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Abstract

A new family of networks, called entangled, has recently been proposed in
the literature. These networks have optimal properties in terms of synchro-
nization, robustness against errors and attacks, and efficient communication.
They are built with an algorithm which uses modified simulated annealing to
enhance a well-known measure of networks ability to reach synchronization
among nodes. In this work, we suggest that class of networks similar to en-
tangled networks can be produced by myopically changing some connections
in a given network, or by just adding a few connections. We call this class of
networks weak-entangled. Although entangled networks can be considered as
a subset of weak-entangled networks, we show that both classes share similar
properties, especially with respect to synchronization and robustness, and
that they have similar structural properties.

Keywords:
complex networks, entangled networks, synchronization, vulnerability

1. Introduction

Complex networks permeates our everyday life, due to their simplicity (a
certain number of nodes representing individual sites and edges representing
connections) and their ability to grasp the essence of many different systems.
Commonly cited examples include social networks, technological networks,
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information networks, biological networks, communication networks, neural
networks, ecological networks and other natural and man-made networks.
Abundant study of their topology and models is presented in [1, 2, 3]. An
important topic of interest in present research is to find an optimal topology
in order to reach consensus [4], for efficient communication or transport net-
works [5], or to improve the performance of computational tasks [6]. It was
shown in [7] that the optimal topology has an entangled structure, i.e. has an
extremely homogeneous one. More precisely, degree, node distance, between-
ness, and loop distributions are all within very narrow intervals, the average
distances are short, and there is no well-defined community structure. This
spectral properties In addition, this topic appears to be tightly connected [7]
with collective behavior in complex networks, referring especially to the syn-
chronous state, where all individual sites operate in unison [8]. This ability
of a network to synchronize is commonly referred to as synchronizability [9]
and [10].

In [7], Donetti et al. propose a stochastic algorithm, based on simulated
annealing, for producing entangled networks. They show that these networks
exhibit excellent performances in synchronization, are robust against errors
and attacks and support efficient communication. In [11, 12], Jalili et al.
present a rewiring algorithm, based on simulated annealing, which improves
the synchronizability of the network. Another rewiring algorithm, which uses
memory tabu search, is proposed in [13]. Jalili et al. in [14] use node and
edge betweenness for weighting dynamical networks. In [15], Gorochowski
et al. introduce a computational tool, called NETEVO, which evolves the
network topology in order to improve its synchronizability. This tool uses a
simulated annealing algorithm in order to direct the future evolution of the
network. In addition to above mentioned research, recently in [16] Nishikawa
et al. discovered that negative interactions and link removals, between nodes
in a given network, can be used to improve synchronizability in both directed
and undirected networks.

All of the mentioned strategies to build or rewire a network require a
deep knowledge of the topology properties of the network. For instance,
one needs to know the spectrum of its Laplacian matrix and the resulting
eigenvectors or to calculate complex global measures such as node and edge
betweenness. In order to understand how much each step of an optimization
algorithm affects a network, one could use the approximations of [17], where
the authors analytically studied the effect of a small perturbation —such as
adding or removing edges— on the spectra of the adjacency or Laplacian
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matrices of a network. Again, some knowledge of the eigenvectors is needed
to elaborate the approximations.

Motter et al. in [18], [19] and [20] show and verify that maximum syn-
chronizability for networks with heterogeneous degree distribution can be
achieved by using weighted and directed couplings between the nodes in the
network. In this way, the enhanced synchronizability is determined by the
mean degree and does not depend on the degree distribution and the net-
work size. Their method differs from the others because it requires neither
the spectrum of the adjacency nor the Laplacian matrix, instead it uses just
local information, i.e. node degree.

In this manuscript, we are concerned with the issue of numerically inves-
tigating the effects of a simple and myopic perturbation of the topology of a
network, intuitively aimed at enhancing its synchronizability and robustness
[21]. More specifically, given a network with a fixed number of nodes N and
an average connectivity ⟨k⟩, we try to rewire or to add some connections
in the networks in order to obtain a class of networks which we call weak-
entangled networks (see Section III), just by exploiting the homogenization
of the degree of the nodes in the network. As a comparison for the syn-
chronization performances, we consider the rewiring algorithm described in
[11] (in this paper referred to as the RJH algorithm). The results show that
the homogenization procedure (i.e. a very simple rewiring) greatly enhances
the synchronizability and the robustness of a given network in the first few
steps. This corresponds not only to fewer calculations, but also to fewer
modifications in the existing (real or synthetic) network.

