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ABSTRACT

Knowledge about the graph structure of the Web is important for understanding this complex socio-technical system
and for devising proper policies supporting its future development. Knowledge about the differences between clean
and malicious parts of the Web is important for understanding potential treats to its users and for devising protection
mechanisms. In this study, we conduct data science methods on a large crawl of surface and deep Web pages with
the aim to increase such knowledge. To accomplish this, we answer the following questions. Which theoretical
distributions explain important local characteristics and network properties of websites? How are these characteristics
and properties different between clean and malicious (malware-affected) websites? What is the prediction power of
local characteristics and network properties to classify malware websites? To the best of our knowledge, this is the
first large-scale study describing the differences in global properties between malicious and clean parts of the Web.
In other words, our work is building on and bridging the gap between Web science that tackles large-scale graph
representations and Web cyber security that is concerned with malicious activities on the Web. The results presented
herein can also help antivirus vendors in devising approaches to improve their detection algorithms.
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1 Introduction

Since its inception in 1989 (McPherson, 2009) theWeb has evolved
and changed from a technical concept to a complex network of
networks. The Web is nowadays interlinking protocols, Web
pages, data, people, organizations, and services (Hall and Tiropa-
nis, 2012). Its exponential growth (Kleinberg et al., 1999) results
in the indexed, surface Web with an estimated size (Bosch et al.,
2016) of 4.49 billion pages1. At the same time, the size of the
non-indexed, so-called deep web is suggested to be 400 to 550
times larger (Bergman, 2001) and rapidly expanding. In this
study, we use a large Web crawl dataset provided by a security
and privacy vendor F-Secure. Because of the specific crawling
procedure, this dataset contains pages both from the surface and
the deep Web.

As the number of Web users increase, the number of systems
that distribute malware to attack the users also increases. These
attacks are done in different ways. Malware stands short for
malicious software, while Web malware is understood as malware
that spreads – and is being actively spread – through malicious
Web hosts. Web malware remains one of the most significant
security threats affecting millions of hosts today, utilizing some of
them for cyber crime and others as further distribution channels.

Web science (O’Hara et al., 2013) is a relatively new inter-

1http://www.worldwidewebsize.com/

disciplinary field studying the complex system to which the Web
has evolved. One of the challenges within Web Science is under-
standing the emergence phenomena through which lower-level
processes produce more complex global properties. For instance,
the process of creating individual Web pages and linking them to
existing ones results in a specific degree distribution of the Web
graph (Adamic and Huberman, 2000). At the same time, ma-
licious parties might affect some of the emergence phenomena
by their irregular lower-level activities. In the same example,
cyber criminals have specific ways of interconnecting their mali-
cious hosts in order to support botnets, increase possibilities of
spreading malware or evade detection. This will likely yield a
different degree distribution compared to creating regular web-
sites. One of the tasks of our study is to detect and measure how
malicious activities affect some of the global Web properties.

At first, we find theoretical distributions that are the best fits
to the empirical probability distributions of several website fea-
tures, such as: number of pages, degree, PageRank and number
of files on them. Exponentially bounded power law (truncated
power law) explains well most of these distributions and each of
them is a heavy tailed distribution. A result of the fitting process
is also that corresponding coefficients for distributions pertaining
to malicious websites differ compared to those of clean websites.
In particular, we find lower power law coefficient indicating a
greater skewness and irregularity of the distribution. We also
study properties of a network of malicious websites based on the
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malware they share. Existing communities in this network re-
veal groups of websites devoted to sharing particular types of
malware, so called malware distribution networks (MDNs). Fi-
nally, we evaluate the power of analyzed properties as predictive
features for malware websites.

On one side, we are building on Web science that studies
distributions and correlations among Web properties and, on
another, on Web cyber security research that characterizes and
measures malicious activities. Hence our work is bridging the
gap between Web science and the Web cyber security through
addressing following research questions:

RQ1: Which theoretical distributions explain important local
characteristics and network properties of websites in the
(deep) Web?

RQ2: How are those characteristics and network properties dif-
ferent between clean and malicious (malware affected)
websites?

RQ3: What is the prediction power of website local characteris-
tics and network properties to classify malware websites?

The rest of the paper is organized as follows. Section 2 sets out
the background and discusses related work. Section 3 describes
Web crawling procedure, the data and our methods. Section 4
present results of fitting Web distributions, where we focus on
the differences between clean and malicious parts of the Web. In
addition to a dichotomization to clean vs. malicious websites, we
also analyze relative maliciousness of websites in Section 5. Sec-
tion 6 provides insights on a malware co-occurrence network of
websites. Finally, in Section 7, we discuss the prediction power of
analyzed features in discerning regular from malicious websites.
Discussion and conclusions are given in Section 9.

2 Background

A Web crawl is a dataset consisting of a set of crawled web
pages, hyperlinks among them and additional metadata stored
in the process. A traditional way to model this dataset as a
graph has been to consider individual pages as nodes, and hy-
perlinks among them as directed edges. Such a representation of
the Web is termed page graph. If we consider user browsing be-
havior, however, a website is more a logical Web unit compared
to a single page (Baeza-Yates et al., 2002). For this reason,
studies have also focused on Web graph representation in which
nodes represent aggregated pages from a single pay-level domain
(PLD). PLD corresponds to a sub-domain of a public top-level
domain (TLD), for which users usually pay for when hosting web-
sites. Starting from uniform resource locator (URL) (Berners-
Lee et al., 1994) that uniquely identifies each page, the aggre-
gation to PLDs is performed by extracting second level domain
and TLD and concatenating them. For instance, for Aalto Uni-
versity’s URL http://www.aalto.fi/en/, second level domain is
aalto, TLD is .fi and PLD is aalto.fi. We analyze our data
on such aggregation level and adopting the term used by Meusel
et al. (2015), we operate on a PLD graph. Technical details of
the aggregation process we applied are described in Section 3.

There are two main techniques for delivering Web malware
to users. The first is called push-based, where the user is tricked
to download the binary file using social engineering, cross-site
scripting, or by related means. The second is called pull-based,
where browser vulnerabilities are exploited to automatically down-
load an exploit. The later technique is also called drive-by down-
loads. In addition to pages and links among them, our dataset
contains a set of binary files that are found on the pages vis-
ited. After the scanning procedure described in Section 3.5, we
assign a maliciousness score to each file. In our study, we do not
distinguish between the two mentioned techniques for delivering
malware (i.e., we consider all Web malware found). Using the
file maliciousness information we classify PLDs as clean (i.e., no
malicious or suspicious files found on them) and malicious (i.e.,
at least one such a file found). In another investigation, we also
assign a relative maliciousness score to PLDs.

