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Abstract—In this paper we analyze synchronization in net-
works of identical and nearly identical Chua’s oscillators. Using
time-domain simulations and the Master Stability Function
(MSF) approach in time and frequency domain, we show that
losses can lower down the coupling bounds for which a given
network of oscillators synchronizes. We also show that by using
the extended MSF losses reduce the synchronization error when
the oscillators are nearly identical, i.e. there is a bounded
mismatch of the parameters of the oscillators.

I. INTRODUCTION

Synchronization is exibited in many real systems and it has
been an active research topic in the study of chaotic oscillators
[1], [2]. A part of the research community has focused on
synchronization in complex networks [3], [4], with a principal
goal to determine the conditions under which the oscillators in
the network synchronize or alter a given network to enhance
its synchronizability [5]. Although, it is usually assumed that
the constituent oscillators are ideal, in reality there are dis-
crepancies between the parameters in the different oscillators
[6], [7]. Hence, the Master Stability Function (MSF) approach
proposed in [8] and widely used for networks of identical
oscillators has been extended to nearly-identical oscillators,
i.e. there is some bounded parameter mismatch, in [9], [10]
and [11]. In another work [12] the authors experimentaly
analyze synchronization in real networks of nearly-identical
Chua circuits and confirm the theoretical findings of [11].

In this paper we further study the synchronization properties
of coupled Chua’s oscillators and show that the presence of
a resistance R0 (see Fig. 1), not considered in [12], can
greatly reduce the boundary coupling strength from which
synchronization is possible. Moreover, this resistance reduces
the synchronization error in presence of parameter mismatch in
networks of Chua’s oscillators. As it is in reality, we consider
that R0 is present due to the loss of the inductor L in the
Chua’s oscillator. However, this resistance could come from
an additional resistor added in series with the inductor.

The paper is organized as follows. In Section II, we recall
the equations for the Chua’s oscillator and the MSF approach
for networks of Chua’s oscillators. In Section III we analyze
the stability of coupled identical Chua’s oscillators in time
and frequency domain, whereas in Section IV we analyze
the synchronization error in time domain when the Chua’s
oscillators are nearly-identical. Some conclusions are drawn
at the end of the paper.

Figure 1. Chua’s oscillator.

II. PRELIMINARIES ON CHUA’S OSCILLATOR AND MSF

The dimensionless state equations of the Chua’s oscillator
[13] shown on Fig. 1 are:

ẋ = α[y − x− h(x)]

ẏ = x− y + z

ż = −βy − γz

(1)

where

h(x) = mbx+ 0.5(ma −mb)(|x+ 1| − |x− 1|), (2)

x,y and z are the state variables and α = C2/C1, β =
C2R

2/L, γ = C2RR0/L, ma = RGa and mb = RGb are
the parameters. We consider R0 as a resistance due to the loss
of the inductor, therefore, R0 is always positive and its value
depends on the quality factor Q of the inductor. Q is defined
as Q = w0L/R0, where w0 is the internal frequency of the
oscillator. In our simulations w0 = 18.48 kHz and we consider
R0 = 8.32Ω (Q = 40) and R0 = 4.75Ω (Q = 70), which are
in the same range as the values given in [14]. Initially we
analyze a network of N identical and symmetrically coupled
Chua’s oscillators represented with the following equations

ẋi = F (xi)− g
N∑
j=1

LijH(xj), (3)

where F (·) is the dynamics of an isolated unit, g > 0 is a
coupling constant, L is the network’s Laplacian matrix, and
H(·) is a coupling function.



In [8] and [5] the authors gave a significant contribution for
examination of the (local) stability of the synchronous states
(x1 = x2 = . . . = xN = x̄), using the eigenvalues of the
network’s Laplacian matrix. The stability is determined by
the variational equations and the motion on the synchronous
manifold

˙̄x = F (x̄). (4)

The system is diagonalized in N blocks of a form given by
Eq. (5), where y is a perturbation mode from the synchronized
state; DF (x̄) and DH(x̄) denote the Jacobian matrices of F
and H respectively, evaluated at x̄; σ = gλi, i = 1, . . . , N are
the coupling eigenvalues; λ1 = 0 < λ2 ≤ ... ≤ λN are the
eigenvalues of L, which are all real because L is symmetric.

ẏ = [DF (x̄)− σDH(x̄)]y (5)

Having this, the master stability function (MSF) Λ(σ) is
defined as the maximum Lyapunov exponent of the system
given by Eq. (4) and Eq. (5) as a function of σ [8]. The
MSF indicates the stability of the synchronized state, which
is unstable if Λ(gλi) > 0, for any i ∈ {2, . . . , N}.