In addition, we investigate in more detail some of the topological proper-
ties of the obtained networks. We argue that their structure and characteris-
tics are similar to those of entangled networks [7], and our numerical simula-
tions with identical oscillators validate their good synchronization properties.
Finally, we compare the vulnerability of the obtained networks with that of
random, geometric, small-world and scale-free topologies by using the mea-
sures proposed in [22, 23].

The manuscript is organized as follows: in Section 2 we present a brief
review of the existing work on synchronizability. In Section 3 we give the
main motivations for the homogenization procedure. Results and compar-
isons with the RJH algorithm are given in Section 4, where we also inspect
the structural properties and present results related to the vulnerability of
the obtained networks. In Section 5 we consider networks composed of cou-
pled oscillators to obtain some real examples of the effects of the proposed
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homogenization procedure on synchronization. Section 6 concludes this work.

2. A measure of synchronizability

A relevant contribution in determining the (local) stability of the synchro-
nized states was given in [24, 9], by using the eigenvalues of the Laplacian
matrix representing the network. We briefly recall the main ideas in the fol-
lowing. Consider a network ofN identical dynamical systems with symmetric
coupling. The equations of motion for the system are

ẋi = F (xi)− σ

N∑
j=1

LijH(xj), (1)

where F (·) governs the dynamics of each isolated node, H(·) is the coupling
function, σ > 0 is the overall coupling strength, and L is the Laplacian matrix
associated to the network. The network admits a synchronous state

x1 = x2 = . . . = xN = x̄,

whose (local) stability is determined by the corresponding system of varia-
tional equations, together with the motion on the synchronous manifold

˙̄x = F (x̄). (2)

This system can be diagonalized into N blocks of the form

ẏ = [DF (x̄)− γDH(x̄)]y, (3)

where y represents a mode of perturbation from the synchronized state; γ =
σλi, i = 1, . . . , N ; λ1 = 0 < λ2 ≤ ... ≤ λN are the eigenvalues of L, all of
them real as the matrix L is symmetric.

The master stability function (MSF) Λ(γ) is defined as the largest Lya-
punov exponent of the system defined by Eq. (2) and Eq. (3) as a function
of γ [24]. This function, which generally is obtained by numerical methods,
determines the stability of the synchronized state. In particular, the synchro-
nized state is unstable if Λ(σλi) > 0, for at least an index i ∈ {2, . . . , N}.

For a large class of chaotic oscillatory systems, there exists a bounded
interval (αm, αM) on which Λ(σλ) < 0. In this case, there exist coupling
strengths σ for which the synchronized state is linearly stable if and only if
λN/λ2 < αM/αm [9].
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The ratio Q = λN/λ2 depends only on the network topology, while the
ratio αM/αm depends on the dynamics of each node (F (·)) and the coupling
function (H(·)). The lower the Q, the wider the interval of possible coupling
strength σ such that the corresponding network has the synchronous state
locally stable, so building networks which are highly synchronizable generally
means building networks with a low Q. In practice, the MSF is not always
negative only in a finite interval (see class-A networks in [25] and the dynam-
ical systems of class Γ0 and Γ1 [27]). However, synchronizability in a variety
of dynamical processes can be described by similar spectral properties, which
tend to improve when the network is more homogeneous, see [26], or, simply
put, other measures of synchronizability often go “hand in hand” with λN/λ2

[11].

3. Rewiring procedure for weak-entangled networks

A rigorous definition of entangled structure is still lacking in the scien-
tific community. However, besides the fact that the structure is extremely
homogeneous (degree, node distance, betweenness and loop distribution) [7],
this structure should also optimize synchronizability for many dynamical pro-
cesses, which means that the synchronization measure Q for this structures
should guarantee minimal value of Q, as mentioned in Section 2.

