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Abstract. The growth in multicore CPUs and the emergence of powerful 
manycore GPUs has led to proliferation of parallel applications. Many 
applications are not straight forward to be parallelized. This paper examines the 
performance of a parallelized implementation for calculating measurements of 
Complex Networks. We present an algorithm for calculating complex networks 
topological feature clustering coefficient, and conducted an execution of the 
serial, parallel and parallel GPU implementations. A hash-table based structure 
was used for encoding the complex network's data, which is different than the 
standard representation, and also speedups the parallel GPU implementations. 
Our results demonstrate that the parallelization of the sequential 
implementations on a multicore CPU, using OpenMP produces a significant 
speedup. Using OpenCL on a GPU produces even larger speedup depending of 
the volume of data being processed. 

Keywords: Complex Networks, Parallel, CPU, GPU, speedup, OpenMP, 
OpenCL. 

1   Introduction 

Traditionally, the majority of the current software is written as sequential 
programs. As new generations of processors are coming, historically is expected the 
same sequential programs to run much faster. These expectations have slowed down 
since 2003 onwards, due to energy consumption, limited increase of clock frequencies 
and level of productive activities that can be performed in each clock period within a 
single CPU [1], therefore almost all microprocessor manufactures have switched to 
multicore processors. Today a sequential program will not run much faster on a new 
generation processor, because it will be using only one core from the multicore 
processor. 

In order to keep the software expectations of performance improvements with each 
new generation of microprocessors, the software applications have to turn to parallel 
programming. 

The GPUs since their emergence as peripheral units have become probably the 
most powerful computational processor for the cost at which are being sold. Their 
architecture is making them much more superior than the CPUs regarding the 
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execution throughput. Much of the CPU resources are dedicated for non-
computational tasks like branch prediction and caching and their focus is more into 
maintaining the execution speed of sequential programs, while increasing the cores in 
the meanwhile. This architectural difference allows the GPUs to have much bigger 
growth than the CPUs. 

A recent survey on graphic hardware computation performance [2] gives an 
overview of the execution throughput of GPUs in comparison to CPUs. The overview 
states that the GPUs have a huge advantage over the CPUs, which is a very justifiable 
reason for the software developers to move their applications on GPUs.   

A science discipline of our interest is the area of Complex Networks. Complex 
Networks by their nature are an interdisciplinary area of graph theory and natural and 
social sciences. One of the main features regarding complex networks is the 
computationally intense calculations of their measurements, which require lots of 
resources. This is why we decided to harvest the power of the GPUs in this science 
discipline. 

The model of complex networks permeates our everyday life, due to its simplicity 
(a certain number of nodes representing individual sites and edges representing 
connections) and its ability to grasp the essence of many different systems. 
Commonly cited examples include social networks, technological networks, 
information networks, biological networks, communication networks, neural 
networks, ecological networks and other natural and man-made networks. Abundant 
study of their topology and models is presented in [3] [4] [5]. 

Each complex network has specific topological features, which characterize its 
connectivity and highly influence the dynamics of processes executed on the network. 
The analysis of complex networks, therefore, relies on the use of measurements 
capable of expressing the most relevant topological features. However, in order to 
find the topological features of a given real complex networks the researchers are 
using programs and packages, such as Pajek [6], Ucinet [7], matlab_bgl [8] etc. From 
our own experience the code for these measurements it is not so complex, but as the 
real networks become more and more complicated (enormous number of nodes and 
edges) we often encountered memory or computation related problems. More 
specifically, the simulations could not be done (or some tricks had to be used) because 
of memory constraints and sometimes the simulations took too much time. Thus, in 
this work we address and overcome these two problems, by representing the network 
via hash-table based structure instead of traditional adjacency matrices (see Section 
3), and we speed up the simulations via  parallel programming algorithms for CPU 
and GPU execution in OpenCL (see Section 4). The main contribution of this work is 
to make possible or easier to analyze large-scale networks mapped over real world 
examples, by harvesting the tremendous power of the GPU performance. 

At the end of this paper, a comparison of the results is presented. The results are 
obtained by running the sequential, OpenMP and OpenCL implementations of the 
calculation of the clustering coefficient. Conclusions about the maximum 
accelerations are specified, according to the parallelization of portions of the 
sequential code. 
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2   Related work 

Pawan Harish and P. J. Narayanan presented fast implementations of a few 
fundamental graph algorithms for large graphs on the GPU hardware [9]. Their 
implementations present fast solutions of BFS (breadth-first search), SSSP (single-
source shortest path), and APSP (all-pairs shortest path) on large graphs at high 
speeds using a GPU instead of expensive supercomputers. 

