance among the machines. 
The simulation lasts 1000 rounds, the number of users in the system is 25 and every 

user generates 4 tasks. The number of the machines present in the system is 10. There 
are 20 predators and 5 victims. There are 20 users that generate big tasks (from 100 to 
1000 million instructions) with probability of 0.9 and small tasks (from 1 to 100 
million instructions) with 0.1. There are 5 users that generate small tasks with 
probability 0.9 and big ones with 0.1. The CPU power of each machine is obtained 
from the normal distribution where the mean is 10 million instructions in second and 
the variance is 3 million instructions. 

First, we investigate the percentage of the simulation when the system was busy. In 
fig. 1 we can see that with the proportional scheduler the system is kept busy near 
100% of the time, while with the Hamilton’s method (HM) this percentage is lower 
(about 50%), the other schedulers kept the system busy for almost all of the time. This 
means that in this scenario HM leaves space (i.e. computational power) for other tasks 
and it used only half of the time steps to execute the given set of tasks. 

Another parameter is the average number of machines that were kept busy during 
the simulation. In fig 2 we can see that the PPM scheduler keeps most of the machines 



busy, the HM keeps busy about 4 machines, while the MET scheduler keeps busy 
only the best machine for the whole simulation. 

Fig.3 shows how many tasks were finished during the simulation. We can see that 
the worst performance is given by the MET scheduler, while only HM and PPM 
succeed to execute all the given tasks. 

Another important parameter is the average turnaround time achieved by a certain 
scheduler (fig. 4). As expected, the best performance is given by the HM scheduler, 
and the worst performance is obtained using MET and then by Min-min. The HM is 
better than the rest because it may map one task to a number of machines and it is 
better from PPM because no time is lost for context switch which is needed for the 
Round-Robin used in the PPM. However, PPM and HM must divide the task and this 
means that we assume that tasks can be parallelized. 

Fig.5 shows that the HM finishes all the tasks earlier than the other schedulers that 
succeed to finish all the tasks before the last round.  The MET heuristic does not to 
finish all the tasks till the end of the simulation.  

The average rounds that the tasks spend in the queue (i.e. the time between its 
deployment and arrival) is shown in fig.6. We can see that the HM copes well with 
the other heuristics. The best performances are given by Max-Min and the worst by 
Min-Min. 

Depending on the type of the scheduler, tasks can be deployed to one or to many 
machines. Here the PPM and the HM scheduler do not cope with the rest of the 
schedulers (fig. 7). These results are obvious and mean that if all of these schedulers 
were implemented, the most time will be lost for deploying the tasks using the PPM 
and HM method. 

From the next figure we can see that the HM and PPM schedulers give good load 
balance among the machines, expectedly the worst load balance is given by the MET 
scheduler. We can see that good balance is also shown by the following: Min-Min, 
Max-Min, Simulated Annealing and MCT favors machines 3, 4 and 8 because these 
machines work on higher frequencies than others. 

In fig. 9 the heuristics execution time is shown. The graph was made relative to 
Min-Min heuristics because this heuristic shows worse results than the other 
heuristics. It is obvious that the MCT heuristic loses the smallest amount of time for 
scheduling and it is also easy to implement. It is worth mentioning that the Simulated 
Annealing is very dependable on its scheduling parameters (i.e. heating rate and 
number of rounds). In this simulation the HM heuristic shows similar results as 
Simulated Annealing.  

For broader analysis we reduced the number of machines present in the system 
from 10 to 5. This means that the system was more overloaded than in the first 
scenario and that the HM scheduler will dynamically change the mapping from one 
task-to-many machines to one task-to-one machine and that it is similar to bigger 
tasks first kind of scheduler and certainly its performances will degrade. Results 
showed that Max-Min outperforms others in most of the performances and that HM 
copes well with the others in load balance. HM also finished the jobs earlier that the 
other schedulers.  



Fig. 1. The load of the system Fig. 2. Average number of busy machines 

 

Fig. 3. Number of finished jobs Fig. 4. The average turnaround time 

Fig. 5. Finishing round Fig. 6. Average response time 

Fig. 7. Number of deploys Fig. 8. Load balance among the machines 



 

Fig. 9. Execution time for different heuristics 

5   Conclusion 

In this paper we have implemented new heuristic based on the apportionment 
method used in elections. We also implemented other schedulers which are known 
and used in HC environments. The mappings were dynamic in batch mode. The 
implemented method is called the Hamilton’s method. The other mappings were: 
OLB, MET, MCT, Min-min, Max-min and Simulated Annealing. We also suggested 
a way how and when these apportionment methods can be used in mapping tasks in 
HC environments. Additionally, they can be used in every situation where resources 
need to be shared. 

Additionally, we made a comparison of these heuristics in different parameters: the 
system load; the average number of busy machines; the average turnaround time of 
the executed tasks; the average response time of the executed task; the number of 
finished task; provided that all tasks were finished, the time when they finished; the 
number of deployments of the tasks that were involved and the load balance among 
the machines. The comparison is made using simulation in matlab and the results 
show that the Hamilton’s method copes well with the other schedulers and it has good 
load balance. Moreover it finishes all the tasks earlier than any other scheduler. 

 This comparison shows under which circumstances one should choose the right 
scheduler in Heterogeneous Computer Systems. 

In our future work we intend to compare this schedulers with all of the remaining 
schedulers (i.e. HEFT, CPOP, Sufferage, A*, Tabu etc.) and to use some other of the 
apportionment methods described in Section III as a heuristic for mapping tasks in 
heterogeneous computing systems. 
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