Finding this kind of networks is a NP-hard problem and it can be solved
for small values for N and ⟨k⟩. On other hand, the number of nodes N in real
networks is a very big number (in reality it tends to infinity). For instance,
the number of current Facebook users is around 5 · 108 [28] and the number
of sensor nodes that would be needed to secure, for example, the US-Mexico
border is of magnitude 106 [29]. Thus, we need suboptimal, and sometimes
very fast methods, for finding topologies with lower value of Q, topologies
that have good synchronization properties and are robust against errors and
attacks. We call these suboptimal topologies, weak-entangled.

The basic idea is to work with approximation of the eigenvalues λ2 and
λN . There exist many bounds on these eigenvalues, and some of the simplest
to compute are related to the maximum and minimum degree of the nodes
of the network. We have indeed [30]:

2−N + 2kmin ≤ λ2 ≤ N

N − 1
kmin

N

N − 1
kmax ≤ λN ≤ 2kmax

(4)
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where N is the number of nodes in the network, kmin and kmax are minimum
and maximum node degree, respectively. This indicates that having a small
gap between the maximum and minimum degree could lead to having a small
Q and hence better synchronization properties. However, the problem is not
so simple, as ring networks —where every vertex is connected to its neigh-
bors up to a certain distance ⟨k⟩/2— have bad synchronization properties,
whereas random regular networks [31, 32] have good synchronization proper-
ties. In general, random networks have better synchronizability than regular
lattices and (possibly) better than small-world networks when they are above
their percolation transition [33, 9]. Furthermore, small-world networks have
better synchronizability than scale-free networks [34]. In addition, Nishikawa
et al. discovered that Q decreases when the heterogeneity of some measures
of small-world networks declines, even if the average distance increases [35].
In [33] the authors found out that Q is proportional to the betweenness
heterogeneity, and they conclude that a small value of the maximum be-
tweenness centrality is an important factor for better synchronizability. The
complete correlation between homogeneity and synchronizability for any con-
nected network is given in [35]:

(1− 1

N
)
kmax

kmin

≤ Q ≤ (N − 1)kmaxl
e
maxDmax⟨D⟩, (5)

where Dmax is the maximum length of the shortest path between two nodes,
lemax is the maximum normalized edge betweenness and ⟨D⟩ is the average
path length. Eq. (5) confirms that homogeneous networks have high syn-
chronizability, because in this case kmax and lemax are smaller. Thus, one can
argue that the combination of small network distances and homogeneous dis-
tribution of connectivities and loads makes the network more synchronizable.

Having the previous considerations in mind, by homogenizing the degree
of the nodes in the network we should be able to enhance synchronizability
in a simple and fast manner, and to produce a topology which tends to an
entangled one. This can be done, in one of the simplest and myopic ways, by
disconnecting the highly connected vertices and connecting poorly connected
ones, or by just adding a few edges between the poorly connected nodes, as
it is shown at the end of Subsection 4.1.

More precisely, at each step, we look for the node with highest degree,
say v1, and, among its neighbors, for the one with relatively highest degree,
say v2. Having disconnected them, removing the link (v1, v2), we look for the
two nodes with lowest degree, say w1 and w2, which are disconnected and
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we connect them, putting the link (w1, w2). Whenever there are multiple
nodes satisfying the requirements, the tie is broken deterministically. If the
network becomes disconnected when removing the edge (v1, v2), we look for
the second most highly connected vertex, and so on.

Of course, we do not expect to obtain better synchronizability than the
modified simulated annealing optimization algorithm in [7] or the RJH al-
gorithm [11]; we just want to emphasize that even with small changes of
the network topology, the synchronization properties of the network change
very much, and that this can be very useful when trying to rewire real-world
networks (where the number of nodes is very large).

The beneficial features of this approach are: it is faster and easier to
implement than the algorithm for creating optimal topologies proposed in
[7] and the rewiring algorithm proposed in [11], and it is very effective even
in a reduced number of steps, as it will be shown in Section 4. In addition,
our procedure exploits only local information, i.e. the degree of the nodes,
and even though in this work the procedure is centralized (i.e. we search the
node with maximum degree), the approach can be modified in several ways
to produce decentralized algorithms.