2.1 Prior work

Web science (Berners-Lee et al., 2006; O’Hara et al., 2013) is an
interdisciplinary field that emerged to tackle the Web as a com-
plex socio-technical phenomenon. Early Web research focused on
topological properties of the Web graph (Barabási et al., 2000)
and communities in it (Gibson et al., 1998). One of the land-
mark studies characterized Web structure as the famous bow-tie
(Broder et al., 2000) and also suggested power law distributions
for indegrees and outdegrees of pages. Interestingly, despite its
importance, for a period of time after the study by Broder et al.
(2000), other large-scale studies of the Web were rare (Ludueña
et al., 2013) until the couple of more recent ones (Meusel et al.,
2014; Ludueña et al., 2013). Suggested power law degree dis-
tributions and their inducing mechanisms were taken a matter
of debate among researchers (Adamic and Huberman, 2000) and
recently disproved on a larger dataset by Meusel et al. (2014).
That study with negative result the authors performed on a page
graph, and in a follow up they analyze the same Web crawl ag-
gregated on a PLD level (Meusel et al., 2015). In the PLD graph,
they find a fit of indegree to power law, however for the outde-
gree they still conclude it is unlikely to follow a power law. In
addition to distributions, correlations between important Web
host features, such as indegree, outdegree and Alexa’s rank2 are
analyzed (Ludueña et al., 2013).

Since Web use is a pervasive element of life, Web security
and privacy became of essential importance. A number of Web
security studies characterized and measured properties of mali-
cious activities and hosts on the Web. For example, Boukhtouta
et al. (2015) used network components and their connectivity to
identify malicious infrastructures. Several network node proper-
ties are employed to measure host badness, while temporal graph
similarities helped to study temporal evolution of malicious in-
frastructures. Malicious hosts are also analyzed in terms of speci-
ficity of their life cycle properties (Polychronakis and Provos,
2008). Provos et al. (2008) performed a large scale analysis of
URLs in order to describe websites performing drive-by down-
loads. Invernizzi et al. (2014) develop a system that detects
infections by drive-by downloads in large scale networks. They
analyzedWeb traffic from a large Internet Service Provider. And,

2http://www.alexa.com/topsites

http://www.alexa.com/topsites
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Table 1: Dataset statistics

crawl element totals
pages ∼ 2.5 · 109

PLDs 6 523 861
unique links to files 2 850 868
binary files 1 639 708
PLDs with files 221 305

by considering many malware downloads together they discover
malware distribution infrastructures. While some similar net-
work analysis and machine learning methods are applied, this
study is fundamentally different from ours. Firstly, the analyzed
dataset represents Web traffic unlike the crawl in our study. Sec-
ond, they focus on a specific type of Web malware (drive-by
downloads) and do not investigate large scale Web structure and
differences between clean and malware infrastructures, as is the
focus of our study.

Network analysis methods have also been employed in pre-
dicting Web cyber-threats. For example, data about exist-
ing malware co-occurrence are used to build a file relation net-
work and then predict new malware using label propagation (Ni
et al., 2015). Another example is network analysis application
for classifying malware into different families (Jang et al., 2014).
Castillo et al. (2007) showed how to successfully detect spam by
analyzing the Web graph. As a next result, they also developed
a classifier that combines content properties of the Web pages
with link properties to successfully predict spam.

3 Data and methods

3.1 Crawling process and statistics

Cyber security and privacy vendor F-Secure provided the original
dataset. The company collected the data from June until Novem-
ber 2015 using a traditional breadth-first visit crawling approach
in combination with Domain Name System (DNS) brute force
crawl. The DNS brute forcing was used to expand the host data
available on malicious PLDs. A large host database consisting
of Alexa’s 1M top sites2 and known link farm pages were used as
the seeds for the crawler. The site scraping process used static
parsing of the hypertext transfer protocol (HTML) structures.
URLs from a visited site are stored in the crawl frontier and re-
cursively visited. When a thread completed its visit to a site,
it would get the next unvisited URL from the queue with pri-
oritization policy based on website PageRank and then it would
repeat the process. This procedure was continued until all URLs
have been visited or a limit of 10K outgoing links per site is
reached. In addition to the pages, during the crawl, all binary
files with extensions exe, swf, jar, zip, tar.gz under 5MB in
size were downloaded. During the crawling period, around 120
billion unique links are discovered and 2.5 billion pages are vis-
ited, resulting in around 95 terabytes of HTML content stored.
The number of unique links leading to a binary download was
2.9 million, resulting in more than 1.6 million unique binary files
stored (see Table 1).

At this point, it is imperative to remind that different crawl-
ing policies and limits imposed are likely to affect the resulting

dataset and have potential to induce certain biases. As the focus
in this work is to unveil in particular the malware distributions
and properties of malicious PLDs on the Web, using Alexa’s
top sites as part of the seed might seem as a suboptimal choice.
However, there are several benefits to using such a seed, as we
detail in the following. First, larger seed sets are known to make
the crawl more stable. Moreover, seeding our crawl with ma-
licious hosts from the start would not be optimal for intended
host discovery. From a technical viewpoint, Alexa’s top sites list-
ing contains the information that were required by our crawling
procedure, such as about PageRank. Second, despite the focus
on analyzing malware, we also want to investigate its position in
the regular Web, as typical users might experience it. Starting,
from the most popular sites on the Web can give us a picture of
how many clicks away a typical user is from accessing malware
sites. Finally, we also compare malware files and PLDs to the
clean PLDs and non-malicious files, and so we need a good and
representative coverage of the normal, clean, portion of the Web.

3.2 PLD graph

As mentioned in the introduction, a PLD graph is created from
the page graph by aggregation on the PLD level. In order to
aggregate page URLs to their corresponding PLDs, we use li-
brary TLDextract (Alexander Fedyashov, 2016) that is looking
up the Mozilla’s initiative Public Suffix List3 for most up to
date TLDs. Throughout the rest of the paper we use the term
PLD as a synonym for a 2-LD + 1-LD4 in λ-notation intro-
duced by Berger et al. (2016), where λ-LD is λ-level domain.
As an example, if we have nodes a.2.com.cn/index.html and
b.2.com.cn/foo/bar/baz.html in the page graph, then in the
PLD graph, we aggregate them to a single node 2.com.cn. Note
that in this example, 1-LD is .com.cn, and not .cn. Similarly, if
we have a link from a.2.com.cn toward b.2.com.cn in the page
graph, then in the PLD graph we have a self-loop at 2.com.cn.

