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Abstract. The growth in multicore CPUs and the emergence of powerful
manycore GPUs has led to proliferation of parallel applications. Many
applications are not straight forward to be parallelized. This paper examines the
performance of a parallelized implementation for calculating measurements of
Complex Networks. We present an algon for calculating complex networks
topological feature clustering coefficterand conducted an execution of the
serial, parallel and parall GPU implementations. Aash-table based structure
was used for encoding the complex netdsodata, which is different than the
standard representation, and also dppe the parallel GP implementations.

Our results demonstrate that the parallelization of the sequential
implementations on a multicore CPU, using OpenMP produces a significant
speedup. Using OpenCL on a GPU produces even larger speedup depending of
the volume of data being processed.

Keywords: Complex Networks, ParallelCPU, GPU, speedup, OpenMP,
OpenCL.

1 Introduction

Traditionally, the majority of the cuwent software is written as sequential
programs. As new generations of processors are coming, historically is expected the
same sequential programs to run much faster. These expectations have slowed down
since 2003 onwards, due to energy consumption, limited increase of clock frequencies
and level of productive activities that cangmrformed in each clock period within a
single CPU [1], therefore almost all migrocessor manufactures have switched to
multicore processors. Today a sequential program will not run much faster on a new
generation processor, because it will be using only one core from the multicore
processor.

In order to keep the software expectations of performance improvements with each
new generation of microprocessors, the software applications have to turn to parallel
programming.

The GPUs since their emergence as pernphunits have become probably the
most powerful computational processor for the cost at which are being sold. Their
architecture is making them much more superior than the CPUs regarding the
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execution throughput. Muchof the CPU resources are dedicated for non-
computational tasks like branch prediction and caching and their focus is more into
maintaining the execution speed of sequential programs, while increasing the cores in
the meanwhile. This architectlrdifference allows the GPUs to have much bigger
growth than the CPUs.

A recent survey on graphic hardware computation performance [2] gives an
overview of the execution throughput of GPUs in comparison to CPUs. The overview
states that the GPUs have a huge advantage over the CPUs, which is a very justifiable
reason for the software developers to move their applications on GPUs.

A science discipline of our interest is the area of Complex Networks. Complex
Networks by their nature are an interdiitiary area of graph theory and natural and
social sciences. One of the main featurregarding complex networks is the
computationally intense calculations of their measurements, which require lots of
resources. This is why we decided to hantbe power of the GPUs in this science
discipline.

The model of complex networks permeates our everyday life, due to its simplicity
(a certain number of nodes representing individual sites and edges representing
connections) and its ability to grasp the essence of many different systems.
Commonly cited examples include socialetworks, technological networks,
information networks, biological networks, communication networks, neural
networks, ecological networks and other natural and man-made networks. Abundant
study of their topology and models is presented in [3] [4] [5].

Each complex network has specific topatad) features, which characterize its
connectivity and highly influence the dynamics of processes executed on the network.
The analysis of complex networks, themef relies on the use of measurements
capable of expressing the most relevamibtogical features. However, in order to
find the topological features of a giveeal complex networks the researchers are
using programs and packages, such as Pajelk@et [7], matlab_bgl [8] etc. From
our own experience the code for these meamants it is not so complex, but as the
real networks become more and morenpbicated (enormous number of nodes and
edges) we often encountered memory or computation related problems. More
specifically, the simulations could not be done (or some tricks had to be used) because
of memory constraints and sometimes the simulations took too much time. Thus, in
this work we address and overcome th@se problems, by representing the network
via hash-table based structure insteadraditional adjacency matrices (see Section
3), and we speed up the simulations via parallel programming algorithms for CPU
and GPU execution in OpenCL (see Section 4). The main contribution of this work is
to make possible or easier to analyzgydascale networks mapped over real world
examples, by harvesting the tremeuslpower of the GPU performance.