4. Simulation results

4.1. Synchronization aspects

As a mean field approximation of starting networks, we focus on random
network generated with the Erdős and Rényi model [36], with assigned mean
degree ⟨k⟩ ∈ {4, 6} and total number of vertices N ∈ {50, 100, 200, 300, 500}.
For each pair ⟨k⟩, N , the number of generated networks is 10 and all the
results are averaged over the different realizations. Fig. 1 shows the relative
averaged decrease of the synchronizability index Q for networks with different
number of nodes and average node degree ⟨k⟩ = 4 (upper panel, and ⟨k⟩ = 6
(lower panel) against the number of iteration s. From Fig. 1 one can see
that the degree homogenization produces topologies which have nearly 50%
reduced Q just after a small number of iterations. Moreover, in the case of
larger networks, i.e. larger N , the synchronizability at the end of the degree
homogenization is increased even more. For instance, for a network with
N = 500 and ⟨k⟩ = 4 the synchronizability is increased by 75% (i.e. Q is
reduced by 75%) and by 60% when ⟨k⟩ = 6.

In addition, we compare the results obtained with the effect of degree
homogenization with the results produced when using the RJH rewiring al-
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N Q(0) Q∗(s̄) QRJH(s̄) QRJH(end) s̄

50 23.8344 10.5048 13.1488 7.5711 26

100 34.2478 13.3045 16.0255 9.4362 5

200 39.9462 13.9258 19.2149 11.7292 9

300 57.6587 15.0228 21.3068 12.9733 139

Table 1: Comparison of the degree homogenization procedure and the RJH algorithm
described in [11], for networks with different sizes N and ⟨k⟩ = 4 (data are averaged over
10 networks).

gorithm, which uses simulating annealing [11] and exploit more elaborate
measures related to the network. The results are shown in Tab. (1) (⟨k⟩ = 4)
and Tab. (2) (⟨k⟩ = 6), where Q(0) is the starting value of the synchro-
nizability index, Q∗(s̄) is the final synchronizability index obtained by the
homogenization procedure, QRJH(s̄) is the value of the synchronyzability in-
dex obtained by the RJH algorithm at the last iteration s̄ of the simple
homogenization procedure (the value of s̄ is given in the last column) and
QRJH(end) is the final synchronizability index obtained by the RJH algo-
rithm after 1000 iterations. It is noticeable that the RJH algorithm at the
end gives better results, but at the iteration s̄ when the rewiring stops, the
proposed procedure gives better results than the ones obtained by the RJH
algorithm. The results are more evident in Fig. 2 for a network with N = 200
and ⟨k⟩ = 6. When using the degree homogenization procedure, the decrease
is sharper than using the RJH algorithm until the 50-th iteration, after which
the ratio Q(s)/Q(0) stabilizes, while for the RJH algorithm the ratio keep
decreasing even after the 50-th iteration, and after the 170-th iteration the
RJH algorithm outperforms the degree homogenization procedure, due to its
ability to escape local minima and the cost function more focused on the
synchronization properties.

We have also compared the synchronizability index Q of the topology
produced by the degree homogenization procedure (summarized in the col-
umn Q∗(s̄) of Tab. (1) and Tab. (2)) with the synchronizability index Q of
some of existing network topologies. For a small-world network with N = 50,
⟨k⟩ = 6, and p = 0.1 [37], we computed the average value of Q, which turned
out to be around 16, thus the synchronizability of the network produced by
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N Q(0) Q∗(s̄) QRJH(s̄) QRJH(end) s̄

50 13.2345 6.4538 6.1172 4.4019 30

100 16.1649 6.6658 8.3359 5.3253 49

200 24.4975 8.6263 10.2172 6.0894 96

300 27.5263 9.4384 11.8970 6.7391 140

Table 2: Comparison of the degree homogenization procedure and the RJH algorithm
described in [11], for networks with different sizes N and ⟨k⟩ = 6 (data are averaged over
10 networks).

the degree homogenization is nearly 2.5 times greater, while in the case of the
scale-free network it is more than 4 times greater. The same analysis for the
networks with N = 200 and ⟨k⟩ = 6 shows that this degree homogenization
produces networks that are around 2.1 times more synchronizable than the
small-world counterpart and around 3.3 times more than the corresponding
scale-free networks. Networks with better Q are those obtained with the
random regular model [31, 32], which have Q = 3.16 if N = 50 and ⟨k⟩ = 6
and Q = 3.38 if N = 200 and ⟨k⟩ = 6.

