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Abstract

We present AiTLAS: Benchmark Arena – an open-source benchmark framework for evaluating state-of-the-art deep
learning approaches for image classification in Earth Observation (EO). To this end, we present a comprehensive
comparative analysis of more than 400 models derived from nine different state-of-the-art architectures, and com-
pare them to a variety of multi-class and multi-label classification tasks from 22 datasets with different sizes and
properties. In addition to models trained entirely on these datasets, we also benchmark models trained in the con-
text of transfer learning, leveraging pre-trained model variants, as it is typically performed in practice. All presented
approaches are general and can be easily extended to many other remote sensing image classification tasks not con-
sidered in this study. To ensure reproducibility and facilitate better usability and further developments, all of the
experimental resources including the trained models, model configurations and processing details of the datasets
(with their corresponding splits used for training and evaluating the models) are publicly available on the repository:
https://github.com/biasvariancelabs/aitlas-arena.

1 Introduction

Recent trends in machine learning (ML) have ushered in a new era of image-data analyses, repeatedly achiev-
ing great performance across a variety of computer-vision tasks in different domains [1, 2]. Deep learning (DL)
approaches have been at the forefront of these efforts – leveraging novel, modular and scalable deep neural network
(DNN) architectures able to process large amounts of data. The inherent capabilities of these approaches also extend
to various areas of remote sensing, in particular Earth Observation (EO), employed for analyzing different types of
large-scale satellite data [3]. Many of these contributions are instances of image-scene classification, such as land-use
and/or land-cover (LULC) identification tasks, focusing on image-scene analyses, characterizations, and classifica-
tions of changes in the landscape, caused either by human activities or by the elements.

Historically, from the perspective of ML, many of these tasks have been addressed mostly through the paradigms
of either pixel-level [4, 5] or object-level classification tasks [6]. The former refers to classification tasks focusing on
each pixel in the image, associating it with the appropriate semantic label. Such approaches typically do not scale well
on high-resolution images, but more importantly, many times struggle to capture more high-level patterns in the image
that can span over many pixels [7]. The latter, object-level classification methods, focus on analyzing distinguishable
and meaningful objects in the image (as a collection of pixels) rather than independent pixels. This, in general, allows
for better scalability and performance, however, such approaches may struggle with images containing more diverse,
and hardly-distinguishable objects, which prevail in most high-resolution remote-sensing data. Methods based on
both pixel-level and object-level paradigms have shown decent performance and are still actively researched, mostly
as instances of image segmentation and object detection tasks, respectively. More recently, however, methods based
on a new paradigm of scene-level classification [8, 9] have shown significant performance improvements, focusing
on learning semantically meaningful representations of more sophisticated patterns in an image by leveraging the
capabilities of deep learning.
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In this context, DL approaches have been successfully applied in various scenarios, by learning models from
scratch or via transfer learning[10, 11], in a fully supervised or self-supervised setting [12, 13], exploiting the hetero-
geneity [14] and temporal properties [15] of the available data. As a result, this synergy of accurate DL approaches, on
the one hand, and accessible high-resolution aerial/satellite imagery, on the other, has led to important contributions
in various domains ranging from agriculture [16, 17, 18], ecology [19, 20], geology [21] and meteorology [22, 23, 11]
to urban mapping/planning[24, 25, 26] and archaeology [27].

Nevertheless, most of these efforts typically focus on very narrow tasks, stemming from domain-specific and/or
spatially-constrained datasets. As a result, models have been evaluated in different settings and under different con-
ditions [28] – hardly reproducible and comparable. These persistent challenges, akin to a lack of standardized and
consistent validation and evaluation of novel approaches, have also been identified by the community [29]. Citing
the lack of available documentation on the design and evaluation of the employed machine learning approaches, the
community highlights the urgent need for standardized benchmarks, that will not only enable proper and fair model-
comparison across datasets and similar tasks, but will also facilitate faster progress in designing better and more
accurate modeling approaches.

