
Accelerat ing the world's research.

Accelerating Clustering Coefficient
Calculations on a GPU Using
OPENCL

Igor Mishkovski, Dimitar Trajanov

Cite this paper

Get the citation in MLA, APA, or Chicago styles

Downloaded from Academia.edu 

Related papers

Mixing mult i-core CPUs and GPUs for scient ific simulat ion software
Ken Hawick

Accelerat ing text mining workloads in a MapReduce-based dist ributed GPU environment
Sándor Darányi

Best Pract ice Guide - GPGPU
Volker Weinberg

Download a PDF Pack of the best related papers 

https://www.academia.edu/3674797/Accelerating_Clustering_Coefficient_Calculations_on_a_GPU_Using_OPENCL?auto=citations&from=cover_page
https://www.academia.edu/3674797/Accelerating_Clustering_Coefficient_Calculations_on_a_GPU_Using_OPENCL?from=cover_page
https://www.academia.edu/51158353/Mixing_multi_core_CPUs_and_GPUs_for_scientific_simulation_software?from=cover_page
https://www.academia.edu/2826818/Accelerating_text_mining_workloads_in_a_MapReduce_based_distributed_GPU_environment?from=cover_page
https://www.academia.edu/31658204/Best_Practice_Guide_GPGPU?from=cover_page
https://www.academia.edu/3674797/Accelerating_Clustering_Coefficient_Calculations_on_a_GPU_Using_OPENCL?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page

Accelerating Clustering Coefficient Calculations on a
GPU Using OPENCL

Leonid Djinevski1, Igor Mishkovski1, Dimitar Trajanov1,

1 Ss Cyril and Methodius University, Faculty of Electrical Engineering and Information
Technologies, ul. Rugjer Boshkovikj bb,

 PO Box 574, 1000 Skopje, Macedonia
{ leonid.dzinevski, igorm, mite}@feit.ukim.edu.mk

Abstract. The growth in multicore CPUs and the emergence of powerful
manycore GPUs has led to proliferation of parallel applications. Many
applications are not straight forward to be parallelized. This paper examines the
performance of a parallelized implementation for calculating measurements of
Complex Networks. We present an algorithm for calculating complex networks
topological feature clustering coefficient, and conducted an execution of the
serial, parallel and parallel GPU implementations. A hash-table based structure
was used for encoding the complex network's data, which is different than the
standard representation, and also speedups the parallel GPU implementations.
Our results demonstrate that the parallelization of the sequential
implementations on a multicore CPU, using OpenMP produces a significant
speedup. Using OpenCL on a GPU produces even larger speedup depending of
the volume of data being processed.

Keywords: Complex Networks, Parallel, CPU, GPU, speedup, OpenMP,
OpenCL.

1 Introduction

Traditionally, the majority of the current software is written as sequential
programs. As new generations of processors are coming, historically is expected the
same sequential programs to run much faster. These expectations have slowed down
since 2003 onwards, due to energy consumption, limited increase of clock frequencies
and level of productive activities that can be performed in each clock period within a
single CPU [1], therefore almost all microprocessor manufactures have switched to
multicore processors. Today a sequential program will not run much faster on a new
generation processor, because it will be using only one core from the multicore
processor.

In order to keep the software expectations of performance improvements with each
new generation of microprocessors, the software applications have to turn to parallel
programming.

The GPUs since their emergence as peripheral units have become probably the
most powerful computational processor for the cost at which are being sold. Their
architecture is making them much more superior than the CPUs regarding the

https://www.researchgate.net/publication/220692729_Programming_Massively_Parallel_Processors_A_Hands-On_Approach?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==

execution throughput. Much of the CPU resources are dedicated for non-
computational tasks like branch prediction and caching and their focus is more into
maintaining the execution speed of sequential programs, while increasing the cores in
the meanwhile. This architectural difference allows the GPUs to have much bigger
growth than the CPUs.