Another analysis involved the behavior of λ2 and λN through the degree
homogenization process. Fig. 3 shows the relative averaged increase of λ2

and the relative averaged decrease of λN with respect to their averaged ini-
tial values, i.e. the values they had before the degree homogenization started
(λ2 = 0.761 and λN = 15.115), throughout the degree homogenization pro-
cess. In this case we analyze 10 networks with N = 200 and ⟨k⟩ = 6. It is
noticeable that the degree homogenization influences λ2 more than λN , i.e.
λ2 is increased almost 70% with the respect to the initial value, and λN is
decreased by 30%.

Another and very common type of proxy topology for real networks is the
scale-free network topology. The degree homogenization procedure, briefly
summarized in Section 3, might disconnect the network by disconnecting the
most connected nodes (hubs) in the network. Thus, the degree homogeniza-
tion procedure is not appropriate for this kind of topology. Instead, an even
simpler way to increase synchronizability is to add edges between the least
connected nodes in the network. Doing this we achieve, in an easy and fast
manner, a topology which is easier to synchronize. In Fig. 4 on the x-axis is
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the iteration number (i.e. in this case the number of added edges between
poorly connected nodes). By adding just 25 edges between the most poorly
connected nodes, one might conclude from Fig. 4 that the synchronizability
is increased 2 times. With this we want to show that it is possible to enhance
synchronizability of the scale-free topology by just adding edges between the
most poorly connected nodes. We will not make further analysis of the re-
sulting network topology, because with this addition of edges we are still
exploiting the homogenization of the nodes’ degree in the network, and thus,
this method will produce similar weak-entangled topology as homogenizing
the random topology.

4.2. Some topological insights

In the next part we want to inspect the obtained homogenized networks
(which we call weak-entangled networks) using some topological properties.
The properties that we inspect in Fig. 5 are the following:

• The network average clustering coefficient (CC) [37]. This mea-
sure indicates the degree to which nodes in a network tend to cluster
together and it is calculated as: CC = 1

N

∑N
i=1 Ci. Ci is the local clus-

tering coefficient of a node i and it is calculated as: Ci = 2∆i/(ki−1)ki,
where ∆i is the number of the existing links between the neighbors of
node i and ki is the number of neighbors of node i.

• Average path length (⟨D⟩). This measure distinguishes an easily
negotiable network from one which is inefficient and rather complicated.
It is calculated as: ⟨D⟩ = 1

N(N−1)

∑
i,j d(vi, vj), where d(vi, vj) is the

shortest distance between vertices vi and vj.

• Maximum path length (Dmax). It is the maximum length of the
shortest path between any two nodes. It is calculated as maxi,j d(vi, vj).

• Maximum normalized node betweenness (BCmax) and standard
deviation of the normalized node betweenness (BCdev). The
node betweenness [38] BC(v) for a vertex v is calculated as: BC(vi) =∑

k ̸=i̸=ℓ,k ̸=ℓ
σkℓ(vi)
σℓk

, where σkℓ is the number of shortest paths from vk to

vℓ, and σkℓ(vi) is the number of shortest paths from vk to vℓ that pass
through a vertex vi.

• Maximum normalized closeness centrality (CLOmax) and stan-
dard deviation of the normalized closeness centrality (CLOdev)
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[39]. For a given node vi the closeness centrality is calculated as:
CLO(vi) =

1∑
j d(vi,vj)

.

• Maximum authority value using the Hypertext Induced Topic
Selection (HITS) algorithm (HITSmax) and the standard devi-
ation of HITS authority values (HITSdev) [40]. HITS is a link
analysis algorithm that rates Web pages for their authority and hub
values. Authority value estimates the value of the content of the page;
hub value estimates the value of its links to other pages. Authority
and hub values are defined in terms of one another in a mutual recur-
sion. An authority value is computed as the sum of the scaled hub
values that point to that page. A hub value is the sum of the scaled
authority values of the pages it points to. Thus, the node pointed to
by many links will have higher authority value. HITS, like PageRank,
is an iterative algorithm based on the linkage of the documents on the
web.

