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Abstract
The AiTLAS toolbox (Artificial Intelligence Tool-
box for Earth Observation) includes state-of-the-
art machine learning methods for exploratory and
predictive analysis of satellite imagery as well
as repository of AI-ready Earth Observation (EO)
datasets. It can be easily applied for a variety of
Earth Observation tasks, such as land use and cover
classification, crop type prediction, localization of
specific objects (semantic segmentation), etc. The
main goal of AiTLAS is to facilitate better usabil-
ity and adoption of novel AI methods (and mod-
els) by EO experts, while offering easy access and
standardized format of EO datasets to AI experts
which further allows benchmarking of various ex-
isting and novel AI methods tailored for EO data.

1 Introduction
According to the Sentinel Data Access Annual Reports [Cas-
triotta and Volpi, 2020], the volume of data produced by the
Sentinel satellite mission(s) is substantially growing – dou-
bling each year since 2017 (to 19.5 PB in 2019), with data
downloads growing at a similar rate (to 178.5 PB in 2019).
On the other hand, this growth rate in data production is well
matched by the rapidly growing development in AI, which
probes various aspects of natural sciences, technology and
society. Recent trends in machine learning, and particular
deep learning, have ushered to a new era of image analysis
and raised the predictive performance bar in many applica-
tion domains, including remote sensing and Earth observa-
tion [Ball et al., 2017]. Nevertheless, despite the success
of some individual attempts, given the amount of available
satellite images, the application of AI in the EO supply chain
is still scarce and, more importantly, still unstructured and
unverifiable. This is due to a number of challenges that re-
quire immediate attention: (1) lack of benchmark data sets
produced in an AI-ready format, (2) lack of data and meth-
ods for benchmarking and model comparisons, and (3) lack
of ready-to-use, comprehensive resources.

AiTLAS1 addresses the aforementioned challenges and
∗Contact Authors
1https://github.com/biasvariancelabs/aitlas

aims at resolving them. It is a recent open-source library
designed to facilitate the use of EO data in the AI commu-
nity and, more importantly, to accelerate the uptake of (ad-
vanced) machine learning methods and approaches by EO ex-
perts. More specifically, AiTLAS provides resources such as:
benchmarking tools, ready-to-use models, tools for learning
models de novo, semantically annotated datasets created in a
format that can be used directly by AI methods.

2 AiTLAS
We designed and developed a toolbox that contains state-of-
the-art AI methods and techniques and follows the best prac-
tices for machine learning use and deployment. The tool-
box is based on three main concepts: models, datasets and
tasks. The models concept defines the architecture of the deep
learning models as well as their behavior. The datasets con-
cept defines the data by encapsulating certain operations over
datasets, such as loading and preparing the data as well as ac-
quiring and, optionally, transforming a given item. Finally,
the task concept is used to make a complete workflow where
a given model is used over a given dataset. In the toolbox, we
have defined several tasks that are common for these types of
problems, such as, tasks for training and evaluating a model
over a given dataset, etc.

Additionally, AiTLAS also includes transformations, visu-
alizations and evaluation measures, as supportive concepts to
the previous ones. In particular, various transformations can
be applied to the data if needed before training. The evalua-
tion measures are used to gauge the performance of the model
(e.g., accuracy, F1 score etc.) that, depending on the tasks,
can also be illustrated with a variety of visualizations (e.g.,
showing mask overlays makes sense for segmentation). Note
that, for increasing usability, the evaluation measures, along
with the loss functions, are logged in a Tensorboard [Abadi et
al., 2015] friendly format.

2.1 Software implementation
AiTLAS is developed using Python and distributed under the
MIT license. It is developed as a library but can be used as a
standalone application as well. All the models, datasets and
tasks can be configured via a proprietary JSON format or pro-
gramatically by initializing the appropriate classes. The tool-
box has a variety of dependencies that are used to power it,

ar
X

iv
:2

20
1.

08
78

9v
1 

 [
cs

.C
V

] 
 2

1 
Ja

n 
20

22

https://github.com/biasvariancelabs/aitlas


but the main one is PyTorch [Paszke et al., 2019]. This serves
as the backbone over which deep learning models and behav-
ior are built.