A recent survey on graphic hardware computation performance [2] gives an
overview of the execution throughput of GPUs in comparison to CPUs. The overview
states that the GPUs have a huge advantage over the CPUs, which is a very justifiable
reason for the software developers to move their applications on GPUs.

A science discipline of our interest is the area of Complex Networks. Complex
Networks by their nature are an interdisciplinary area of graph theory and natural and
social sciences. One of the main features regarding complex networks is the
computationally intense calculations of their measurements, which require lots of
resources. This is why we decided to harvest the power of the GPUs in this science
discipline.

The model of complex networks permeates our everyday life, due to its simplicity
(a certain number of nodes representing individual sites and edges representing
connections) and its ability to grasp the essence of many different systems.
Commonly cited examples include social networks, technological networks,
information networks, biological networks, communication networks, neural
networks, ecological networks and other natural and man-made networks. Abundant
study of their topology and models is presented in [3] [4] [5].

Each complex network has specific topological features, which characterize its
connectivity and highly influence the dynamics of processes executed on the network.
The analysis of complex networks, therefore, relies on the use of measurements
capable of expressing the most relevant topological features. However, in order to
find the topological features of a given real complex networks the researchers are
using programs and packages, such as Pajek [6], Ucinet [7], matlab_bgl [8] etc. From
our own experience the code for these measurements it is not so complex, but as the
real networks become more and more complicated (enormous number of nodes and
edges) we often encountered memory or computation related problems. More
specifically, the simulations could not be done (or some tricks had to be used) because
of memory constraints and sometimes the simulations took too much time. Thus, in
this work we address and overcome these two problems, by representing the network
via hash-table based structure instead of traditional adjacency matrices (see Section
3), and we speed up the simulations via parallel programming algorithms for CPU
and GPU execution in OpenCL (see Section 4). The main contribution of this work is
to make possible or easier to analyze large-scale networks mapped over real world
examples, by harvesting the tremendous power of the GPU performance.

At the end of this paper, a comparison of the results is presented. The results are
obtained by running the sequential, OpenMP and OpenCL implementations of the
calculation of the clustering coefficient. Conclusions about the maximum
accelerations are specified, according to the parallelization of portions of the
sequential code.

https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/37811236_Exploring_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/1827666_Statistical_Mechanics_Of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/216636663_UCINET_for_Windows_Software_for_social_network_analysis?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/222411422_The_Structure_and_Function_of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==

2 Related work

Pawan Harish and P. J. Narayanan presented fast implementations of a few
fundamental graph algorithms for large graphs on the GPU hardware [9]. Their
implementations present fast solutions of BFS (breadth-first search), SSSP (single-
source shortest path), and APSP (all-pairs shortest path) on large graphs at high
speeds using a GPU instead of expensive supercomputers.

Joerkki Hyvoenen, Jari Saramaeki and Kimmo Kaski presented an article about a
cache efficient data structure, a variant of a linear probing hash table, for representing
edge sets of large sparse complex networks [10]. Their performance benchmarks
show that the data structure is superior to its commonly used counterparts in
programming applications.

Eigenvalues are a very important feature of Complex Networks. NVIDIA CUDA
1.1 SDK contains a parallel implementation of a bisection algorithm for the
computation of all eigenvalues of a traditional symmetric matrix of arbitrary size with
CUDA that is optimized for NVIDIA’s GPUs [11]. V. Volkov and J. W. Demmel in [12]
have improved the algorithm from the CUDA SDK.

Another useful feature is finding the shortest path between nodes. Gary J. Katz
and Joseph T. Kider Jr in [13] describe a GPU implementation that solves shortest-
path problems on directed graphs for large data sets.

3 Complex Networks

There are many relevant measurements that describe the complex networks like:
measurements related with distance; clustering; degree distribution and correlation;
entropy; centrality measurements; spectral measurements; and many others. These
measures are important to capture the topological properties of real complex
networks, which will further give insights of the robustness, efficiency, vulnerability,
synchronization, virus propagation, etc. For this paper the clustering coefficient
measure is chosen, because it is a property that is quite computationally intense and is
also similar to other measures.