At the end of this paper, a comparisontloé results is presented. The results are
obtained by running the sequential, OpenMP and OpenCL implementations of the
calculation of the clustering coefficient. Conclusions about the maximum
accelerations are specified, according te tbarallelization of portions of the
sequential code.
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2 Related work

Pawan Harish and P. J. Narayanan presented fast implementations of a few
fundamental graph algorithmi®r large graphs on the GPU hardware [9]. Their
implementations present fast solutionsBHS (breadth-first search), SSSP (single-
source shortest path), and APSP (all-pairs shortest path) on large graphs at high
speeds using a GPU instead of expensive supercomputers.

Joerkki Hyvoenen, Jari Saramaeki andnifio Kaski presented an article about a
cache efficient data structure, a varianadinear probing hash table, for representing
edge sets of large sparse complex networks [10]. Their performance benchmarks
show that the data structure is superior to its commonly used counterparts in
programming applications.

Eigenvalues are a very important feature of Complex Networks. NVIDIA CUDA
1.1 SDK contains a parallel implementation of a bisection algorithm for the
computation of all eigenvalues of a traditibegmmetric matrix ofrbitrary size with
CUDA that is optimized for NVIDIA’s GPUs [11). Volkov and J. W. Demmel in [12]
have improved the algorithm from the CUDA SDK.

Another useful feature is finding the shortest path between nodes. Gary J. Katz
and Joseph T. Kider Jr in [13] describe a GPU implementation that solves shortest-
path problems on directed graphs for large data sets.

3 Complex Networks

There are many relevant measurements that describe the complex networks like:
measurements related with distance; clustering; degree distribution and correlation;
entropy; centrality measurements; spectral measurements; and many others. These
measures are important to capture topological properties of real complex
networks, which will further give insights of the robustness, efficiency, vulnerability,
synchronization, virus propagation, eféor this paper the clustering coefficient
measure is chosen, because it is a property that is quite computationally intense and is
also similar to other measures.

Clustering represents a local feature dogiven node which is a measurement of
how much its neighbours are grouped. The effect of clustering is measured by the
clustering coefficient C which represents the mean value of the probability that two
neighbouring nodes of a given node are also neighbours between each other. The
equations for obtaining the clustering coeffici€ht for a given nodej and the
clustering of the network C> are the following:
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In the equation (1) stands for the number of links between the neighbours of the
nodei, k is number of neighbor nodes of the nadandN is the total number of
nodes in the network.

4 Implementation

Real complex networks are typically vesparse and large structures. Mainly, in
the literature the complex networks are esgnted mathematically with an adjacency
matrix A. The elements;; are equal to 1 if the nodésindj are neighbours, or 0 if
they are not, involves a lot of redundancy in the adjacency matrix. Having in mind the
memory capacity that iseeded for encoding the complex networks, the adjacency
matrix is difficult or cannot be directly used as data structure.

From a hardware perspective, the problem lies in the latency of the memory chip.
By the time the data from the main memory arrives to the processor registers, several
hundreds of clock cycles would have been finished. The modern processors solve this
problem in 2 ways. As mentioned inethntroduction, the CPUs introduce cache
memory between them and the main memory. The cache memory, which is quite
faster [14] and more expensive thee tmain memory, keeps the recently accessed
data. Another way to reduce the main memory latency is to increase the bandwidth by
using per-fetching where adjacent ldoas are loaded simultaneously, which
increases the cache hits.

As mentioned in the introduction, the GPUs advantage over the CPUs is the
execution throughput, which hides the main memory latency, but only by ensuring
that the processor is always busy with computations, while other computations are
waiting on memory access. This latency hidiis useful when encountered with
larger complex network load data, which results with higher number of calculation.
For smaller complex network load data, the calculations number is lower, which
makes the GPU’'s execution throughput not useful because just the time spent for
transferring the data from host memonythie processor registers of the GPU is quite
big compared to the time for execution on the CPU.