The resulting PLD graph G = (V,E), that we focus on, has
|V | = 6 523 861 distinct nodes connected by |E| = 111 273 135
edges with an average node degree of 47.2, seven times higher
compared to the page graph. The distribution of the number of
aggregated pages per PLD is shown in Fig. 1a. There is a small
number of domains that have even more than 100 000 pages;
blogspot-domains are prominent in this top list. Most of the
domains host only 1 to 3 pages.

3.3 PLD file diversity

As a measure of file diversity on a single PLD, we apply informa-
tion entropy measure (Shannon, 2001). For a PLD, we denote
the number of unique files present on it as N , and the total num-
ber including file copies as TF . For each unique file fi found ki
times on the PLD, we assign the file probability pfi = ki/TF .
Now we have the file distribution probabilities P = p1, .., pN for
each domain and we calculate the entropy:

H = −
N∑
i=1

pi · log2 pi. (1)

3https://publicsuffix.org/
41-LD can be generic top-level domain (gTLD) or country code top-

level domain (ccTLD)

https://publicsuffix.org/
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PLDs with more unique files, in general, will have higher H
values, while less file diversity (or more copies) will lead to a
decreased H.

3.4 PLD malware co-occurrence subgraph

In order to further characterize the malicious PLDs, we build
another type of a network – based on the shared malware files.
In the domain malware co-occurrence network M = (Vm, Em, w),
the node set Vm consists of PLDs on which malicious files are
found. The undirected edges set Em contains the links between
the PLDs that have hosted at least one common malicious file.
The weight w ∈ (0, 1] for an edge is defined as Jaccard similarity
of the sets of malware files hosted on the two PLDs connected
by the edge.

3.5 File reputation

We enrich the Web crawl by scanning each of the ∼ 1, 6M file
hashes through VirusTotal API5. An independent maliciousness
score is given to the file scanned by each of d = 56 antivirus (AV)
engines that are included in the VirusTotal service. We take a
similar approach as in our previous study (Ruohonen et al., 2016)
and calculate overall maliciousness score δ̄ of a file fi using the
formula:

δ̄(fi) = s

(
1
d

d∑
k=1

δk(fi)
)
, s(x) =

{
0 if x ≤ τ,
1 otherwise;

(2)

where δk(fi) ∈ {0, 1} is the score given to the file by the k-
th AV engine. Selecting the threshold τ ∈ [0, 1) within s(x)
is used to dichotomize the score depending on how strictly we
want to define malware or whether we want to focus also on
suspicious and potentially unwanted files. An earlier study (Lin-
dorfer et al., 2014) found that if only 5 of the VirusTotal engines
have marked the file as malware, it can be considered malicious,
while Invernizzi et al. (2014) used threshold of 2 as a proxy for
maliciousness. At the same time, the analysis of AV detection
rates revealed that the best engine had an average detection of
70% (Provos et al., 2008). Moreover, there is a time lag until AV
engine virus definitions are updated, and if one scans suspicious
files at a later time (2 months in the case of study ibid.), AV
engines will flag more suspicious files as malicious. Considering
such results and the statistical trade-off that a stricter threshold
τ reduces the size of our malware set, in the first part of the
analysis we set τ = 0, i.e., to the highest alert level. After such
an evaluation procedure, our malware set consists of 45 172 files.

In the second part of this study, we also consider a ratio-
based maliciousness score ρ̄ defined as:

ρ̄(fi) = 1
d

d∑
k=1

δk(fi). (3)

3.6 PLD reputation

Based on the type of files that populate them, PLDs are, in
similarity to files, given two types of maliciousness scores. For the

5www.virustotal.com

first part of this study, introducing dichotomous maliciousness
score, we categorize PLDs using following (strict) procedure. A
PLD is considered clean PLD if no malware files, as defined by
Eq. 2, are found on it. PLDs having at least one malicious file
are considered malicious PLDs. Using such a dichotomization,
among 221 305 PLDs hosting at least one file of any type, we find
11 242 malicious PLDs (∼5%).

In the second part of the study, we assign following ratio-
based score to PLDs:

r̄(PLDi) = 1
TFPLD

TFPLD∑
i=1

ρ̄(fi), (4)

where TFPLD is the total number of files (including clean) found
on the PLD. Introduced score r̄(PLDi) will equal to 0 for all
clean PLDs from the dichotomization above, while the malicious
PLDs will receive a score 0 < r ≤ 1 quantifying the share of
malicious files to all the files, and also the maliciousness of those
files, as per Eq. 3.

3.7 Domain name entropy

Domain Generation Algorithms (DGAs) yield a large number of
pseudorandom domain names generated using a seed value pre-
calculated by the attackers. DGAs have malicious applications
for dynamical provision of command and control centers (C&C),
drive-by download attacks and spam domains creation (Sood and
Zeadally, 2016), among others. DGAs are likely to result in do-
main names that follow some pattern of creation, in contrast to
real words that are most often used by humans in regular domain
names (Yadav et al., 2010). For example, algorithmically gen-
erated domain names might have following format cxxx.com.cn,
where x ∈ a...z (example from our dataset).

Several more or less sophisticated approaches are proposed
for detecting such algorithmically generated domain names (Ya-
dav et al., 2010; Demertzis and Iliadis, 2015). For our purpose,
we find that relatively simple domain name badness score
(SANS ISC InfoSec Forums, 2016) is sufficient. We will also in
short refer to this score as domain name entropy. The score
is based on a frequency table of adjacent character pairs within
regular English text. For instance, normal English text is likely
to feature character pairs such as th, qu or er, but unlikely to
feature wz or dt. The expected frequencies of regular names are
calculated from Alexa’s top 1Mmost common website names and
also texts from the literature. Once the frequency table is built,
far a given domain name we lookup the table for frequencies of
character pairs within the name and estimate how probable it
is to represent a regular domain name. This approach is shown
to differentiate well normal domain names from algorithmically
generated ones. Former can be characterized with the badness
score higher than 5 and later with the score lower than 5 (SANS
ISC InfoSec Forums, 2016). We implement such a score and use
it to assess some of the irregularities in our data.