Clustering represents a local feature for a given node which is a measurement of
how much its neighbours are grouped. The effect of clustering is measured by the
clustering coefficient C which represents the mean value of the probability that two
neighbouring nodes of a given node are also neighbours between each other. The
equations for obtaining the clustering coefficient Ci for a given node, i and the
clustering of the network <C> are the following:

௜ܥ ൌ ଶா೔௞೔ሺ௞೔ିଵሻ . (1)

ۄܥۃ ൌ ଵே∑ ௜ே௜ୀଵܥ . (2)

https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/238729010_Eigenvalue_Computation_with_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==

In the equation (1), Ei stands for the number of links between the neighbours of the
node i, ki is number of neighbor nodes of the node i, and N is the total number of
nodes in the network.

4 Implementation

Real complex networks are typically very sparse and large structures. Mainly, in
the literature the complex networks are represented mathematically with an adjacency
matrix A. The elements aij are equal to 1 if the nodes i and j are neighbours, or 0 if
they are not, involves a lot of redundancy in the adjacency matrix. Having in mind the
memory capacity that is needed for encoding the complex networks, the adjacency
matrix is difficult or cannot be directly used as data structure.

From a hardware perspective, the problem lies in the latency of the memory chip.
By the time the data from the main memory arrives to the processor registers, several
hundreds of clock cycles would have been finished. The modern processors solve this
problem in 2 ways. As mentioned in the introduction, the CPUs introduce cache
memory between them and the main memory. The cache memory, which is quite
faster [14] and more expensive then the main memory, keeps the recently accessed
data. Another way to reduce the main memory latency is to increase the bandwidth by
using per-fetching where adjacent locations are loaded simultaneously, which
increases the cache hits.

As mentioned in the introduction, the GPUs advantage over the CPUs is the
execution throughput, which hides the main memory latency, but only by ensuring
that the processor is always busy with computations, while other computations are
waiting on memory access. This latency hiding is useful when encountered with
larger complex network load data, which results with higher number of calculation.
For smaller complex network load data, the calculations number is lower, which
makes the GPU’s execution throughput not useful because just the time spent for
transferring the data from host memory to the processor registers of the GPU is quite
big compared to the time for execution on the CPU.

Nevertheless, for large complex networks, the cache does not improve the latency
much. The data cannot be stored into memory such that the adjacent memory
elements are neighbouring nodes in the networks and the cache misses being bound to
happen. Introducing an efficient data structure based on hash-tables [10] for encoding
the complex network data is a way to solve the problem in larger networks.

https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==

Fig. 1. Representation of a complex network using a hash-table based data structure.

As it can be seen from Figure 1, the data is represented by a hash-table based
structure, where the index of each row represents the index of the appropriate node i,
and N stands for the number of nodes and max_links for the maximum number of
neighbours. Each row contains the neighbouring nodes of the node i, which are
marked with a grey background. The width of the rows is fixed and the value of the
width is determined by the maximum number of neighbours (max_links) that a node
from the complex network can have. For the many cases where the number of
neighbours is less than the maximum, the rest of the data elements are filled with a
negative number, so there is a difference between nodes and empty data. The
reduction of the redundancy of the adjacency matrix has a big contribution towards
optimizing the parallel implementations in regards to memory bandwidth, resulting in
less data being copied from host memory to the processor register. Also, with this
structure the GPU eliminates few memory accesses to the main memory. The penalty
for the exclusion is paid by transferring the extra padding of empty data to the shared
memory, which in the end proves to be more efficient (See 4.1).

Currently there are 3 major GPU parallel programming languages DirectCompute
[15][16], CUDA [17] and OpenCL [18]. For the GPU parallel programming OpenCL
is used. OpenCL is a standardized programming language, formed by the major
industry leaders Apple, Intel, AMD/ATI, NVIDIA, and others [19]. OpenCL is an
open standard, parallel programming language of modern processors found in PCs,
servers and embedded devices. It is very much similar to CUDA, but unlike CUDA it
is agnostic and manufactures independent. Also an open standard, the source code is
portable across implementations.