Nevertheless, for large complex networks, the cache does not improve the latency
much. The data cannot be stored intonrmogy such that the adjacent memory
elements are neighbouring nodeghe networks and the cache misses being bound to
happen. Introducing an efficient data structure based on hash-tables [10] for encoding
the complex network data is a way to solve the problem in larger networks.
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Fig. 1. Representation of a complex network gsinhash-table based data structure.

As it can be seen from Figure 1, the detaepresented by a hash-table based
structure, where the index of each row esgnts the index of the appropriate ngde
and N stands for the number of nodes analx links for the maximum number of
neighbours. Each row contains the neighbouring nodes of the inadeich are
marked with a grey background. The width of the rows is fixed and the value of the
width is determined by the maximum number of neighbooes (links) that a node
from the complex network can have. Rtie many cases where the number of
neighbours is less than the maximum, the rest of the data elements are filled with a
negative number, so there is a differenbetween nodes and empty data. The
reduction of the redundancy of the adjacency matrix has a big contribution towards
optimizing the parallel implementations in regards to memory bandwidth, resulting in
less data being copied from host memonythe processor register. Also, with this
structure the GPU eliminates few memaigcesses to the main memory. The penalty
for the exclusion is paid by transferring the extra padding of empty data to the shared
memory, which in the end proves to be more efficient (See 4.1).

Currently there are 3 major GPU parallel programming languages DirectCompute
[15][16], CUDA [17] and OpenCL [18]. For the GPU parallel programming OpenCL
is used. OpenCL is a standardized programming language, formed by the major
industry leaders Apple, Intel, AMD/ATI, NVIDIA, and others [19]. OpenCL is an
open standard, parallel programming language of modern processors found in PCs,
servers and embedded devices. It is very much similar to CUDA, but unlike CUDA it
is agnostic and manufactures independent. Also an open standard, the source code is
portable across implementations.

The OpenCL standard is designed to take advantage of all of the system resources
available. Unlike GPU programming languages in the pass which were just
specifically multimedia, the standard supports general purpose parallel computing. It
is based on ANSI-C99 with additional djfier, data types and build-in functions.
When working with GPUSs, the focus in OpenCL goes into data parallelisation.

4.1 Clustering Coefficient

The sequential implementation of the clustering coefficient is quite straight
forward. From equation (1), the implementation needs to find the number ofjinks



between the neighbours, and the number of all neighlbpfos each nodé form the
hash table structure. In orderdalculate the clustering coefficie@t for every node
in the complex network, few nested loops are needed. The first level loop is itérated
times, whereN is the number of nodes that the network contains. The second level
nested loop iterates the vector for each nipde order to obtain the values fé;
which is the degree of each nddé&nother second level nested loop, and a third level
nested loop inside it, are iterated in order to find the valueTls is done by
comparing if every pair of the neighboring nodes is connected. So because of the hash
table structure, the thirdJel nested loop iterates thigh other vectors according to
the values in the data elements for the neighbors of theinbld@ing the values for
E; andk;, the final calculation describe in equation (1) is performed.

Developing the parallel OpenMP implementation is based on the sequential
implementation and is performed quite eggause there are data dependencies.
All nested loops are der one OpenMP pragmaarallel for directive [20], which
defines the private, shared, and reduction properties, which can be seen in the Listing
1.

Listing 1. OpenMP implementation @lustering Coefficient

#pragma onp parallel for default(none) \
shared(max_| i nks, node_size, net _data, h_C, E, ki, \
search_i ndex, search_row size) \

private(i,j,Kk,z)

for(i = 0; i < node_size; i++){
Ei = 0;
ki = net _data[i*max_links + 0];

for(j =1; j <= ki; j++){
for(k = + 1; k < ki; k++){
search_i ndex = net_data[i*max_|inks + k] *
max_| i nks;
search_row size = net_data[search_index + 0];
for (z = 1; z < search_row size; z++)
if(net _data[i*max_links + j] ==
net data[search_i ndex + z]) Ei ++;
}
}
h_ di] = (float)(2*Ei )/ (ki*(ki-1));

For each nested loop the compiler creaeseparate team of threads only if the
nested parallelism is enables, otherwise only the outer loop is parallelized, and the
other loop are serialized. The nested parallelism is supported in OpenMP 3.0 [21] by
adding the collapse clause in the pragmaeallel for directive. For earlier versions
[22], only the outer loop is parallelized, while the other nested loops are performed by
each of the 1/p threads, where p is number of core that the CPU has. We recommend
using the early version for nested parallelism because thewv&$ may introduce
some overhead.