3.8 Fitting heavy tailed distributions

The first part of this study is concerned with fitting distribu-
tions of the website features, many of which are suggested to be
heavy tailed (Clauset et al., 2009; Broder et al., 2000; Meusel

www.virustotal.com
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Table 2: Heavy tailed distributions assessed in our fitting
procedure. Table adapted from (Clauset et al., 2009). Probabil-
ity p(x) = Cf(x), for some constant C.

distribution f(x) parameters
power law x−α α
truncated power law x−αe−λx α, λ
exponential e−λx λ

stretched exponential xβ−1e−λxβ β, λ

log-normal 1
xe

− (lnx−µ)2

2σ2 µ, σ

log-normal positive 1
xe

− (lnx−µ)2

2σ2 µ > 0, σ

et al., 2014, 2015). In this subsection we describe the methods
and tools that are used in our fitting procedure. Theoretical
foundations about power law distributions in empirical data are
established in their seminal paper by Clauset et al. (2009). Since
power law distributions are considered among the most interest-
ing observations in many disciplines, including physics, computer
science, economics, political science and psychology, Clauset et
al. have presented a model for fitting power law to empirical data.
Their model is, however, easily applicable to other types of theo-
retical distributions. We use their model to assess several heavy
tailed distributions listed in Table 2 as plausible hypotheses to
explain our Web distributions. The tool we employ is Python
powerlaw package by Alstott et al. (2014) that implements the
fitting procedure for all those distributions.

Usually empirical data will follow a heavy tailed distribution
only for some part of the data, i.e., for the values larger than
some lower bound xmin (the tail). Clauset et al. (2009) describe
three main steps in their framework for analyzing power law
distributed data. Below we summarize these steps as they would
apply to any heavy tailed distribution f(x):

1. estimate xmin and the respective parameters (Table 2) of
the f(x) model,

2. calculate the goodness-of-fit between the empirical data
and the estimated model,

3. compare f(x) against other plausible hypotheses via like-
lihood ratio test.

In step 1., xmin is estimated using Kolmogorov-Smirnov (KS)
statistics (Seiler and Seiler, 1989). Such xmin is selected for
which the probability distributions of the hypothesized model
and empirical data are most similar (Clauset et al., 2007). If one
would select too low xmin then the KS statistics would show a
larger difference since we would be trying to fit a heavy tailed
f(x) to a part of the data that is not heavy tailed. On the con-
trary, a too high xmin would result in throwing away a large part
of the data that are actually well explained by the heavy tailed
f(x). This would in turn increase the bias from finite size effects
and make the KS statistics between the distributions higher due
to statistical fluctuations. After establishing the xmin, param-
eters of f(x) are selected using maximum likelihood estimators
(MLEs) (Cox and Barndorff-Nielsen, 1994; Wasserman, 2013).

In step 2., a goodness-of-fit test should answer to the whether
hypothesized f(x) is a plausible explanation for the given data.

Goodness-of-fit test is in this case applied as follows. One es-
timates the difference between the empirical and hypothesized
theoretical distributions using KS statistics. Afterwards, com-
parable estimates are made for a number of synthetic datasets
drawn from the hypothesized model. If the estimated difference
for the empirical data is not importantly larger than for synthetic
data, then f(x) is a plausible fit to the data.

In step 3., log likelihood ratio is calculated between hypoth-
esized f(x) and competing distributions plausibly explaining the
data. In our case, we always compare against all the other heavy
tailed distributions presented in Table 2. The sign of the log of
the ratio of the two likelihoods R tells which distribution is a
better fit and p-value is calculated for significance of the result
(for details see Section 5.1. in (Clauset et al., 2009)).

Powerlaw package implements steps 1. and 3., but not step 2.
One reason is that step 2. is not necessary in those cases when it
turns out in step 3. that some other distribution is a better fit to
the data. Moreover, the presented goodness-of-fit test in step 2.
is often too strict for any empirical dataset of a large enough size
having some noise or imperfections to pass it (Alstott et al., 2014;
Klaus et al., 2011). Hence, if one is not concerned with whether
their data strictly follow a certain theoretical distribution, but
instead which distribution is the best description available, then
steps 1. and 3. are enough and those are the steps we apply in
our fitting procedure.

The whole fitting procedure that we apply can be sum-
marized now as follows:

1. Start with an empty set of candidate distributions C = ∅.

2. Consider each heavy tailed distribution f(x) from Table
2 as a candidate distribution (candidate = True) and:

2.1. estimate xmin and respective parameters of the f(x)
model,

2.2. compare f(x) against other distributions g(x) from
Table 2 via likelihood ratio test. If resulting R < 0
and p < 0.01, then f(x) is not anymore a candidate
and return False.

2.3. if the subporcedure from the previous step returned
True, then C = C ∪ f(x)

3. If |C| = 1 then a single best fit distribution is found;
otherwise, evaluate the set of candidates additionally us-
ing human judgment. In this step, we take into account
the concrete empirical distribution we are fitting and the
mechanisms of its real-world creation to help us in de-
ciding among the set of found candidate distributions. A
fitting distribution selected in this way is marked with ∗
to distinguish it from the cases when |C| = 1, i.e., one
distribution was strongly preferred over all the others.

For example, if the returned set of candidates C consist of two
distributions: power law and log-normal, we might select the fit
as follows. Log-normal distribution can be created by multiply-
ing random variables (since the log of log-normal distribution is a
normal distribution that can be created by adding random vari-
ables). If the parameter µ for log-normal fit is negative (i.e., it is
not a log-normal positive distribution), then this would require
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Table 3: Percent of TLDs for the PLDs in the distribution peaks
in Fig. 1a

Range / gTLD .com .pw .cn .xyz
(150, 200) 0.79 0.07 0.01 <0.01
(300, 400) 0.79 <0.01 0.05 0.12
(600, 700) 0.83 <0.01 0.09 <0.01
>700 0.20 0.40 0.17 <0.01

Table 4: Fitting local PLD characteristics distributions. m
denotes malicious PLD subset and c the clean.