The OpenCL standard is designed to take advantage of all of the system resources
available. Unlike GPU programming languages in the pass which were just
specifically multimedia, the standard supports general purpose parallel computing. It
is based on ANSI-C99 with additional qualifier, data types and build-in functions.
When working with GPUs, the focus in OpenCL goes into data parallelisation.

4.1 Clustering Coefficient

The sequential implementation of the clustering coefficient is quite straight
forward. From equation (1), the implementation needs to find the number of links Ei

between the neighbours, and the number of all neighbours ki for each node i form the
hash table structure. In order to calculate the clustering coefficient Ci for every node
in the complex network, few nested loops are needed. The first level loop is iterated N
times, where N is the number of nodes that the network contains. The second level
nested loop iterates the vector for each node i, in order to obtain the values for ki,
which is the degree of each node i. Another second level nested loop, and a third level
nested loop inside it, are iterated in order to find the value Ei. This is done by
comparing if every pair of the neighboring nodes is connected. So because of the hash
table structure, the third level nested loop iterates through other vectors according to
the values in the data elements for the neighbors of the node i. Having the values for
Ei and ki, the final calculation describe in equation (1) is performed.

Developing the parallel OpenMP implementation is based on the sequential
implementation and is performed quite easy because there are no data dependencies.
All nested loops are under one OpenMP pragma parallel for directive [20], which
defines the private, shared, and reduction properties, which can be seen in the Listing
1.

Listing 1. OpenMP implementation of Clustering Coefficient

#pragma omp parallel for default(none) \
shared(max_links, node_size, net_data, h_C, Ei, ki, \
search_index, search_row_size) \
private(i,j,k,z)
for(i = 0; i < node_size; i++){
 Ei = 0;
 ki = net_data[i*max_links + 0];
 for(j = 1; j <= ki; j++){
 for(k = j + 1; k < ki; k++){
 search_index = net_data[i*max_links + k] *
 max_links;
 search_row_size = net_data[search_index + 0];
 for (z = 1; z < search_row_size; z++)
 if(net_data[i*max_links + j] ==
 net_data[search_index + z]) Ei++;
 }
 }
 h_C[i] = (float)(2*Ei)/(ki*(ki-1));
}

For each nested loop the compiler creates a separate team of threads only if the
nested parallelism is enables, otherwise only the outer loop is parallelized, and the
other loop are serialized. The nested parallelism is supported in OpenMP 3.0 [21] by
adding the collapse clause in the pragma parallel for directive. For earlier versions
[22], only the outer loop is parallelized, while the other nested loops are performed by
each of the 1/p threads, where p is number of core that the CPU has. We recommend
using the early version for nested parallelism because the version 3.0 may introduce
some overhead.

The parallel OpenCL implementation harvests the power of the GPU by using the
shared memory. Before executing on the GPU, the host CPU takes care of the

compiling and building of the OpenCL kernels (Just In Time – compiler), and
initializes other OpenCL necessary objects. The complex network data, before is
loaded from the host to global memory using OpenCL input buffer, an additional
padding is introduced while allocation, so the number of nodes are a multiple of the
number of assigned workgroup size [23]. A unit of work in OpenCL is called a work-
item, which can be conceptualized as a thread, because each instance of a kernel
execution is done by a single thread. A group of work-items form a work-group,
which is the local size, and the minimal value is limited to 32 because of the hardware
limitation of a warp. In our case the maximum number of local workgroup size 512
proved most efficient. The number of workitems is initialized with the number of
nodes N in the complex network, which is our global size, thus N threads are
executed. A fragment of the kernel is presented in the Listing 2.