All the functionalities of AiTLAS are organized into five
separate modules:

• aitlas.base - The core module that contains the ab-
stract definitions of everything we have in AiTLAS. The
definitions of the tasks, models, datasests, and transfor-
mations, evaluation measures and visualizations. To ex-
tend the functionality of AiTLAS, one would need to
extend the definitions implemented here.

• aitlas.models - Contains specific implementations of
the deep learning models.

• aitlas.datasets - Contains The datasets and dataset
types which are supported by AiTLAS, out of the box.

• aitlas.tasks - Includes readily executable work-
flows. There are several implemented tasks in AiT-
LAS, such as: training task, evaluating tasks, task to
run some data preparations, tasks for extracting features
etc. While the ones currently implemented are can be
applied in many different scenarios, they can also serve
as a blueprint for creating/instantiating new, more spe-
cific, task.

• aitlas.utils - Contains handy utility functions,
which can be used within the toolbox or outside of it.

2.2 Methods and models
The toolbox supports a number of models that have been
shown to lead to improved predictive performance. Its flexi-
ble design of the software architecture allows users to easily
include other models, including implementing their own cus-
tom made models. AiTLAS currently includes the following
models: DeepLabv3 [Chen et al., 2017], Fast R-CNN [Gir-
shick, 2015], ResNet [He et al., 2015], VGG16 [Simonyan
and Zisserman, 2015], and Unsupervised DeepCluster [Caron
et al., 2019].

The implemented models cover a variety of EO use cases:
land use and land cover classification, semantic segmentation
and object detection in the context of EO, etc. The models
support both multi class and multi label classification. The
multi class models assign a single label per image, whereas
the multi label models assign multiple labels (or, in practice,
land covers) in each image, which is closer to what is used in
real life.

The Unsupervised DeepCluster [Caron et al., 2019] model
can leverage large amounts of unlabeled images to learn ro-
bust features. It uses clustering in combination with deep
neural networks to provide pseudo-labels for a convolutional
neural network. Within the toolbox, we are using the unsu-
pervised deep learning to learn general features from a large
set of unlabeled satellite images and then apply fine-tuning
using datasets with a limited number of labeled images for a
given task.

2.3 Datasets
AiTLAS has a number of datasets available. We have sepa-
rated them into two groups: (i) land-use/cover classification

datasets and (ii) object segmentation datasets. Note that, land
use datasets are where the annotation problem is a multi class
or a multi label type, where as the latter tackles segmenta-
tion. To this end, the former includes: UC Merced [Yang
and Newsam, 2010; Chaudhuri et al., 2017], Eurosat [Hel-
ber et al., 2019], BigEarthNet [Sumbul et al., 2019], DFC15
[Hua et al., 2019], PatternNet [Zhou et al., 2018], AID [Xia
et al., 2017] and RESISC45 [Cheng et al., 2017]. The latter
includes: Chactun [Somrak et al., 2020], SpaceNet 6 [Dukai,
2018] and Landcover AI [Boguszewski et al., 2020].

3 AiTLAS use case
In order to demonstrate the functionalities of the toolbox, we
present a Jupyter Notebook for multi label land cover classifi-
cation of satellite images. We will show how to load the data
and inspect the classes and class imbalances in the dataset.
Next, we train our model using convolution neural networks,
and finally, we test the model with external images for infer-
ence.

We use the multi label UC Merced dataset with 17 land
cover classes. Once we get the data and unzip it2, we are
ready to explore it. In order to achieve this we need to cre-
ate and instance of the UcMercedMultiLabelDataset, which
is a class within the toolbox that can handle loading of the
data. The instance is created by providing the root folder in
which the images and annotations are unzipped, additionally
we can supply the batch size to be used in the data loader dur-
ing the process of training, the shuffle parameter to have the
data reshuffled at every epoch and number of workers to spec-
ify the subprocesses to use for data loading. As an illustration
the code snippet is given in Listing 1.