Motivated by this, in this work, we introduce AiTLAS: Benchmark Arena – an open-source EO benchmark frame-
work for evaluating state-of-the-art DL approaches for EO image classification. To this end, we present extensive
comparative analyzes of models derived from nine different state-of-the-art architectures, comparing them on a variety
of multi-class and multi-label classification tasks from 22 datasets with different sizes and properties. We benchmark
models trained from scratch as well as in the context of transfer learning, leveraging pre-trained model variants as
it is typically performed in practice. While in this work we mostly focus on EO-image classification tasks, such as
LULC, all of the presented approaches are general and easily extendable to other remote-sensing image classification
tasks. More importantly, to ensure reproducibility, facilitate better usability and further exploitation of the results from
our work, we provide all of the experimental resources - freely available on our repository1. The repository includes
the complete study details, such as the trained models, model parameters, train/evaluation configurations, measured
performance scores, as well as the details on all of the datasets and their prepossessed versions (with the appropriate
train/validation/test splits) used for training and evaluating the models.

To our knowledge, we present a unique systematic review and evaluation of different state-of-the-art DL methods
in the context of EO image classification across many classification problems – benchmarked in the same conditions
and using the same hardware. Related efforts, while relevant, have mostly focused on evaluating approaches on
particular datasets [8, 28, 30, 31]; evaluating different aspects of method-design [32, 14] relevant to remote-sensing
classification tasks; or providing a more general overview of the common tasks at hand [33, 34]. In particular,
Cheng et al. [8] introduce a dataset and surveys several ML representation-learning approaches, commonly used
for remote-sensing classification tasks, comparing their performance when combined with traditional convolutional
neural network (CNN) architectures. Xia et al. [31] also introduce a benchmark dataset for aerial-image classification,
providing a comparison similar to [8] of representation-learning approaches combined with three deep networks.
Another, more recent, study [28], discuses and compares more recent DL approaches and surveys several applications
on three different datasets. In particular, the authors showcase the performance of the different methods for each
dataset, as reported in the respective papers. The underlying, persistent, conclusions from these studies show that
model performances are associated with a respective dataset and study design, presenting difficulties for fair and
general model comparisons. This is expected, but in our work, we seek to remedy this issue, by training and evaluating
all models under the same conditions.

In this context, our work is related to the one of Zhai et al. [32], which present a large-scale study on more recent
representation-learning approaches, benchmarking different aspects of method design and model parameters. How-
ever, Zhai et al. [32] consider a rather wide scope of different datasets with only a few relevant to remote-sensing and
LULC classification, thereof. Neumann et al. [14] present a large-scale study on five different benchmark datasets,
however, they aim at investigating the effect of transfer learning on these tasks. More specifically, they evaluate
different variants of the same model architecture, trained under different circumstances, rather than comparing differ-
ent model architectures. Another related study by Stewart et al. [35] reports on comparison of different variants of
ResNets on EO-image classification tasks from four datasets. More recently, and arguably most related to our work in

1https://github.com/biasvariancelabs/aitlas-arena
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Figure 1: Overview of the study: We benchmarked more than 400 models from 9 different model architectures on tasks from
(a) 22 datasets with different sizes and properties; comparing them on (b) multi-label and (c) multi-class classification tasks. We
evaluate two versions of each model architecture: (i) trained from scratch (denoted with darker shading) and (ii) pre-trained on
ImageNet-1K (denoted with lighter shading). Note the varying scales in (b) and (c), made purposely for better visibility. Detailed
results are presented in Section 4 and Appendix C

terms of the number of evaluated models, Papoutsis et al. [30] present an extensive empirical evaluation of different
state-of-the-art DL architectures suitable for EO-image classification tasks, specifically LULC tasks, focusing exclu-
sively on the BigEarthNet [36] dataset. Namely, the authors benchmark different classes of model architectures across
different criteria and introduce an efficient and well-performing model, specifically tailored for BigEarthNet.

In this work, we go beyond all the aforementioned studies, largely extending the scope under study in two di-
rections: the number of model architectures (and model variants) being evaluated and datasets being considered.
This results in evaluating more than 400 different models with varying architectures, designs, and learning paradigms
across 22 datasets. We also provide essential study-design principles and model training details that will aid in more
systematic and rigorous experiments in future work. The proposed AiTLAS: Benchmark Arena builds on the AiTLAS
toolbox [37]2 – a recent open-source library for exploratory and predictive analysis of satellite imaginary pertaining
to different remote-sensing tasks. AiTLAS implements a variety of methods and libraries for data handling, process-
ing, and analysis, with PyTorch [38] as a backbone for constructing and learning DL models. By having all of the
methods and datasets under the same umbrella, we provide the means for a fair, unbiased, and reproducible compar-
ison of approaches across different criteria that include: overall model performance, data- and task-dependent model
performance, model size, and learning efficiency as well as the effect of transfer learning via model pre-training.