Listing 2. OpenCL implementation of Clustering Coefficient

for(j = 1; j <= ki; j++){
 first = input[gid*max_links + j];
 for(k = j + 1; k <= ki; k++){
 search_index = input[gid*max_links + k]*max_links;
 for (z = 1; z < max_links; z += lsize){
 if((z + lsize)>max_links) lsize = max_links - z;
 if((z + lid) < max_links)
 sh_tmp[lid] = input[(search_index + z + lid)];
 barrier(CLK_LOCAL_MEM_FENCE);

 for(i = 0; i < lsize; i++)
 Ei += (sh_tmp[i] == first);
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 }
}
if (gid < node_size) output[gid] = (float)(2*Ei)/
 (ki*(ki-1));.

For obtaining the degree ki of each node, in the kernel code, a simple parallel
reduction is performed. In order to calculate the value for Ei, a first level nested loop
iterates through the neighbors for each node i. A second level nested loop iterates
through the rows, which are the values neighbors of the node i, with a step iteration
lsize, where lsize is the size of the local memory. This is done in order to take
advantage of the local memory, so when the synchronization barrier is passed, the
local memory is loaded by all the free threads with the lsize elements. This allows for
the third level nested loop to efficiently access the local memory and compare if the
neighbors are connected, which is much faster than accessing the global memory. The
number of connected neighbors is contained in Ei, which is a local integer register.
The output, which is the calculation described in equation (1) is read into main
memory using OpenCL output buffer.

5 Resu

The re
Therefore
implemen
implemen
specificat

Table 1. S

D
C

R
G

All ex

in C usin
used for O

There
models. E
obtaining
10, 20, 50
an adjace
elements
499749 e
scaling fa

Fig. 2. Th
including
networks.

The ob
for each
model re
execution

0

10

20

30

40

0,01 0

Open

ults

esults from the
e, this is a ca
ntations using
ntation. The
tion is present

System specific

Devices
CPU

RAM
GPU

ecutions were
ng standard an
OpenCL comp
are seven da

Each data set
g different size
0 and 100. Fo
ency matrix of

of the adjace
elements, for
actor 100 whe

he speedup of e
the transfer tim

btained result
of the main c
spectively. Ea
n times are o

0,02 0,05 0,1 0,2 0

nMP OpenCL

e sequential a
ase-study to d
g both Open

implementat
ted on table 1:

cations.

Specs
Intel(R)
cores 8
12GB D
NVIDI A
cores @

e run on Ubun
nd OpenMP l
patibility.
atasets that ar
t is generated
es of the netw
or the scaling f
f 250000 elem
ency matrix,
scaling facto

en the matrix h

xecutions for th
me of the load

ts for each of
complex netw
ach of the im

obtained. Look

0,5 1

0

10

20

30

40

and parallel im
determine how
MP and Ope
tions were e
:

) Core(TM) i
thread Hyper

DIMM 1333 M
A GeForce G

@ 1476MHz

ntu 10.04. The
libraries. Nvid

re generated f
d with differe

works. The size
factor 1, 500 n

ments. The oth
so for scaling

or 5 it has 12
has 25000000

he clustering co
data for rando

the implemen
work models:
mplementation
king at the re

0,01 0,02 0,05 0,1 0,

OpenMP O

mplementation
w much the p
enCL are imp
executed on

i7 CPU 920
-Threading Te

MHz (0.8ns) 6
GTX 285 1G

e CPU implem
dia Graphics

for each of th
nt number of
es are noted as
nodes are gen
her nodes are
g factor 2 the
249924 eleme
elements.