The parallel OpenCL implementation harvests the power of the GPU by using the
shared memory. Before executing ore t&PU, the host CPU takes care of the



compiling and building of the OpenCL kernels (Just In Time — compiler), and
initializes other OpenCL necessary objects. The complex network data, before is
loaded from the host to global memory using OpenCL input buffer, an additional
padding is introduced while allocation, @ number of nodes are a multiple of the
number of assigned workgroup size [23]. A unit of work in OpenCL is called a work-
item, which can be conceptualized as eedld, because each instance of a kernel
execution is done by a single thread. Ay of work-items form a work-group,
which is the local size, and the minimal \v&is limited to 32 because of the hardware
limitation of a warp. In our case the maximum number of local workgroup size 512
proved most efficient. The number of workitems is initialized with the number of
nodesN in the complex network, which is our global size, thiNighreads are
executed. A fragment of the kernglpresented in the Listing 2.

Listing 2. OpenCL implementation of Clustering Coefficient

for(j =1; j <= ki; j++H){

first = input[gid*max_links + j];
for(k = + 1; k <= ki; k++){
search_i ndex = input[gid*max_links + Kk]*max_links;

for (z =1, z <max_links; z += |size){
if((z + Isize)>max_links) Isize = max_links - z;
if((z +1id) < max_links)
sh_tnp[lid] = input[(search_index + z + lid)];
barri er (CLK_LOCAL_MEM FENCE) ;

for(i = 0; i < Isize; i++)
Ei += (sh_tnp[i] == first);
barri er (CLK_LOCAL_MEM FENCE) ;
}
}

}
if (gid < node_size) output[gid] = (float)(2*Ei)/
(ki*(ki-1));.

For obtaining the degrele of each node, in the kernel code, a simple parallel
reduction is performed. In order to calculate the value foa Erst level nested loop
iterates through the neighbors for each nod& second level nested loop iterates
through the rows, which are the values neighbors of the nati¢h a step iteration
Isize, wherelsize is the size of the local memory. This is done in order to take
advantage of the local memory, so when the synchronization barrier is passed, the
local memory is loaded bgll the free threads with tHaze elements. This allows for
the third level nested loop to efficienthccess the local memory and compare if the
neighbors are connected, which is mudtdathan accessing the global memory. The
number of connected neighbors is contained;jrwhich is a local integer register.
The output, which is the calculation described in equation (1) is read into main
memory using OpenCL output buffer.



5 Resaults

The esults from tke sequentiabnd parallel inplementatio are systendependent.
Therefoe, this is a ese-study todetermine hw much theperformanceof parallel
implementations usig both OpeMP and OpnCL are inproving the sequential
implementation. The implementéions were executed onthe compter which
specificdion is preseted on table 1

Table1l. System specifiations.

Devices Specs

CPU Intel(R) Core(TM) i7 CPU 920@ 2.67GHz4
cores &hread HypeiThreading Bchnolog

RAM 12GBDIMM 1333 MHz (0.8ns)64bit

GPU NVIDIA GeForceGTX 285 1GB 240 CWDA
cores@ 1476MHz

All executions weg run on Ubutu 10.04. Tle CPU implenentations were written
in C ushg standard rad OpenMPlibraries.Nvidia Graphicsdriver versim 3.1 was
used forOpenCL conpatibility.