The results, summarized in Figure 1, show that many of the current state-of-the-art architectures for vision tasks
can lead to decent predictive performance when applied to EO image classification tasks. While training models from

2https://aitlas.bvlabs.ai
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scratch, leads to satisfactory performance in some cases, fine-tuning pre-trained models on each dataset leads to the
best performance. We observed this in (almost) all cases, regardless of dataset properties, type of the classification
tasks, or the model architecture. We found more considerable performance gains on tasks from smaller datasets,
which, as expected, benefited more from the pre-training process than models trained on larger datasets. In terms
of model architectures, our experiments showed that the Vision Transformer [39] and DenseNet [40] models, were
generally able to achieve the best performance, with the latter requiring twice the training time. Throughout the paper,
we further evidence and discuss these findings.

In summary, we make several contributions in this paper. In particular, we:

• We introduce AiTLAS:Benchmark Arena, an open-source benchmark framework that allows standardized eval-
uation of machine learning models for Earth Observation (EO) applications;

• We provide study-design principles for training and evaluating state-of-the-art deep learning models on various
supervised EO image classification tasks from 22 datasets with different size and properties;

• We implement and benchmark more than 400 models stemming from 9 state-of-the-art architectures, including
models trained from scratch as well as their pre-trained variants;

• We provide an open-source access to all of the experimental details, including trained models, dataset details,
train/evaluation configurations and detailed performance scores.

2 Data & models

2.1 Data description

With the ever-growing availability of remote sensing data, there has been a significant effort by many research
groups into preparing, labeling, and providing proper datasets that will support the development and evaluation of
sophisticated machine learning methods. While there are many such datasets, both proprietary and publicly available,
in this work we focus on the latter. We select 22 such datasets, with varying sizes (number of images), varying image
types, image sizes, and formats, and more importantly, related to different classification tasks.

Namely, we consider datasets related to both multi-class and multi-label classification tasks, mainly addressing
LULC applications. The objective of multi-class classification tasks is to predict one (and only one) class (label) from
a set of predefined classes for each image in a dataset. Multi-label classification, on the other hand, refers to predicting
multiple labels from a predefined set of labels for each image in the dataset [41] (eg. an image can belong to more
than one class simultaneously). In our experimental study, we consider 15 multi-class and 7 multi-label datasets.

Tables 1 and 2 summarize the properties of the considered multi-class (MCC) and multi-label (MLC) classification
datasets, respectively. The number of images across datasets is quite diverse, ranging from datasets with ∼ 2K images
to datasets with ∼ 500K images. This also extends towards the number of labels per images, ranging from 2 to 60.
Figure 1a visualizes the datasets with respect to their size-properties, with x-axis denoting the number of images (on
a log-scale) and y-axis denoting the number of labels (with marker-size denoting the number of labels per image) for
each of the different datasets. Most of the datasets are comprised of Aerial RGB images (with only few comprised of
satellite multi-spectral data) that are different in the spatial resolution, size and format. Finally, we note the datasets
that include predefined splits (for training, validation and testing) given by the original authors, and provide the splits
for the ones that are missing as further discussed in Section 3.1. More detailed description of each dataset are given
in Appendix C.

2.2 Model architectures

Current trends in EO image classification leverage the capabilities of DL architectures for computer vision, learn-
ing data representations that very often lead to superior predictive performance. We recognize that there are many
different approaches, stemming from different model architectures and model variants. These can differ in various
’finer’ details (e.g., number and width of layers, hyper-parameter values, and learning regimes), often developed for a
particular task at hand. Rather than seeking a state-of-the-art performance for each individual EO problem/dataset, in
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Table 1: Multi-class classification (MCC) datasets.
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UC Merced [9] Aerial RGB 2100 256×256 0.3m 21 No tif
WHU-RS19 [42] Aerial RGB 1005 600×600 0.5m 19 No jpg
AID [31] Aerial RGB 10000 600×600 0.5m - 8m 30 No jpg
Eurosat [43] Sat. Multispectral 27000 64×64 10m 10 No jpg/tif
PatternNet [44] Aerial RGB 30400 256×256 0.06m - 4.69m 38 No jpg
Resisc45 [45] Aerial RGB 31500 256×256 0.2m - 30m 45 No jpg
RSI-CB256 [46] Aerial RGB 24747 256×256 0.3 - 3m 35 No tif
RSSCN7 [47] Aerial RGB 2800 400×400 n/a 7 No jpg
SAT6 [48] RGB + NIR 405000 28×28 1m 6 Yes mat
Siri-Whu [49] Aerial RGB 2400 200×200 2m 12 No tif
CLRS [50] Aerial RGB 15000 256×256 0.26m - 8.85m 25 No tif
RSD46-WHU [51] Aerial RGB 116893 256×256 0.5m - 2m 46 Yes jpg
Optimal 31 [52] Aerial RGB 1860 256×256 n/a 31 No jpg
Brazilian Coffee Scenes (BSC) [53] Aerial RGB 2876 64×64 10m 2 No jpg
SO2Sat [54] Sat. Multispectral 400673 32×32 10m 17 Yes h5