These measures are normalized with respect to their value obtained from
the initial network and are plotted as a function of the iteration steps. Among
all values just ⟨D⟩ remains almost unaltered (slightly increases) in the re-
sulting network (⟨D⟩ is around 5.5), which correspond to the results shown
in [35], whereas all other properties have lower values in the resulting net-
work. The BCdev decreases the most, so that this property can be a good
indicator for better synchronizable networks (see also [33]). The standard de-
viation of the authority rank (represented by HITSdev) decrease by around
65%. In addition the maximum value of the betweenness centrality decreases
by around 60%, which suggests that this could be an efficient topology for
communication networks (see [5]). Other good indicators for networks with
enhanced synchronizability are the standard deviation of the closeness cen-
trality CLOdev (it decreases by 55%) and HITSmax (it decreases by 50%).
These results are totally correlated to Eq. (5) which reasserts the fact that
the proposed degree homogenization procedure produces networks with en-
hanced synchronizability and weak-entangled structure. In order to com-
pletely satisfy Eq. (5) the networks should have low value for kmax and the
ratio kmax/kmin should be close to 1. The main idea behind the rewiring is
the homogenization of the nodes’ degree, thus it satisfies both the conditions.
In addition, the average clustering coefficient (CC) is decreased by 20% and
the resulting network topology has a very small clustering coefficient, which
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is around 0.005.
The homogeneous structure —characterized by homogeneous degree, be-

tweenness, closeness and authority (i.e. HITS) values— indicates that the
topology produced by the degree homogenization belongs to the class of en-
tangled (or interwoven) topologies [7], which are optimal in many senses,
such as: synchronization, robustness and support for efficient communica-
tion. In order to prove the homogeneous structure of the obtained topology
we give the average values of this 4 measures that each node has in Fig. 6,
respectively, for a network with N = 200 and ⟨k⟩ = 4 at the beginning (black
line) and at the end of the degree homogenization process (gray line). Fig-
ure 6 clearly shows the homogeneous structure of the final topology. For the
average degree values (Fig. 6 (a)) the average degree of each node at the end
of the degree homogenization is nearly 4, which is not the case at the starting
random topology (i.e. the values are between 2 and 7). The average values
for the betweenness centrality, closeness centrality and HITS (Fig. 6(b,c,d))
at the end of degree homogenization are very close to 0.005 which is the mean
value (1/N, N = 200).

In Fig. 7 we show the evolution of the second moment of the degree
(DEGREE), betweenness (BC), closeness (CC) and authority (HITS) as the
iterative process of degree homogenization takes place. It is obvious that the
variance between these four measures at the end of the homogenization is
practically 0, which is in close agreement with the previous results.

On the other hand, beyond the higher end-value of Q, our simulations and
analyses show that the weak-entangled topology compared to the entangled
topology obtained by Donetti [7] and the RJH algorithm [11], has slightly
bigger average length path (around 2.0% bigger) and different loop distribu-
tion, i.e. the average loop size of the entangled topology is around 67.5 with
standard deviation of 33.3, whereas weak-entangled topologies have slightly
bigger average loop size of 74.5 with standard deviation of 40. The tests were
performed on networks with N = 200 and ⟨k⟩ = 4.

4.3. Vulnerability of the proposed networks

In this Subsection we show that the obtained networks, besides having
enhanced synchronizability, also have a robust topology, as said before. As a
vulnerability measure we use the maximal value of the pointwise vulnerability
of the network [23] defined as

V = max
i

E − E(i)

E
,
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Here E is global network efficiency [22], defined as

E =
1

N(N − 1)

∑
i̸=j

1

d(vi, vj)
,

and E(i) is the network efficiency after removal of the node vi and all its
edges. N is the total number of nodes and d(vi, vj) is the minimal distance
between the nodes vi and vj.