Joerkki Hyvoenen, Jari Saramaeki and Kimmo Kaski presented an article about a 
cache efficient data structure, a variant of a linear probing hash table, for representing 
edge sets of large sparse complex networks [10]. Their performance benchmarks 
show that the data structure is superior to its commonly used counterparts in 
programming applications. 

Eigenvalues are a very important feature of Complex Networks. NVIDIA CUDA 
1.1 SDK contains a parallel implementation of a bisection algorithm for the 
computation of all eigenvalues of a traditional symmetric matrix of arbitrary size with 
CUDA that is optimized for NVIDIA’s GPUs [11]. V. Volkov and J. W. Demmel in [12] 
have improved the algorithm from the CUDA SDK. 

Another useful feature is finding the shortest path between nodes.  Gary J. Katz 
and Joseph T. Kider Jr in [13] describe a GPU implementation that solves shortest-
path problems on directed graphs for large data sets. 

3   Complex Networks 

There are many relevant measurements that describe the complex networks like: 
measurements related with distance; clustering; degree distribution and correlation; 
entropy; centrality measurements; spectral measurements; and many others. These 
measures are important to capture the topological properties of real complex 
networks, which will further give insights of the robustness, efficiency, vulnerability, 
synchronization, virus propagation, etc. For this paper the clustering coefficient 
measure is chosen, because it is a property that is quite computationally intense and is 
also similar to other measures.   

Clustering represents a local feature for a given node which is a measurement of 
how much its neighbours are grouped. The effect of clustering is measured by the 
clustering coefficient C which represents the mean value of the probability that two 
neighbouring nodes of a given node are also neighbours between each other. The 
equations for obtaining the clustering coefficient Ci for a given node, i and the 
clustering of the network <C> are the following: 

௜ܥ ൌ ଶா೔௞೔ሺ௞೔ିଵሻ . (1) 

ۄܥۃ ൌ ଵே∑ ௜ே௜ୀଵܥ  . (2) 
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In the equation (1), Ei stands for the number of links between the neighbours of the 
node i, ki is number of neighbor nodes of the node i, and N is the total number of 
nodes in the network. 

4   Implementation 

Real complex networks are typically very sparse and large structures. Mainly, in 
the literature the complex networks are represented mathematically with an adjacency 
matrix A. The elements aij are equal to 1 if the nodes i and j are neighbours, or 0 if 
they are not, involves a lot of redundancy in the adjacency matrix. Having in mind the 
memory capacity that is needed for encoding the complex networks, the adjacency 
matrix is difficult or cannot be directly used as data structure. 

From a hardware perspective, the problem lies in the latency of the memory chip. 
By the time the data from the main memory arrives to the processor registers, several 
hundreds of clock cycles would have been finished. The modern processors solve this 
problem in 2 ways. As mentioned in the introduction, the CPUs introduce cache 
memory between them and the main memory. The cache memory, which is quite 
faster [14] and more expensive then the main memory, keeps the recently accessed 
data. Another way to reduce the main memory latency is to increase the bandwidth by 
using per-fetching where adjacent locations are loaded simultaneously, which 
increases the cache hits. 

As mentioned in the introduction, the GPUs advantage over the CPUs is the 
execution throughput, which hides the main memory latency, but only by ensuring 
that the processor is always busy with computations, while other computations are 
waiting on memory access. This latency hiding is useful when encountered with 
larger complex network load data, which results with higher number of calculation. 
For smaller complex network load data, the calculations number is lower, which 
makes the GPU’s execution throughput not useful because just the time spent for 
transferring the data from host memory to the processor registers of the GPU is quite 
big compared to the time for execution on the CPU. 

Nevertheless, for large complex networks, the cache does not improve the latency 
much. The data cannot be stored into memory such that the adjacent memory 
elements are neighbouring nodes in the networks and the cache misses being bound to 
happen. Introducing an efficient data structure based on hash-tables [10] for encoding 
the complex network data is a way to solve the problem in larger networks. 
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Fig. 1. Representation of a complex network using a hash-table based data structure.  