Table 2: Multi-label classification (MLC) datasets.
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UC Merced (MLC) [55] Aerial RGB 2100 256×256 0.3m 17 3.3 No tif
MLRSNet [56] Aerial RGB 109161 256×256 0.1m - 10m 60 5.0 No jpg
DFC15 [57] Aerial RGB 3342 600×600 0.05m 8 2.8 Yes png

BigEarthNet 19 [36] Sat. Multispectral 519284

20×20
60x60
120x120

60m
20m
10m 19 2.9 Yes tif, json

BigEarthNet 43 [58] Sat. Multispectral 519284

20×20
60x60
120x120

60m
20m
10m 43 3.0 Yes tif, json

AID (MLC)[59] Aerial RGB 3000 600×600 0.5m - 8m 17 5.2 Yes jpg
PlanetUAS [60] Aerial RGB 40479 256×256 3m 17 2.9 No jpg/tiff

this study, we are interested in providing a more general evaluation framework, and benchmarking models by analyz-
ing their characteristics and unique properties through the lens of their predictive performance and learning efficiency
across all datasets.

Therefore, our model-architecture (and parameter) choices are motivated by different architecture ’classes’, such
as the traditional convolutional architectures as well as the more recent attentional and mlp-based architectures. This
also renders models with different sizes, training/inference time, different abilities in a transfer-learning setting, etc.
More specifically, we investigate several architectures which have been traditionally used for EO image classification
tasks such as: AlexNet [61], VGG16 [62], ResNet [63] and DenseNet [40]. Moreover, we investigate more recent
architectures which include EfficientNet [64], ConvNeXt [65], Vision Transformer [39] and MLPMixer [66], that
have shown state-of-the-art performance in various vision tasks. In the following, we provide a brief overview of
these architectures, highlighting their properties in Table 3.
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Table 3: Summary of the representative model architectures considered in this study.

Model Year #Layers #Parameters Based on
AlexNet [61] 2012 8 ∼ 57.0M [67]
VGG16 [62] 2014 16 ∼ 134.2M [67]
ResNet50 [63] 2015 50 ∼ 23.5M [67]
ResNet152 [63] 2015 152 ∼ 58.1M [67]
DenseNet161 [40] 2017 161 ∼ 26.4M [67]
EfficientNet B0 [64] 2019 237 ∼ 5.2M [67] version: B0
Vision Transformer (ViT) [39] 2020 12 ∼ 86.5M [68] version: b 16 224
MLPMixer [66] 2021 12 ∼ 59.8M [68] version: b 16 224
ConvNeXt [65] 2022 174 ∼ 28M [67] version: tiny

The first class of models we consider, rely on convolutional architectures, which, in recent years, have driven
many of the advances in computer vision. The architecture of convolutional neural networks (CNN) consists of many
(hidden) layers stacked together, designed to process (image) data in the form of multiple arrays. Most typically,
CNNs consist of a series of convolutional layers, which apply convolution operation (passing the data through a
kernel/filter), forwarding the output to the next layer. This serves as a mechanism for constructing feature maps,
with former layers typically learning low-level features (such as edges and contours), subsequently increasing the
complexity of the learned features with deeper layers in the network. Convolutional layers are typically followed by
pooling operations, which serve as a downsampling mechanism, by aggregating the feature maps through local non-
linear operations. In turn, these feature maps are fed to fully-connected layers, which perform the ML task at hand – in
this case classification. All the layers in a network employ an activation function. In practice, the intermediate, hidden,
layers employ a non-linear function such as rectified linear unit (ReLU) or Gaussian Error Linear Unit (GELU) as
common choices. The choice of activation function in the final layer relates to the tasks at hand, typically a sigmoid
function in the case of classification. CNN architectures can also include different normalization and/or dropout
operators embedded among the different layers, which can further improve the performance of the network.