property best fit parameters
# pages trunc. power law α = 1.71, λ = 6.60e−6

# pages m trunc. power law* αm = 1.66, λm = 3.19e−05

# pages c trunc. power law* αc = 1.99, λc = 2.18e−11

tot. files m lognormal pos.* µm = 7.28e−5, σm = 2.77
tot. files c lognormal µc = −27.19, σc = 5.47
uniq. files m trunc. power law* αm = 1.51, λm = 7.98e−5

uniq. files c trunc. power law αc = 2.07, λc = 7.67e−5

such random variables to be typically negative. The Web distri-
butions we evaluate, such as number of pages, degree, PageRank
and total number of files on a PLD, are unlikely to be generated
by a process that multiplies negative values. So in this case, we
would select the power law distribution fit. As another example,
say we evaluate, for instance, the number of pages, on the whole
PLD graph G and find that CG = {f(x)}. In the future investi-
gation we might evaluate the same feature (number of pages) on
a subset of PLDs containing files Gf , which will be importantly
smaller in size. If in this case we find CGf = {f(x), g(x)}, then
we will select the fit to be f(x), as it is likely that a subset of
a larger dataset follows the same distribution, but due to statis-
tical fluctuations of a smaller sample set, we did not find f(x)
strongly preferred over g(x).

3.9 Prediction methods

In our experiments we use well known classification methods such
as Support Vector Machines (SVM) (Cortes and Vapnik, 1995),
Gradient Boosting Trees (Friedman, 2002) and Logistic Regres-
sion. We also included preprocessing steps such as Synthetic Mi-
nority Over-sampling Technique (SMOTE) (Chawla et al., 2002),
cluster-based (Zhang et al., 2010) and random majority under-
sampling with replacement (Lemaître et al., 2017).

4 Distributions of PLD features

4.1 Distributions of local PLD characteristics

The number of pages distribution in PLD graph G is visualized
in Fig. 1a. We present also its best fit – to the power law with
exponential cutoff starting from xmin = 4 (for the details of the
fitting procedure, see Data and methods 3.8). The inset offers
a first example of how malicious activity affects Web distribu-
tions. Namely, the irregularity of the distribution in the three
peaks suggest possible malicious activity. Indeed, we find a larger
percent (58%) of PLDs having domain name badness score lower
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(a) whole PLD graph. In the inset we zoom in to the three peaks
in the distribution: from around 150 to 200, 300 to 400 and 600 to
700 pages per domain (inset axes in linear scale).

(b) clean vs. malicious PLDs. Fibonacci binning is used to
visualize the empirical distributions (Vigna, 2013).

Figure 1: Distribution fits for the number of pages

than 5 in the three peaks compared to the rest of the distribu-
tion (19%). As discussed in Section 3.7, domain name badness
score lower than 5 is indicative of DGA activity. We also detect
a larger percent of domains having such a low domain badness
score in the distribution’s long tail (the PLDs with more than
700 pages). Results of inquiry into the PLDs causing the peaks
are summarized in Table 3. While .com TLDs are most common
throughout most of the distribution, the tail is dominated by .pw
TLDs. Other TLDs found common in the peaks are .xyz and
.cn (ccTLD for China). As a remark, both .xyz and .pw are
relatively newly available TLDs to the general public and they
are used by legitimate registrants. However, a sudden increase in
the number of new registrants for both TLDs in recent years6 is
in agreement with our results connecting them to potential ma-
licious activity. Symantec, for instance, released reports about

6http://www.thedomains.com/2016/01/10/
xyz-blows-past-us-which-had-a-28-year-head-start/

http://www.thedomains.com/2016/01/10/xyz-blows-past-us-which-had-a-28-year-head-start/
http://www.thedomains.com/2016/01/10/xyz-blows-past-us-which-had-a-28-year-head-start/
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Table 5: Fitting network PLD properties distributions. m
denotes malicious PLD subset and c the clean. PR stands short
for PageRank and tc for triangle count.

property best fit parameters
indeg trunc. power law α = 1.66, λ = 2.43e−4

indeg m trunc. power law* αm = 1.61, λm = 4.62e−6

indeg c trunc. power law* αc = 2.21, λc = 5.96e−12

outdeg trunc. power law α = 1.70, λ = 2.01e−4

outdeg m trunc. power law* αm = 1.97, λm = 8.61e−8

outdeg c trunc. power law* αc = 2.06, λc = 8.76e−8

PR m trunc. power law* αm = 1.61, λm = 1.97e−5

PR c trunc. power law* αc = 1.93, λc = 3.07e−5

tc m stretched exp* β = 0.76, λm = 7.24e4

tc c lognormal positive* µc = 3.88, σc = 1.18e−6

the rise of spam messages from .pw domains7. As for the ccTLD
of China, in the following parts of the study we confirm that
indeed the largest percent of malicious PLDs in our dataset have
that TLD (similar result reported in (Provos et al., 2008)).

In Fig. 1b we present the same distribution dichotomized by
the PLD maliciousness score, separate for clean and malicious
PLDs. There are a couple of interesting results from this anal-
ysis: the distributions follow a different power law coefficient α
for the two classes of domain, and αm of the malicious class is
lower compared to αc of the clean class. Lower α means higher
skewness of the distribution, and is intuitively in agreement with
malicious PLDs exhibiting higher irregularity in their properties.
It is also interesting the αc > 2 and αm < 2, as it means that
the two power law-like distributions qualitatively differ. For in-
stance, it means that the clean distribution has a well defined
mean, while malicious does not (Newman, 2005). Table 4 sum-
marizes the fitting results for other local PLD characteristics
evaluated. For the total number of files lognormal and lognor-
mal positive are found the best fits. In the case of the number of
unique files, we find exponentially bounded power law to explain
best the distribution, and again it holds: αm < αc.

4.2 Distributions of network PLD properties

Network properties that we investigate in PLD graph are degree,
PageRank (Brin and Page, 2012), hubs and authorities scores us-
ing HITS algorithm (Kleinberg, 1999), and number of triangles.
We present the fitting results only for degree distributions, while
for others we summarize the results.

Indegree and outdegree distributions for the whole G and
separated between clean and malicious PLDs are presented in
Fig. 2. As mentioned in Background 2, in their analysis of a PLD
graph, Meusel et al. (2015) find a fit to power law for indegree
distribution from xmin = 3 062 and for outdegree they suggest
that it is unlikely to follow a power law. In our dataset, we
find that both empirical distributions are best explained by ex-
ponentially bounded power law (truncated power law) (see Data
and methods 3.8 for details of the fitting procedure). In particu-
lar, for the whole PLD graph (6M nodes), truncated power law is
found strongly preferred over any other heavy tailed distribution.