As it can be seen from Figure 1, the data is represented by a hash-table based 
structure, where the index of each row represents the index of the appropriate node i, 
and N stands for the number of nodes and max_links for the maximum number of 
neighbours. Each row contains the neighbouring nodes of the node i, which are 
marked with a grey background. The width of the rows is fixed and the value of the 
width is determined by the maximum number of neighbours (max_links) that a node 
from the complex network can have. For the many cases where the number of 
neighbours is less than the maximum, the rest of the data elements are filled with a 
negative number, so there is a difference between nodes and empty data.  The 
reduction of the redundancy of the adjacency matrix has a big contribution towards 
optimizing the parallel implementations in regards to memory bandwidth, resulting in 
less data being copied from host memory to the processor register. Also, with this 
structure the GPU eliminates few memory accesses to the main memory. The penalty 
for the exclusion is paid by transferring the extra padding of empty data to the shared 
memory, which in the end proves to be more efficient (See 4.1). 

Currently there are 3 major GPU parallel programming languages DirectCompute 
[15][16], CUDA [17] and OpenCL [18]. For the GPU parallel programming OpenCL 
is used. OpenCL is a standardized programming language, formed by the major 
industry leaders Apple, Intel, AMD/ATI, NVIDIA, and others [19]. OpenCL is an 
open standard, parallel programming language of modern processors found in PCs, 
servers and embedded devices. It is very much similar to CUDA, but unlike CUDA it 
is agnostic and manufactures independent. Also an open standard, the source code is 
portable across implementations. 

The OpenCL standard is designed to take advantage of all of the system resources 
available. Unlike GPU programming languages in the pass which were just 
specifically multimedia, the standard supports general purpose parallel computing. It 
is based on ANSI-C99 with additional qualifier, data types and build-in functions. 
When working with GPUs, the focus in OpenCL goes into data parallelisation. 

4.1   Clustering Coefficient 

The sequential implementation of the clustering coefficient is quite straight 
forward. From equation (1), the implementation needs to find the number of links Ei 



between the neighbours, and the number of all neighbours ki for each node i form the 
hash table structure. In order to calculate the clustering coefficient Ci for every node 
in the complex network, few nested loops are needed. The first level loop is iterated N 
times, where N is the number of nodes that the network contains. The second level 
nested loop iterates the vector for each node i, in order to obtain the values for ki, 
which is the degree of each node i. Another second level nested loop, and a third level 
nested loop inside it, are iterated in order to find the value Ei. This is done by 
comparing if every pair of the neighboring nodes is connected. So because of the hash 
table structure, the third level nested loop iterates through other vectors according to 
the values in the data elements for the neighbors of the node i. Having the values for 
Ei and ki, the final calculation describe in equation (1) is performed. 

Developing the parallel OpenMP implementation is based on the sequential 
implementation and is performed quite easy because there are no data dependencies. 
All nested loops are under one OpenMP pragma parallel for directive [20], which 
defines the private, shared, and reduction properties, which can be seen in the Listing 
1.  

Listing 1. OpenMP implementation of Clustering Coefficient 

#pragma omp parallel for default(none) \ 
shared(max_links, node_size, net_data, h_C, Ei, ki, \ 
search_index, search_row_size) \ 
private(i,j,k,z) 
for(i = 0; i < node_size; i++){ 
  Ei = 0; 
  ki = net_data[i*max_links + 0]; 
  for(j = 1; j <= ki; j++){ 
    for(k = j + 1; k < ki; k++){ 
      search_index = net_data[i*max_links + k] *  
                                     max_links; 
      search_row_size = net_data[search_index + 0]; 
      for (z = 1; z < search_row_size; z++) 
        if(net_data[i*max_links + j] ==                                      
              net_data[search_index + z]) Ei++; 
    } 
  } 
  h_C[i] = (float)(2*Ei)/(ki*(ki-1)); 
} 

For each nested loop the compiler creates a separate team of threads only if the 
nested parallelism is enables, otherwise only the outer loop is parallelized, and the 
other loop are serialized. The nested parallelism is supported in OpenMP 3.0 [21] by 
adding the collapse clause in the pragma parallel for directive. For earlier versions 
[22], only the outer loop is parallelized, while the other nested loops are performed by 
each of the 1/p threads, where p is number of core that the CPU has. We recommend 
using the early version for nested parallelism because the version 3.0 may introduce 
some overhead. 