oefficient calcu
om, small-world

ntations are s
random, sma
s is executed
esults for the

,2 0,5 1

OpenCL

0

5

10

15

20

n are system d
performance o
proving the
the comput

@ 2.67GHz
echnology

64bit
GB 240 CUD

mentations we
driver version

he three main
f nodes and l
s scaling facto

nerated, which
chosen by do
e adjacency m
ents, and so f

ulations on CPU
d, and scale-fre

ummarized on
all-world and

10 times, an
e times of the

0

5

0

5

0

0,01 0,02 0,05 0,1

OpenMP

dependent.
of parallel
sequential
ter which

4

DA

ere written
n 3.1 was

n network
links, thus
ors 1, 2, 5,
h results in
ubling the

matrix has
forth until

U and GPU
ee complex

n figure 2
scale free

nd average
e OpenCL

1 0,2 0,5 1

OpenCL

implementation, for all scaling factors, a conclusion can be made that for small
volumes of data, executing the implementation on a GPU is not a smart way to go.
For example in the executions for a scaling factor 1, the time spent for initializing
OpenCL objects, building of kernels and programs, and allocating memory, is close or
sometimes even bigger to the time spent for the CPU implementations. This proves
that only by working with larger volumes of data, using the GPU is justifiable.

From figure 2, it can be seen that for different complex network models with the
same number of nodes and appropriate number of links, the speedups are different. In
average we obtained speedups of x3 for OpenMP, while for OpenCL we achieved
x20. A conclusion can be made that for the random model of complex networks, the
acceleration of calculations using the GPU is the greatest, while for the scale-free
model the accelerations are smallest. The problem why we get worse speedups for the
scale-free complex networks that the neighbours are concentrated around few nodes,
because they have power law degree distribution, while in the other complex
networks the distribution of neighbours is spread more equally. This makes us believe
that another algorithm should be chosen for more efficient calculating of clustering
coefficient for scale-free complex networks.

6 Conclusion

In this paper, we presented an implementation of an algorithm for calculation of
the clustering coefficient measure of complex networks, for the three main complex
network models. By utilizing hash-table base structure, we organized the complex
network graph, which resulted of less data copied from host memory to the GPU
processor registers. Also, because of the padding introduced of the hash-table base
structure, more efficient use of the GPU’s shared memory was achieved. We
demonstrated the power of using the GPUs, providing a further evidence of
effectiveness for accelerating complex networks calculations. The size of the GPU
memory limits the size of the graphs handled on a single GPU. However, OpenCL
provides for multiple devices to be interfaced, such that the work is distributed to each
of them, thus expanding the capacity for calculating measurement for larger complex
networks.

We have also performed comparisons with optimized implementations of CPU-
based sequential and OpenMP parallel algorithms. The obtained acceleration of the
measure calculation of complex networks is another example of the tremendous
parallel power of the modern programmable GPU devices. These results of
acceleration on the GPU provide a big interest. Seeing the GPU as high performance
co-processing unit for any application eligible for data parallelization and having in
mind the low cost of the GPU hardware, compared to the expensive CPUs of similar
calculation power, points to GPUs as interesting area for future research and
commercial development.

References

1. David B. Kirk , Wen-mei W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach, Published February 5, 2010

2. John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E.
Lefohn, and Timothy J. Purcell, A Survey of General-Purpose Computation on Graphics
Hardware, In Eurographics 2005, State of the Art Reports, August 2005, pp. 21-51.

3. Steven H. Strogatz. Exploring complex networks. Nature, 410(6825):268-276, March 2001.
4. R. Albert and A.L. Barabasi, Statistical mechanics of complex networks, Reviews of

Modern Physics, vol. 74, no. 1, pp. 47-97, Jan 2002.
5. M. E. J. Newman, The structure and function of complex networks, SIAM Review, vol. 45,

no. 2, pp. 167-256, 2003.
6. V. Batagelj, A. Mrvar: Pajek – Analysis and Visualization of Large Networks. In Junger,

M., Mutzel, P. (Eds.): Graph Drawing Software. Springer (series Mathematics and
Visualization), Berlin 2003. 77-103. ISBN 3-540-00881-0.

7. Borgatti, S.P., M.G. Everett, and L.C. Freeman, Ucinet 6 for Windows: Software for Social
Network Analysis, H.A. Technologies, Editor. 2002

8. D. Gleich, Matlab BGL v1.0, April 27, 2006, retrieved April 2010,
http://www.stanford.edu/dgleich/programs/matlab_bgl/.