III. STABILITY ANALYSES OF NETWORK OF CHUA’S
OSCILLATORS

Using the framework from Section II we show how the
MSF changes as a function of the coupling strength in two
different dynamical behaviors of the Chua’s oscillator and
different values of R0. We focus on the following cases:

• Case 1: periodic Limit Cycle (LC) behavior with parame-
ters α = 10.2, β = 22.22, ma = −1.512, mb = −0.818,
γ = 0 (i.e. the inductor is ideal and R0 = 0Ω);

• Case 2: chaotic Double Scroll (DS) behavior with param-
eters α = 10.2, β = 17.98, ma = −1.36, mb = −0.73,
γ = 0 (R0 = 0Ω).

In addition, for both cases we consider resistances R0 = 4.75Ω
(γ = 0.0599) and R0 = 8.32Ω (γ = 0.1049).

A. Time domain stability analyses

From Fig. 2 (obtained from Eq. (4) and Eq. (5) in time
domain) one can see that in Case 1 the presence of R0 reduces
the coupling strength needed to synchronize the network, i.e.
when R0 = 0Ω, σ in the network should be approximately
larger than 7.2, whereas when R0 = 8.32Ω, σ should be larger
than 4.4 or in the interval (0, 0.16] (see upper right corner
of Fig. 2). However, when σ ∈ (0, 0.16] and R0 = 8.32Ω,
the oscillators are weakly synchronized. In addition, when
R0 = 8.32Ω and there is synchronization, there is a dumping
factor, i.e. the values of the current and the voltages tend to an
equilibrium point, as can be seen from the time evolution of
the coupled state variables (see Fig. 3). When R0 = 4.75Ω or
lower there is no dumping factor of the signals in the oscillator
from which we can conclude that R0 = 4.75Ω is a critical
value of the resistance for appearance of a dumping factor.
When R0 = 4.75Ω, σ should be approximately bigger than
5 and there is no synchronization for very small couplings as
with R0 = 8.32Ω. From Fig. 4 one can see that in Case 2,
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Figure 2. MSF for Case 1 for different coupling eigenvalues and different
values for R0.
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Figure 3. Time evolution of the coupled state variables xi, i = 1, 2, 3, 4 for
Case 1 when R0 = 8.32Ω.

in presence of R0, the network can synchronize for smaller
values of σ, i.e. when R0 = 0Ω, σ should be approximately
larger than 6.2, whereas when R0 = 8.32Ω, σ should be
approximately larger than 4.8. In addition, when R0 = 4.75Ω,
σ should be approximately larger than 5.2. With Fig. 2 and
Fig. 4 we show that R0 reduces the coupling boundary at
which the synchronization in the network can happen. For
instance, in Case 1 when R0 = 8.32Ω the boundary is reduced
by approximately 40% and in Case 2 by 23%. However,
in Case 1 this value of R0 introduces a dumping factor,
but it also introduces another range (0, 0.16] in which weak
synchronization is possible. Instead, when R0 = 4.75Ω in
Case 1 the boundary is approximately reduced by 31.5%,
while in Case 2 by 16%.

B. Frequency domain stability analyses

As a confirmation of the results from Subsection III-A
here we show the results for Case 1 when using the MSF
approach in the frequency domain [15], [16]. This approach,
as presented in [15], determines the MSF Λ(σ) for σ in
[σ∗, σ

∗] on a limit cycle in four steps: (1) for a given oscillator
ẋ = f(x) finds a good approximation of the regarded limit
cycle XF ; (2) solves (ΓDBMΓ−1

D − ωΩM )UF = µdU for
σ in [σ∗, σ

∗] with BM built using B given by Df + σH
evaluated on XF , thus obtaining D·M eigenvalues; (3) selects
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the D eigenvalues with smallest imaginary part µ1, ..., µD;
(4) Λ(σ) = max{ℜ(µ1), ...,ℜ(µD)}, where ΓD is a block-
diagonal matrix consisted of D copies of Γ (matrix used to link
the Fourier coefficients and the time samples), BM is a matrix
created by expanding the elements of B in a diagonal block
of time samples B(t1), ...B(tM ), and ΩM is a block diagonal
matrix consisted of D copies of Ω, B(t) is the Jacobian matrix
of the vector field f on a limit cycle solution, Df is the
Jacobian of f , µd and U are the solution of the corresponding
eigenvalue problem.

Using this method we can derive the same conclusion as
in Subsection III-A, i.e. when R0 = 8.32Ω and R0 = 4.75Ω
the network of oscillators synchronize for approximately the
same range (compare Fig. 2 and Fig. 5).
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Figure 6. Time domain simulations of the synchronization error for the
network of 4 Chua’s oscillator (Case 1) for different coupling eigenvalues
and different values for R0.