The parallel OpenCL implementation harvests the power of the GPU by using the 
shared memory. Before executing on the GPU, the host CPU takes care of the 



compiling and building of the OpenCL kernels (Just In Time – compiler), and 
initializes other OpenCL necessary objects. The complex network data, before is 
loaded from the host to global memory using OpenCL input buffer, an additional 
padding is introduced while allocation, so the number of nodes are a multiple of the 
number of assigned workgroup size [23]. A unit of work in OpenCL is called a work-
item, which can be conceptualized as a thread, because each instance of a kernel 
execution is done by a single thread. A group of work-items form a work-group, 
which is the local size, and the minimal value is limited to 32 because of the hardware 
limitation of a warp. In our case the maximum number of local workgroup size 512 
proved most efficient. The number of workitems is initialized with the number of 
nodes N in the complex network, which is our global size, thus N threads are 
executed. A fragment of the kernel is presented in the Listing 2.  

 
Listing 2. OpenCL implementation of Clustering Coefficient 

for(j = 1; j <= ki; j++){ 
  first = input[gid*max_links + j]; 
  for(k = j + 1; k <= ki; k++){ 
    search_index = input[gid*max_links + k]*max_links; 
    for (z = 1; z < max_links; z += lsize){ 
      if((z + lsize)>max_links) lsize = max_links - z; 
      if((z + lid) < max_links) 
        sh_tmp[lid] = input[(search_index + z + lid)]; 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      for(i = 0; i < lsize; i++) 
        Ei += (sh_tmp[i] == first); 
        barrier(CLK_LOCAL_MEM_FENCE); 
    } 
  } 
} 
if (gid < node_size) output[gid] = (float)(2*Ei)/ 
                                          (ki*(ki-1));. 

For obtaining the degree ki of each node, in the kernel code, a simple parallel 
reduction is performed. In order to calculate the value for Ei, a first level nested loop 
iterates through the neighbors for each node i. A second level nested loop iterates 
through the rows, which are the values neighbors of the node i, with a step iteration 
lsize, where lsize is the size of the local memory. This is done in order to take 
advantage of the local memory, so when the synchronization barrier is passed, the 
local memory is loaded by all the free threads with the lsize elements. This allows for 
the third level nested loop to efficiently access the local memory and compare if the 
neighbors are connected, which is much faster than accessing the global memory. The 
number of connected neighbors is contained in Ei, which is a local integer register.  
The output, which is the calculation described in equation (1) is read into main 
memory using OpenCL output buffer. 
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implementation, for all scaling factors, a conclusion can be made that for small 
volumes of data, executing the implementation on a GPU is not a smart way to go. 
For example in the executions for a scaling factor 1, the time spent for initializing 
OpenCL objects, building of kernels and programs, and allocating memory, is close or 
sometimes even bigger to the time spent for the CPU implementations. This proves 
that only by working with larger volumes of data, using the GPU is justifiable. 

From figure 2, it can be seen that for different complex network models with the 
same number of nodes and appropriate number of links, the speedups are different. In 
average we obtained speedups of x3 for OpenMP, while for OpenCL we achieved 
x20. A conclusion can be made that for the random model of complex networks, the 
acceleration of calculations using the GPU is the greatest, while for the scale-free 
model the accelerations are smallest. The problem why we get worse speedups for the 
scale-free complex networks that the neighbours are concentrated around few nodes, 
because they have power law degree distribution, while in the other complex 
networks the distribution of neighbours is spread more equally. This makes us believe 
that another algorithm should be chosen for more efficient calculating of clustering 
coefficient for scale-free complex networks.  

6   Conclusion 

In this paper, we presented an implementation of an algorithm for calculation of 
the clustering coefficient measure of complex networks, for the three main complex 
network models. By utilizing hash-table base structure, we organized the complex 
network graph, which resulted of less data copied from host memory to the GPU 
processor registers.  Also, because of the padding introduced of the hash-table base 
structure, more efficient use of the GPU’s shared memory was achieved. We 
demonstrated the power of using the GPUs, providing a further evidence of 
effectiveness for accelerating complex networks calculations. The size of the GPU 
memory limits the size of the graphs handled on a single GPU. However, OpenCL 
provides for multiple devices to be interfaced, such that the work is distributed to each 
of them, thus expanding the capacity for calculating measurement for larger complex 
networks. 

We have also performed comparisons with optimized implementations of CPU-
based sequential and OpenMP parallel algorithms. The obtained acceleration of the 
measure calculation of complex networks is another example of the tremendous 
parallel power of the modern programmable GPU devices. These results of 
acceleration on the GPU provide a big interest. Seeing the GPU as high performance 
co-processing unit for any application eligible for data parallelization and having in 
mind the low cost of the GPU hardware, compared to the expensive CPUs of similar 
calculation power, points to GPUs as interesting area for future research and 
commercial development. 
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