9. Pawan Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU Using
CUDA. In High Performance Computing (2007), vol. 4873 of Lecture Notes in Computer
Science, Springer, pp. 197—208.

10. Joerkki Hyvoenen, Jari Saramaeki, Kimmo Kaski, Efficient data structures for sparse
network representation, International Journal of Computer Mathematics, 85 (8) : 1219-1233,
2008.

11.Lessig, C. 2007. Eigenvalue Computation with CUDA, NVIDIA CUDA SDK 1.1.
12.V. Volkov and J. W. Demmel. LAPACK working note 197: Using GPUs to accelerate the

bisection algorithm for finding eigenvalues of symmetric tridiagonal matrices. Technical
Report UCB/EECS-2007-179, EECS Department, University of California, Berkeley, 2007.

13.Gary J. Katz and Joseph T. Kider Jr. All-Pairs Shortest-Paths for Large Graphs on the GPU.
Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, 2008.

14. Cantin, J. and Hill, M., Cache performance for selected SPEC CPU2000 benchmarks, ACM
SIGARCH Computer Architecture News, 29, 13–18, 2001

15.DirectCompute Support on NVIDIA's CUDA Architecture GPUs,
http://developer.nvidia.com/object/directcompute_home.html/.

16.Nigel, Dessau, senior VP and CMO at AMD about DirectCompute,
http://developer.nvidia.com/object/directcompute_home.html/.

17. OpenCL Programming for the CUDA Architecture, Version 2.3, 8/31/2009.
18. The OpenCL Specification, Version 1.0, document Revision 43, 2009, retrieved February

2010 from http://www.khronos.org/opencl/.
19. The Khronos Group, Open Standard for Media Authoring and Acceleration,

http://www.khronos.org/.
20. Barbara Chapman, Gabriele Jost, Ruud van der Pas, Using OpenMP, Portable Shared

Memory Parallel Programming, The MIT Press Cambridge, Massachusetts London,
England.

21.OpenMP Application Program Interface, OpenMP Architecture Review Board, Version 3.0
May 2008.
22. OpenMP Application Program Interface, OpenMP Architecture Review Board, Version 2.5

May 2005.
23. NVIDIA OpenCL, Best Practices Guide, Version 1.0, August 10, 2009.

https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/227633811_A_Survey_of_General-Purpose_Computation_on_Graphics_Hardware?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/228765211_Pajek-_Analysis_and_Visualization_of_Large_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/221248982_All-Pairs_Shortest-Paths_for_Large_Graphs_on_the_GPU?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220728148_Accelerating_large_graph_algorithms_on_the_GPU_using_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/37811236_Exploring_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220661454_Efficient_data_structures_for_sparse_network_representation?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/1827666_Statistical_Mechanics_Of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/1827666_Statistical_Mechanics_Of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/216636663_UCINET_for_Windows_Software_for_social_network_analysis?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/216636663_UCINET_for_Windows_Software_for_social_network_analysis?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220692729_Programming_Massively_Parallel_Processors_A_Hands-On_Approach?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/220692729_Programming_Massively_Parallel_Processors_A_Hands-On_Approach?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/238729010_Eigenvalue_Computation_with_CUDA?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/237290974_Using_GPUs_to_Accelerate_the_Bisection_Algorithm_for_Finding_Eigenvalues_of_Symmetric_Tridiagonal_Matrices?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/222411422_The_Structure_and_Function_of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==
https://www.researchgate.net/publication/222411422_The_Structure_and_Function_of_Complex_Networks?el=1_x_8&enrichId=rgreq-6bdc5ef06f66d2a9cbfe142f7de46dc4-XXX&enrichSource=Y292ZXJQYWdlOzIyNjgyMTc3OTtBUzoxMDM2NzI4NzI3MDE5NjFAMTQwMTcyODk0ODI3Mg==