7http://www.symantec.com/connect/blogs/
pw-urls-spam-keep-showing

Clauset et al. (2009) analyzed the degree in the Web dataset from
Broder et al. (2000) and found the same result in that dataset
as we find here: truncated power law was the best fit. Moreover,
xmin we find for indegree is 4 and for outdegree 3, meaning that
in our case the fit describes a larger set of data points compared
to less than 0.0001% data points found to describe the power
law in the distribution tail of Meusel et al. (2015). However,
exactly because of the described differences, our results are not
contradicting to those of Meusel et al. (2015). Namely, Meusel
et al. have focused only on exploring the power law fits to their
data (hence not investigating other heavy tailed distributions).
Their reason is that indegree and outdegree distributions were
explained by power law in earlier literature. For the same rea-
son, they were concerned only with the tail of the distribution.
Herein we present another type of insight: that a considerably
larger portion of the data points in indegree and outdegree dis-
tributions can be better explained by another distribution, that
is exponentially bounded power law. In other words, if one just
wants to explore the power law, one must consider only the tail,
but if we are concerned with explaining more of our data, then
exponentially bounded power law is a better fit to indegree and
outdegree.

The insights about the degree distributions in the whole PLD
graph are relevant for the main focus of our analysis – discern-
ing the differences between the distributions of clean and mali-
cious PLDs. As presented in bottom plots in Fig. 2, the trun-
cated power law exponents are again different between those two
classes. As with the number of pages, also now we find αm < αc
for both indegree and outdegree. Also, αc > 2 and αm < 2
indicating that the two distributions belong to different classes
of power law-like distributions (Newman, 2005). Even if degree
distributions are accurately known, this does not fully charac-
terize the network (O’Hara et al., 2013). Still our insights call
for further investigations on the differences between clean and
malicious Web graph properties. The results for other network
properties of PLDs are summarized in Table 5.

5 Relative PLD maliciousness

Instead of strictly dividing PLDs to the clean and malicious ones,
we can assign to each of them a relative maliciousness score r̄ as
introduced in Eq. 4. To understand the need for such a rela-
tive score, we first look at relative share of clean and malicious
files on a PLD in Fig. 3. Relative share of clean files follows
a unimodal distribution with a peak on right. Hence, we can
see how not only a majority of PLDs are clean, but also most of
them host a majority of clean files. Since attackers aim to spread
their malware files to the otherwise regular domains, this result
indicates that malicious PLDs in our previous dichotomization
include many such compromised PLDs. Namely, PLDs that are
devoted mainly to serving malware and created by attackers are
likely to have only several files that are mainly malicious (In-
vernizzi et al., 2014). Relative share of malware, on the other
hand, can only be measured on the malicious domains from our
previous dichotomization. To this score we can also look as mal-
ware distribution rate of a PLD. The malware distribution rate
shown in Fig. 3 (right) is multimodal, with one peak on left and
one in the middle. The peak in the middle likely corresponds to

http://www.symantec.com/connect/blogs/pw-urls-spam-keep-showing
http://www.symantec.com/connect/blogs/pw-urls-spam-keep-showing
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Figure 2: Distribution fits for indegree and outdegree: the whole PLD graph (top) and clean and malicious PLDs (bottom).
Fibonacci binning is used to visualize the empirical distributions (Vigna, 2013).

regular PLDs with many clean files that are infiltrated with a
few malware files (1% score). The scatterplot of the distribution
reveals, however, a number of PLDs with the score almost 100%
– those are likely set up and maintained by attackers.

Now we look at the relationship of previously analyzed fea-
tures and this score. Fig. 4 reveals that among most network
central PLDs in G there are no such with high r̄. The observa-
tion holds for PLDs with the highest number of pages and total
and unique files, too. The only of the assessed properties for
which most malicious PLDs do not populate an extreme range is
the name badness score. However, the most malicious domains
are still found mainly within a particular range. In summary,
these insights indicate a potential of the presented features in
discerning the most malicious from clean PLDs.

Table 6 extends our insights into the maliciousness of PLDs.
We find several malware files even on google.com and baidu.com,
so they are marked as malicious in the strict scoring procedure.
However, looking at their relative maliciousness score r̄, that is
low, we get a more accurate representation of their malicious-

ness. An interesting insight is also revealed from the PLDs with
the highest number of malware files. Such PLDs host tens of
thousands of malicious files, and still their scores r̄ are not that
high. This means that they host mostly suspicious and poten-
tially unwanted files that are only marked by some AV engines,
and not many highly malicious files.

6 Malware co-occurrence network of PLDs

The malware co-occurrence network M reveals specific content
delivery networks (CDNs) also sometimes called malware distri-
bution networks (MDNs) (Zhang et al., 2011). They are used
by attackers to manage a large number of malicious binaries,
exploits and malware serving Web pages.

A visualization of the network M is presented in Figure 5.
M consists of 40 connected components: CC1, ..., CC40 (in
decreasing size as the index grows). The largest CC1 has 26
PLDs, while the CCis for i > 20, have only a couple of PLDs.
In addition to the score, each AV that is part of VirusTotal
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Figure 3: PLD maliciousness: relative share of clean files on all PLDs (left) and relative share of malware on malicious
PLDs (right). Distribution in the left plot reveals how majority of PLDs hosts mainly clean files. From the distribution in the right
plot we notice a number of malicious PLDs devoted to serving almost only malware. However, Fibonacci binning (Vigna, 2013) reveals
that a majority of the malicious PLDs contains only around 1% malicious files.

Figure 4: Relationship between PLD (normalized) features and domain maliciousness score r̄.

outputs its own textual description of the type of malware. For
instance, consider the following output Trojan: Win32/Badur,
which hints that the malware file in question is a Trojan of type
Badur that attacks the Windows platform. By analyzing these
textual outputs, we discover that each MDN is devoted to serving
the type of malware with a particular purpose.

CC1 and CC20 are serving mostly adwares, riskwares and
undesirable software that changes homepage, desktop background
or search provider, such as OpenCandy, Artemis, Somoto, Net-
cat, and Amonetize.

In CC2, CC3, CC4, CC5, CC8, CC9, CC10, CC13,
CC16, CC17, CC18 and CC19 besides potentially unwanted
and adware files, we find more dangerous malware – spywares
and keyloggers. Spywares and keyloggers can reveal passwords
or even grant access to the user computer for a scammer, or
they can cause browser redirection in an attempt to scam money
from the victim, such as Ammyy, Dafunk, Snoopit, Eldorado
and Flystudio.