C. Critical discussion

The time domain simulations for a network of four fully
connected Chua’s oscillators justify our conclusion that the
resistance R0 is of great importance for the coupling strength
needed to get full synchronization. From Fig. 6 (upper right
corner) we can conclude that for Case 1 when R0 = 8.32Ω
and for low coupling eigenvalue (i.e. σ ≤ 0.16) the synchro-
nization error of the network is around 10−5, which means
that the network weakly synchronizes, while this is not the
case when R0 is close to 0. In addition, for R0 = 8.32Ω the
network synchronizes when σ ≥ 4.8, whereas when R0 = 0Ω
the coupling eigenvalue should be larger than 7.7. On the other
side, for R0 = 4.75Ω there is no synchronization for small
σ, however, the networks synchronize for σ larger than 5.2.
In Case 2 the right boundary coupling eigenvalue (σ) was
approximately reduced by 20% for R0 = 8.32Ω.

As a remark, the results in this section are obtained using
coupling just on the variable x, i.e. h(w) = [x, 0, 0]′, when
we have coupling on all variables, i.e. h(w) = [x, y, z]′ the
results (not shown) with R0 and without R0 do not differ too
much, i.e. the difference between the coupling strength needed
for synchronization is much smaller.

IV. ANALYSES OF THE SYNCHRONIZATION ERROR OF
NEARLY IDENTICAL COUPLED CHUA’S OSCILLATORS

The MSF can be used for stability analysis only when
the parameters in the system are ideal, however, in reality,
oscillators with exactly the same parameters are impossible
and usually the elements in the oscillator have some nominal
tolerance lower than 5%.

In [11] authors give definition of the extended master
stability equation for coupled nearly-identical systems:

ẏ = [DwF (x̄)− σ ·DH(x̄)]y +DµF (x̄) · ψ (6)

where they introduced another parameter ψ ∈ Rp. After
determing the stability of Eq. (6) depending on σ and ψ, the
i-th eigenmode stability is found by assigning σ = gλi and



ψ = U · δµ, where δµ is the parameter mismatch vector and
the columns of the matrix U are the left eigenvectors of L. The
asymptotic value of the y’s norm is assigned to be an extended
master stability function Ω(σ, ψ) (eMSF), as the homogeneous
part of the solution is asymptotically stable for σ (see Eq. (5)).
For networks with symmetrical coupling, Ω(σ, ψ) provides
estimation of the square-sum synchronization error:

N∑
i=1

||ηi(t)||2
t→∞−−−→

N∑
i=2

Ω(σi, ψi)
2 (7)

where || · || indicates an Euclidean norm.
A validation of this eMSF approach was given in [12],

where the authors using numerical simulations and experi-
ments confirm that the eMSF gives an accurate estimate of
the boundary coupling which guaranties synchronization in
network of non-identical Chua circuits.

Using the nominal tolerance of 1% for the resistors (R1,
R0), 5% for the conductors (C1, C2) and the inductance L, we
have calculated the worst case value of the nominal tolerance
for the dimensionless parameters. Thus, when changing the
parameter mismatch ψ from 0 to 0.1 (i.e. from 0% to 10%),
actually we are changing α from 0% to 10%, β and γ from
0% to 12%, and ma and ma from 0% to 1%.

In the following, we investigate the effect that the resistance
R0 has on the synchronization error when the oscillators are
nearly identical. We have calculated that the resistance R0

introduces significant error reduction. Moreover, the error is
reduced as the coupling strength grows for both Case 1 and 2
(results are not shown).

On Fig. 7 the synchronization error as predicted by Eq. (7) is
compared to the actual error for Case 1. The synchronization
error grows as the parameter mismatch rises and the actual
error is well predicted by Eq. (7) for mismatch of up to Ψ =
0.05. For higher values of R0, the error is lower.

Similar results were obtained for Case 2. However, in this
case the reduction of the error was lower and the actual error
was well predicted for mismatch of up to Ψ = 0.15.

V. CONCLUSION

In this paper we have analyzed the synchronization in
networks of coupled identical and nearly identical Chua’s
oscillators. We have shown that the presence of R0 reduces
the value of the coupling strength needed for synchroniza-
tion and it also creates small range of small couplings for
which weak synchronization is possible. Furthermore, using
the extended Master Stability Function, we have shown that
this resistance lowers down the error of synchronization when
the oscillators are nearly identical, particularly for limit cycle
behavior. Comparing the results of the eMSF approximation
of the synchronization error with the actual synchronization
error, it can be noticed that the eMSF approach is a good
approximation when the parameter mismatch is not bigger than
5% of the nominal values, which means that in reality it gives
a good approximation of the synchronization error.

As a final remark, large values of R0 can introduce a
dumping factor on the current and the voltages in the Chua’s
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Figure 7. Comparison of the synchronization error predicted by eMSF with
the actual error for a network of 4 Chua’s oscillators (Case 1) for 3 different
values of R0.

oscillator and we have found a threshold value of R0 for which
this factor is not present.
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