We compare the vulnerability of the networks produced by the degree
homogenization with the Erdős-Rényi (ER) model of random networks [36],
geometric random networks (GR) [41], Barabási-Albert (BA) model of scale-
free networks [42], Watts-Strogatz (WS) model of small-world networks [37],
and random regular networks (RRN) [31, 32]. The networks have 500 nodes
and average connectivity 6, and data are averaged over 10 realizations. The
networks obtained from the algorithm (V = 0.0053) are more than 1.6 times
more robust than the WS small-world networks (V = 0.0086) and the ER
random networks (V = 0.0091), 10 times more robust than the geometric
random networks (V = 0.0551), and 30 times more robust than the BA scale-
free networks (V = 0.1597). The only networks which are comparable robust
are the random regular networks (V = 0.0044). However, we emphasize
that they are obtained by building networks starting from scratch, whereas
we are interested in rewiring existing networks. The proposed algorithm
has no effects on this kind of networks —as all the vertices have the same
degree— and so, given their low Q, observed in Section 4.1, they constitute a
lower bound for the performance of the new algorithm. In Fig. 8, we plot the
vulnerability of the new, homogenized networks on every 20 iteration, to show
that the improvement in robustness is concentrated in the first iterations.

5. Synchronization in rewired networks

In this Section we test the proposed rewiring on networks with real iden-
tical oscillators. The oscillators we are using are Chua oscillators [43]. The
systems are coupled in a linear way with varying coupling strength and the
coupling matrix is obtained from the Laplacian matrix of the evolving net-
works through the iteration of the proposed algorithm.
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The equations governing the motion are, for each i = 1, . . . N ,
ẋi1 = −α

(
xi1 + xi2 − n(xi1)

)
− σ

∑N
j=1 Lijxj2,

ẋi2 = xi1 − xi2 + xi3

ẋi3 = −βxi2,

(6)

with parameters α and β fixed at 8.5 and 15 respectively and n(y) = −8/3y+
4/63y3.

The starting topologies are chosen at random (as in the examples of
Section 4) with N = 100 and ⟨k⟩ ∈ {4, 6}. As a figure of merit for synchro-
nization we use the time average of the Mean Square Error (MSE)

⟨e⟩ = 1

τ − t0

∫ τ

t0

e(t) d t, (7)

with
e(t) = std(x1(t))

2 + std(x2(t))
2 + std(x3(t))

2, (8)

where 
x1(t) = [xi1(t), . . . , xN1(t)],

x2(t) = [xi2(t), . . . , xN2(t)],

x3(t) = [xi3(t), . . . , xN3(t)],

(9)

std(·) is the standard deviation, t0 is a time instant such that the systems
have reached steady-state behavior and τ is a time horizon large enough.
Hence, the lower is the mean square error, the better is the synchronization
achieved by the network.

We consider the cases with N = 100, ⟨k⟩ = 4, N = 100, ⟨k⟩ = 6, N =
200, ⟨k⟩ = 6, and N = 300, ⟨k⟩ = 6, in Fig. 9 (a), Fig. 9 (b), Fig. 9 (c), and
Fig. 9 (d), respectively. We plot the time average of the MSE with respect to
the coupling strength σ of Eq. (6) using the starting topology [line denoted
with (0)], the topology after two iterations of the simple homogenization
procedure [line denoted with (2)], and so on up to the topology after 10
steps [line denoted with (10)].

It is noticeable that the simple degree homogenization produces networks
of oscillators which have better synchronizability than the starting networks
in a few number of steps.
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6. Concluding remarks and future work

We inspected some properties of a simple perturbation of networks in or-
der to enhance synchronizability, robustness, and support for efficient com-
munication (as in the case of entangled networks, [7]). The rewiring is very
simple compared to others presented in the literature. However, it improves
synchronizability and robustness of a given network in a small number of
steps, just by exploiting the homogenization of the nodes’ degree. More-
over, we show that for scale-free topology it is easier to simply add edges
between the poorly connected nodes in order to enhance synchronizability.
Time domain simulations with networks of coupled oscillators confirmed the
enhanced synchronizability. In addition, we inspected the resulting networks
in order to give insights about the characteristics one topology should gener-
ally have in order to be optimal and robust. The conclusion, as in [7], is that
weak-entangled structures, i.e. very homogeneous structures, and democ-
racy, i.e. low authority rank, are instrumental in obtaining synchronizability
and robustness. We have shown that the networks obtained with the simple
homogenization algorithm are more robust than other networks with sim-
ilar average connectivity, such as random, geometric random, small-world
and scale-free networks. Finally, our simple and myopic procedure is able
to build networks with weak-entangled structure in a small number of steps,
which can be very useful in practice, when the networks are dense and have
a large number of nodes.