The domains in CC6 and CC7 employ drive-by download
approach in distributing malware. Namely, they serve malware
that uses an Adobe Flash Player vulnerability to automatically
download and run files once the victim visits their website.

Android malware sharing was detected in CC15. The mal-
ware of type Trojan Plankton silently forwards information about
the infected device to a remote location and when needed down-
loads additional files to the device. Another malware shared in
this CC is Ksappm, suggested to be a Chinese based botnet used
for malware distribution on Android devices8.

The domains in CC34 share spyware for Mac OS X, called
OpinionSpy, this malware when installed on Mac could leak data
and open a backdoor for further abuse.

8http://androidmalwaredump.blogspot.fi/2013/01/
androidtrojmdk-aka-androidksapp.html

http://androidmalwaredump.blogspot.fi/2013/01/androidtrojmdk-aka-androidksapp.html
http://androidmalwaredump.blogspot.fi/2013/01/androidtrojmdk-aka-androidksapp.html
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Table 6: Statistics on top 5 PLDs based on named properties in each subtable for: total files number (T FP LD in Eq. 4),
malware files number (m), PageRank (PR), Alexa rank (Alexa) and relative maliciousness score (r̄).

PLD TFPLD m PR Alexa r̄
PageRank

updatestar.com 4 3 1 8299 0.049
facebook.com 3 0 2 3 0.000
google.com 655 85 3 1 0.004
googleapis.com 127 5 4 1479 0.001
blogspot.com 1 0 5 59 0.000

Alexa rank
google.com 655 85 3 1 0.004
youtube.com 2 7 8 2 0.000
facebook.com 3 0 2 3 0.000
baidu.com 103 23 21 4 0.015
yahoo.com 10 0 17 6 0.000

r̄
lao9123.com 2 2 > 100K > 1M 0.910
188336.com 1 1 53, 194 > 1M 0.895
chuangfa.cn 1 1 > 100K > 1M 0.891
starpoint.net 1 1 > 100K > 1M 0.859
tactearnhome.com 1 1 36 824 > 1M 0.852

PLD TFPLD m PR Alexa r̄
total files

youku.com 394 083 0 52 174 0.000
thelib.ru 874 08 4 40 790 90 811 0.000
royallib.com 68 328 3 82 265 9 185 0.000
xunzai.com 58 681 58 224 9 794 152 137 0.282
maven.org 49 635 33 985 24 344 0.000

unique files
thelib.ru 874 08 4 40 790 90 811 0.000
royallib.com 68 328 3 82 265 9 185 0.000
maven.org 49 635 33 985 24 344 0.000
java2s.com 25 421 2 13 158 5 816 0.000
3gpp.org 15 732 2 1 558 45 216 0.000

malware files
xunzai.com 58 681 58 224 9 794 152 137 0.282
crsky.com 20 912 7 107 1 151 7 835 0.121
3234.com 9 269 2 818 3 248 107 641 0.116
05sun.com 3 983 3 949 8 736 58 694 0.546
cncrk.com 2 850 2 818 9 192 13 751 0.652
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Figure 5: Connected components (CC) in the domain malware co-occurrence network. Nodes in each CC share the same
malware files. Node size is scaled with degree. In the legend, the CCs are in the decreasing order of size; up to the CC8, we use color
code of the community; after that, only the CCIDs are labeled on the graph. After CC20, we show only a few smaller components
that the analysis revealed as interesting.
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Table 7: Feature sets used in the classification experiments

Name Features
Centrality Authority, hubs, PageRank
Domain Total files, unique files, num. pages,

file distribution entropy, name entropy
Graph Total degree, in degree, out degree, tri-

angle count
Alexa
Rank

Alexa rank, PLD in Alexa rank@1M
(binary)

All All the features

7 Predictive Power

Analyzing the set of all PLDs with an antivirus in the search for
malware is computationally expensive. To reduce the number of
PLDs to be analyzed, we estimate the probability of a PLD to
contain malware based on its characteristics. This can be done
by defining the task as a binary classification problem. The bi-
nary label represents if a PLD contains malware or not. In this
section, we present our results on predicting malware by describ-
ing how we label the domains, what is the evaluation metric, the
different types of features used as input to the model and their
performance.

The binary label for classification is defined as described in
Section 3.6. If a PLD has at least one file with a malicious score
greater than zero, we mark it as a positive instance. Based on
this rule, the dataset contains 5% of PLDs labeled as malicious.
We measure the performance of the models by measuring the
Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) function.

As part of our experiments, we tried different sets of fea-
tures, pre-processing steps (i.e., handling class imbalance and
normalization) and classification algorithms. The different sets
of features are presented in Table 7. To alleviate the class im-
balance, we experiment with oversampling using SMOTE and
random majority undersampling with replacement. In our pre-
dictions results, we present the performance of Gradient Boost-
ing Trees. Other models (i.e., SVM, Logistic Regression) had
lower performance.

Following the ideas of (Castillo et al., 2007), we added stacked
learning. The intuition behind stacked learning is that malicious
PLDs are connected. Stacked learning has three steps. In the
first step, we run the prediction model on the training set. In
the second step, we calculate the average probability of each of
the PLD neighbors. In the third step, we include the neighbors
average probability as a new feature to the model and run the
prediction model. Stacked learning does not leak information
since everything is computed in the training dataset.

The data split consist of three parts. The training set con-
tains 70% the positive labels, the testing set contains 30% the
positive labels. A validation set is created using 30% of the
training set to fine tune the parameters of the Gradient Boost-
ing Trees.

In the data pre-processing step we used imbalanced-learn
(Lemaître et al., 2017). For the classification models, we used

Turi’s GraphLab Create9. We also used GraphLab built-in func-
tions for parameter tuning. The results of the experiments are
presented in Table 8. For the best model (i.e., All + Stacked
Learning), the feature importance of the model is presented in
Table 9. By itself, the performance of our best model is modest.
However, it can support a part of the detection process by re-
ducing the suspicious PLD set without needing to parse HTML
to extract content features (e.g., bag of words).

8 Summary of results

Building upon the discussion of Sections 5, 6 and 7, we answer
the research questions we set in the introduction.