Thereare seven aasets thatr@ generatedor each of tte three mai network
models.Each data geis generaté with different number 6 nodes andinks, thus
obtainirg different sizs of the neworks. The sies are notedssscaling faabrs 1, 2, 5,
10, 20, ® and 100. Br the scalingactor 1, 50(hodes are geerated, whih results in
an adjaency matrix ¢ 250000 elments. The dter nodes arehosen by dabling the
elementsof the adjaency matrix,so for scalig factor 2 tle adjacencymatrix has
499749 €elements, forscaling faotr 5 it has 249924 elerants, and sdorth until
scaling &ctor 100 wien the matrixhas 2500000@lements.

20 40 20
# OpenMP & OpenCL H OpenMP m OpenCL B OpenMP = OpenCL
30 —- 30 2 15
0 +—— 8 R} 20 4——m B 0 4—m— 3 &
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Fig. 2. The speedup ofx@cutions for lte clustering cefficient calalations on CR and GPU
including the transfer the of the loaddata for randm, small-wortl, and scale-Be complex
networks.

The dotained resub for each othe implemetations are smmarized a figure 2
for eachof the maincomplex netvork models:random, srall-world and scale free
model raspectively. Bch of the mplementatios is executed O times, ad average
execution times areobtainal. Looking at the esults for tle times of tke OpenCL



implementation, for all scaling factors, a conclusion can be made that for small
volumes of data, executing the implementation on a GPU is not a smart way to go.
For example in the executions for a scaling factor 1, the time spent for initializing
OpenCL objects, building of kernels anegrams, and allocating memory, is close or
sometimes even bigger to the time spent for the CPU implementations. This proves
that only by working with larger volumes of data, using the GPU is justifiable.

From figure 2, it can be seen that fiifferent complex network models with the
same number of nodes and appropriate number of links, the speedups are different. In
average we obtained speedups of x3@menMP, while for OpenCL we achieved
x20. A conclusion can be made that for the random model of complex networks, the
acceleration of calculations using the GPUWUthie greatest, whiléor the scale-free
model the accelerations are smallest. The problem why we get worse speedups for the
scale-free complex networks that the ihdigurs are concentrated around few nodes,
because they have power law degreeribigtion, while in the other complex
networks the distribution of neighbours is spread more equally. This makes us believe
that another algorithm should be chosen for more efficient calculating of clustering
coefficient for scale-free complex networks.

6 Conclusion

In this paper, we presented an implementation of an algorithm for calculation of
the clustering coefficient measure of cdexpnetworks, for the three main complex
network models. By utilizing hash-table base structure, we organized the complex
network graph, which resulted of less data copied from host memory to the GPU
processor registers. Also, because of the padding introduced of the hash-table base
structure, more efficient use of th8PU’s shared memory was achieved. We
demonstrated the power of using the GPUs, providing a further evidence of
effectiveness for accelerating complex natks calculations. The size of the GPU
memory limits the size of the graphs handled on a single GPU. However, OpenCL
provides for multiple devices to be interfaced, such that the work is distributed to each
of them, thus expanding the capacity éatculating measurement for larger complex
networks.

We have also performed comparisons with optimized implementations of CPU-
based sequential and OpenMP parallel algorithms. The obtatesderation of the
measure calculation of complex networks is another example of the tremendous
parallel power of the modern programmable GPU devices. These results of
acceleration on the GPU provide a big inter8g&eing the GPU as high performance
co-processing unit for any application eligible for data parallelization and having in
mind the low cost of the GPU hardware, camgul to the expensive CPUs of similar
calculation power, points to GPUs ageiesting area for future research and
commercial development.



References

1. David B. Kirk , Wen-mei W. Hwu, Prograning Massively Parallel Processors: A Hands-
on Approach, Published February 5, 2010

2. John D. Owens, David Luebke, Naga Govindaraju, Markigjalens Kriiger, Aaron E.
Lefohn, and Timothy J. Purcell, A Survey @fneral-Purpose Computation on Graphics
Hardware, In Eurographics 2005, State of the Art Reports, August 2005, pp. 21-51.