Future investigation of quantifying and explaining the good performances
in the first iterations of the proposed rewiring could be useful to design more
elaborated algorithms to build networks with more entangled structures. An-
other improvement would be to find how close our weak-entangled structure
is to an optimal, i.e. entangled, topology.
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[36] P. Erdős, A. Rényi, On Random Graphs. I., Publicationes Mathematicae
6, pp. 290-297, 1959.

[37] D. J. Watts, S. H. Strogatz, Collective dynamics of ’small-world’ net-
works, Nature, Vol. 393, No. 6684, pp. 440-442, June 1998.

[38] L. C. Freeman, Centrality in social networks conceptual clarification,
Social Networks, Vol. 1, No. 3, pp. 215-239, 1978-1979.

[39] G. Sabidussi, The centrality index of a graph, Psychometrika, Vol. 31,
pp. 581-603, 1966.

[40] J. Kleinberg, Authoritative sources in a hyperlinked environment, Jour-
nal of the ACM, vol. 46, No. 5, pp. 604-632, 1999.

[41] M. Penrose, Random Geometric Graphs, Oxford Studies in Probability,
Oxford University Press, USA, 2003.

[42] A.-L. Barabási, R. Albert, Emergence of Scaling in Random Networks,
Science, Vol. 286, No. 5439, pp. 509-512, Oct 1999.

[43] L. O. Chua, M. Komuro, and T. Matsumoto, The double scroll family,
IEEE Transactions on Circuits and Systems I, Vol. 33, No. 11, pp. 1073-
1118, 1986.

19



0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s (iteration number)

Q
(s

)/
Q

(0
)

N=50

N=100

N=200

N=300

N=500

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1

s (iteration number)

Q
(s

)/
Q

(0
)

N=50

N=100

N=200

N=300

N=500

Figure 1: Q(s)/Q(0) as a function of the number of iterations s for networks with different
number of nodes N and ⟨k⟩ = 4 for the upper panel, and ⟨k⟩ = 6 for the lower panel (data
are averaged over 10 networks).
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Figure 2: Q(s)/Q(0) as a function of the number of iterations s for the degree homoge-
nization procedure and the RJH algorithm described in [11], for a network with N = 200
and ⟨k⟩ = 6 (data are averaged over 10 networks).
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Figure 3: Behavior of the relative λ2 and λN through the degree homogenization process
for network with N = 200 and ⟨k⟩ = 6 (data are averaged over 10 networks).
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Figure 4: Q(s)/Q(0) as a function of the number of iterations s for scale-free networks for
N = 200 and ⟨k⟩ = 4 (data are averaged over 10 networks).
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Figure 5: Topological properties of the obtained network with N = 200 and ⟨k⟩ = 6 (data
are averaged over 10 networks).

24



0 50 100 150 200
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Node

D
eg

re
e 

(k
)

 

 

Starting
Ending

0 50 100 150 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Node

B
et

w
ee

nn
es

s 
ce

nt
ra

lit
y 

(B
C

)

 

 

Starting
Ending

(a) (b)

0 50 100 150 200
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8
x 10

−3

Node

C
lo

se
ne

ss
 c

en
tr

al
ity

 (
C

C
)

 

 

Starting
Ending

0 50 100 150 200
2

3

4

5

6

7

8

9

10

11
x 10

−3

Node

H
IT

S
 v

al
ue

 

 

Starting
Ending

(c) (d)

Figure 6: Centrality values at the beginning (black line) and at the end of the degree
homogenization (grey line) for a network with N = 200 and ⟨k⟩ = 4 (data are averaged
over 10 networks). The centrality values are: (a) Degree, (b) Betweenness, (c) Closeness
and (d) HITS.
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homogenization procedure.
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Figure 9: Time average of the means square error ⟨e⟩ with respect to the coupling strength
σ for different iterations of the simple homogenization procedure. (0) denotes the error
using the starting topology, (2) after 2 iterations, and so on up to (10) for 10 iterations.
We observe the following cases: (a) N = 100 and ⟨k⟩ = 4, (b) N = 100 and ⟨k⟩ = 6, (c)
N = 200 and ⟨k⟩ = 6, (d) N = 300 and ⟨k⟩ = 6.
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