8.1 RQ1: Which theoretical distributions provide best fit for
empirical distributions of local and network PLD fea-
tures?

Observation 1: The number of pages, the number of unique
files, indegree, outdegree and PageRank distributions are best
explained by exponentially bounded power law (truncated power
law) . While most of the earlier studies discussed and assessed a
fit of, in particular, degree distributions to a power law, we find
that in our Web crawl, a majority of the data points is better
explained by exponentially bounded power law.

8.2 RQ2: How are the characteristics and network proper-
ties different between clean and malicious PLDs?

Observation 2: In the case of all distributions following trun-
cated power law, the exponent αm of the malicious class is lower
compared to the exponent αc of the clean class . Moreover, for in-
degree, outdegree and the number of unique files, while αc > 2,
at the same time αm < 2, indicating a qualitatively different
power law distribution.

Observation 3: Maliciousness vs. centrality. The most ma-
licious PLDs (i.e., those likely maintained by the attackers) do
not have high values for network centrality nor local character-
istics. However, attackers do manage to spread their malicious
files to some of the most important and central regular PLDs.

8.3 RQ3: What is the predictive power of PLD features?

Observation 4: Features Importance. By experimenting with
different sets of features we obtaine their individual classification
performance. Domain features (i.e., total files, unique files, num.
pages, file distribution entropy, name entropy) are the best set of
individual features, followed by graph features (i.e., total degree,
in degree, out degree, triangle count), Alexa rank features (i.e.,
Alexa rank, PLD in Alexa rank@1M (binary)) and centrality
features (i.e., authority, hubs, PageRank).

When all the features are combined, the features importance
is in the following order: name entropy, PageRank, neighbors
probability (i.e., stacked learning), indegree, Alexa rank, out-
degree, triangle count, file distribution entropy, total files, total
degree, unique files, authority, num. pages and hubs.

9https://turi.com/

https://turi.com/
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Features Preprocessing AUC TP TN FP FN F1 Score FNR FPR TNR TPR
All + Stacked Learning No preprocessing 0.78 2 304 54 657 14 751 1 318 0.22 0.36 0.21 0.79 0.64
All No preprocessing 0.76 2 178 55 324 14 084 1 444 0.22 0.40 0.20 0.80 0.60
Domain No preprocessing 0.74 2 178 54 694 14 714 1 444 0.21 0.40 0.21 0.79 0.60
Graph No preprocessing 0.65 1 966 46 099 23 309 1 656 0.14 0.46 0.34 0.66 0.54
Alexa Rank Undersampling* 0.61 1 514 52 697 16 711 2 108 0.14 0.58 0.24 0.76 0.42
Centrality Undersampling 0.60 1 462 51 966 17 442 2 160 0.13 0.60 0.25 0.75 0.40

Table 8: The best experiments for the feature set. For Alexa Rank an additional step of normalization was included.

Feature Count
Name entropy 83
PageRank 71
Neighbors Probability (Stacked Learning) 69
Indegree 47
Alexa rank 43
Outdegree 41
Triangle count 38
File distribution entropy 34
Total files 30
Total degree 29
Unique files 22
Authority 21
Num. pages 12
Hubs 8
In Alex Rank (binary) 0

Table 9: The feature’s importance for the best model (i.e., All +
Stacked Learning). The column count is the sum of occurrence of
the feature as a branching node in all trees.

Observation 5: Model Performance. The best model in
our experiment was Gradient Boosting Trees using all the fea-
tures (i.e., centrality, domain, graph, Alexa rank) and a stacked
learning step. The model achieved an AUC of .78. This model
could be used as part of the detection process to reduce the num-
ber of suspicious PLD set to be fully analyzed by an antivirus.
However, the model could not classify all of the PLDs with these
features. A possible way to increase the prediction power is to
include content (i.e., parsing the HTML) and adapting the crawl-
ing process (Invernizzi and Comparetti, 2012).

9 Discussion and conclusion

We presented results of data science application to a large Web
crawl. Our results are a Web science contribution that increases
the understanding on how different Web features are distributed
– we find that most of them are well explained by exponentially
bounded power law. The size of the crawl and crawling policies
might affect the observed distributions. Our data is smaller in
size (around 6.5 times) compared to those analyzed by Meusel
et al. (2015). Also the crawling limitation of 1 000 hyperlinks
from a website is particularly visible in the outdegree distribu-
tion. However, we still think that our insights in the crawl of

this size are relevant for other researchers who might deal with
datasets of similar size and possible limitations. Finally, power
law degree distributions are shown to be a result of preferen-
tial attachment process during the graph growth (Barabási and
Albert, 1999), while power law degree distribution with an expo-
nential cutoff results from competition-induced preferential at-
tachment (Berger et al., 2005). As discussed by D’souza et al.
(2007) competition-induced preferential attachment better ex-
plains several real world degree distributions, including the In-
ternet at the AS-level. Our results add Web degree distributions
to that group.

We also show the difference in the exponents of the dis-
tributions pertaining to malicious versus clean websites, where
malicious power law exponent is always lower. This result is a
contribution to Web security as such knowledge can support the
design of domain reputation classifiers and antivirus engines. In
particular, we show such that even such content-agnostic fea-
tures have discriminating power as features for machine learning
prediction by achieving a relatively high AUC of 0.78. As fu-
ture work, we plan to use temporal Web datasets in order to
describe evolution of malicious activities and consequently offer
more advanced recommendations for improving cyber security
methods on the Web. Another line of future work is to add con-
tent features and apply targeted crawling to improve the malware
classification performance.

9.1 Limitations

Even if several Web distributions are shown to follow a power
law, Web may not be scalefree in the sense that a sample crawl
is representative of the true Web degree distribution (O’Hara
et al., 2013). We acknowledge that the crawl used in our study
is limiting in that sense. In particular, crawling and sampling
procedures induce biases (Achlioptas et al., 2009), and we have
not attempted to correct for those. Another crawling process
limitation is that cloaking (Wang et al., 2011) was not consid-
ered and that might limit our visibility to the malware files and
websites. When it comes to the definition of what constitutes
maliciousness of files and websites, we faced couple of additional
trade-offs that should be pointed out. First is that only binary
files of certain format and smaller size than a given threshold are
downloaded. Hence, potential malware threats of other file type
and size are not included in our definition. As discussed in the
text, we applied the most strict definition for PLD maliciousness,
which under the availability of a larger malware dataset should
be tested in relaxed forms.
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