3. Steven H. Strogatz. Exploring completworks. Nature, 410(6825):268-276, March 2001.

4, R. Albert and A.L. Baralsa Statistical mechanics afomplex networks, Reviews of
Modern Physics, vol. 74, no. 1, pp. 47-97, Jan 2002.

5. M. E. J. Newman, The structure and functid complex networks, SIAM Review, vol. 45,
no. 2, pp. 167-256, 2003.

6. V. Batagelj, A. Mrvar: Pajek — Analysis and Visualizatain_arge Networks. In Junger,
M., Mutzel, P. (Eds.): Graph Drawing fBsare. Springer (series Mathematics and
Visualization), Berlin 2003. 77-103. ISBN 3-540-00881-0.

7. Borgatti, S.P., M.G. Evetetand L.C. Freeman, Ucinetfér Windows: Software for Social
Network Analysis, H.ATechnologies, Editor. 2002

8. D. Gleich, Matlab BGL v1.0, April 27, 2006, retrieved April 2010,
http://www.stanford.edu/dgieh/programs/matlab_bgl/.

9. Pawan Harish and B. Narayanan. Accalgting Large Graph Algorithms on the GPU Using
CUDA. In High Performance Computing (200¥Rl. 4873 of Lecture Notes in Computer
Science, Springer, pp. 197—208.

10.Joerkki Hyvoenen, Jari Saramaeki, Kimmo Kaski, Efficient data structures for sparse
network representation, International Journal of Computer Mathematics, 85 (8) : 1219-1233,
2008.

11.Lessig, C. 2007. Eigenvalue Computation wittD@&, NVIDIA CUDA SDK 1.1.

12.V. Volkov and JW. Demmel. LAPACK working note 197Jsing GPUs to accelerate the
bisection algorithm for finding eigenvalues of symmetric tridiagonal matrices. Technical
Report UCB/EECS-2007-179, EECS Department, University of California, Berkeley, 2007.

13.Gary J. Katz and Joseph Tdkr Jr. All-Pairs Shortest-Patfar Large Graphs on the GPU.
Proceedings of the 23rd ACM SIGGRAPH/BEOGRAPHICS symposium on Graphics
hardware, 2008.

14.Cantin, J. and Hill, M., Cache performarfor selected SPEC CPU2000 benchmarks, ACM
SIGARCH Computer Architecture News, 29, 13-18, 2001

15.DirectCompute Support on NVIE's CUDA Architecture GPUs,
http://developer.nvidia.com/adgt/directcomp_home.html/.

16.Nigel, Dessau, senior VP and CMO at AM about DirectCompute,
http://developer.nvidia.com/odgt/directcompt_home.html/.

17.0penCL Programming for the CUDA chitecture, Version 2.3, 8/31/2009.

18.The OpenCL Specification, Version ldacument Revision 43, 2008trieved February
2010 from http://www.khronos.org/opencl/.

19.The Khronos Group, Open Standafdr Media Authoring and Acceleration,
http://www.khronos.org/.

20.Barbara Chapman, Gabriele Jost, Ruud ®ar Pas, Using OpenMP, Portable Shared
Memory Parallel Programming, The MIPress Cambridge, Massachusetts London,
England.

21.0penMP Application Program Interface, OgéhArchitecture ReviewBoard, Version 3.0

May 2008.

22.0penMP Application Prograinterface, OpenMP Architecture Review Board, Version 2.5
May 2005.

23.NVIDIA OpenCL, Best Practices @le, Version 1.0August 10, 2009.


https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/37811236_Exploring_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/1827666_Statistical_Mechanics_Of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/1827666_Statistical_Mechanics_Of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/216636663_UCINET_for_Windows_Software_for_social_network_analysis?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/216636663_UCINET_for_Windows_Software_for_social_network_analysis?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220692729_Programming_Massively_Parallel_Processors_A_Hands-On_Approach?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220692729_Programming_Massively_Parallel_Processors_A_Hands-On_Approach?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/238729010_Eigenvalue_Computation_with_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/222411422_The_Structure_and_Function_of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/222411422_The_Structure_and_Function_of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==