1 train_dataset_config = {
2 "batch_size": 16,
3 "shuffle": True,
4 "num_workers": 4,
5 "root": "/ucmerced/images"
6 }
7 train_dataset = UcMercedMultiLabelDataset(

train_dataset_config)
8 fig = train_dataset.show_image(340)

Listing 1: Load train dataset

To display a given image from the dataset you can use
the function show image implemented in the class for the
dataset. The function expects an index/order number and will
display the image and the annotations/labels for the image.
The example image with index/order number 340 and the an-
notations/labels are shown on Figure 1.

Before we move on to the machine learning task, we can
inspect the distribution of the classes in the dataset. Checking
the distribution of the dataset is an important step to check for
data imbalances in your dataset. The distribution can be eas-
ily calculted using the function data distribution table
implemented in the class for the dataset. The distribution for
the dataset is given in Figure 1. The data reveals the class
imbalances in the dataset, the pavement class has 987 images
while Airplane class has 78 images.

2https://bigearth.eu/datasets.html
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Next, we need to initialize and create the model with con-
figuration. We will use the ResNet50 architecture which is
implemented in the toolbox. The configuration parameters
are the number of epoch, the path in which to save the final
model parameters, the visualizations and the results, the num-
ber of classes, the learning rate, the threshold to obtain the
predictions and calculate the various metrics. By setting the
parameter pretrained to true we state that we want to use the
pretrained variant of ResNet50 over the ImageNet dataset and
to apply fine tuning using the UC merced multi label dataset.
Now, we can start training our model with the data. We use
the train and evaluate model function. The function ac-
cepts the train dataset created using the code from Listing 1,
similar to this we can create the test dataset using different
root folder (UC Merced multi label dataset has predefined
train and test splits). We can also select to apply transforma-
tions over the images, this can be configured using the param-
eters transforms and target transforms defined for the
dataset class. As an ilustration the code snippet for initializ-
ing the model and initiating the training is given in Listing 2.

1 epochs = 50
2 model_directory = "/ucmerced/experiments/"
3 model_config = {"num_classes": 17, "

learning_rate": 0.0001,"pretrained": True
, "threshold": 0.5}

4 model = ResNet50MultiLabel(model_config)
5 model.prepare()
6 model.train_and_evaluate_model(
7 train_dataset=train_dataset ,
8 epochs=epochs,
9 model_directory=model_directory ,

10 val_dataset=test_dataset ,
11 run_id=’1’,)

Listing 2: Creating a model and start of model training

Once the training starts, the AiTLAS toolbox displays the
running time for each epoch, calculated loss and the evalu-
ation metrics. The final model will be saved in the model

Figure 1: Example image from the UC Merced multi-label dataset
(Image#340) for which the predictions are ’buildings’, ’cars’, ’pave-
ment’ and ’trees’.

directory given in the configuration parameter. The calcu-
lated metrics and losses are logged and can be visualized us-
ing tensorboardX. To test the model, we can predict several
images from an external source and see how the model per-
forms. This can be done using the code from Listing 3. First
we load the image using the utility function image loader
from the toolbox, load the model parameters from the saved
file and call the predict function. The predict function returns
the predicted labels and the probability for each label.

1 model.load_model(’ucmerced/experiments’)
2 image = image_loader(’images/predict’)
3 plt.imshow(image)
4 y_true, y_pred, y_prob = model.predict_image(

image)

Listing 3: Loading trained model and predicting image

The entire code and Jupyter Notebook for this tutorial is
available in the Github repository of the AiTLAS toolbox3.

4 Summary
We have described AiTLAS, an open-source, state-of-the-art
toolbox for exploratory and predictive analysis of satellite
imaginary pertaining to a variety of different tasks in Earth
Observation. AiTLAS has several distinguishing properties.
First, it is modular and flexible - allowing for easy configu-
ration, implementation and extension of new data and mod-
els. Next, it is general and applicable to a variety of tasks
and workflows. Finally, it is user-friendly. This, besides aid-
ing the AI community by providing access to structured EO
data, more importantly, facilitates and accelerates the uptake
of (advanced) machine learning methods by the EO experts,
thus bringing these two communities closer together.
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