CNN architectures have been widely researched, with models applied in many contexts of remote sensing, and
in particular EO image classification [11, 69, 70, 30]. This includes AlexNet [61], a pioneering architecture that
introduced and successfully demonstrated the utility of the aforementioned blueprint of CNNs for computer vision
tasks. Namely, even though the architecture of AlexNet has a modest depth (relative to more recent architectures)
consisting of eight layers, it remains an efficient baseline approach for a variety of EO tasks [8, 10], leading to decent
performance, especially when pre-trained with large image datasets [71]. We also consider the more sophisticated
VGG [62], which employs a deeper architecture inspired by AlexNet. VGG has shown great performance in a variety
of vision tasks, including EO-image classification problems [72, 73, 44]. There are two variants of VGG in practice,
VGG16 and VGG19; both of which extend AlexNet mainly by increasing the depth of the network with 13 and 16
convolutional layers, respectively. In this study, we evaluate the performance of the former VGG16. VGGs employ
kernels with smaller sizes than the ones typically used in AlexNet, demonstrating that stacking multiple smaller ker-
nels are able better to extract more complex representations, than one larger filter. While, in general, increasing the
network depth by adding convolutional layers helps for learning more complex and more informative representations,
thereof, in practice this can lead to several issues such as the vanishing gradient problem [74], which impairs the
network training.

The Residual neural networks (ResNets) [63, 75] tackle this issue explicitly, by employing skip connections be-
tween blocks, therefore enabling better backprop gradient flow; better training, and, in general, better predictive per-
formance. ResNet architecture follows a typically CNN blueprint: Stacking residual blocks (typically same-size CNN
layers) and convolutional blocks (typically introducing a bottleneck via different-size CNN layers) together, followed
by fully-connected layers. By employing skip connections, the ResNet architecture allows stacking multiple layers
in a block, therefore training models with much deeper architectures. Here we investigate two such variants with
varying depths, ResNet50 and ResNet152, with 50 and 152 layers, respectively. Since their inception, ResNets have
been a very popular choice in practice. This also extends towards their utility for EO tasks, applied in the context of
image classification and semantic segmentation [76, 77, 35, 30]. Dense Convolutional Networks (DenseNets) [40] are
another well-performing architecture variant of ResNets, that has demonstrated state-of-the-art results on many clas-
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sification tasks, including applications in the domain of remote sensing [78, 79, 80]. As the name suggests, DenseNets
consist of dense blocks, where each layer is connected to every preceding layer, taking an additional (channel-wise)
concatenated input of the feature maps learned in the former layers. This is different from the ResNets, which prop-
agate (element-wise) aggregated feature maps through the network layers. The architecture of DenseNets encourages
feature reuse throughout the network, leading to well-performing and more compact models (with fewer trainable
parameters than a ResNet of equivalent size), albeit at the cost of increased memory during training.

EfficientNets [64] are a recent class of lightweight architecture that alleviate such common computational diffi-
culties, typical when scaling deep architectures on larger and/or harder problems. Namely, rather than scaling the
architecture in one aspect of increasing the depth (number of layers) [63], width (number of channels) [75] or (input
image) resolution [81]; EfficientNets implement compound scaling, that uniformly scales the architecture along the
three dimensions simultaneously. Compound scaling seeks an optimal balance between these 3 dimensions given
the available resources and task at hand. In turn, such an approach leads to substantially smaller models (than CNN
variants of equivalent performance), while retaining state-of-the-art predictive performance. In the context of EO
tasks, (variants of) EfficentNets have been successfully applied in different settings [82, 83, 84, 80], and have also
been thoroughly investigated in the context of multi-label image classification tasks from BigEartNet [30]. While
there are eight variants of EfficientNets, differing in the size and complexity of the architectures, here we investigate
the performance of the baseline EfficientB0 architecture with 5.2M parameters, substantially lower than any of the
other competing model architectures. Most recently, [65] introduce ConvNeXt, a novel class of convolutional archi-
tectures, that leverage various successful design decisions of many preceding architectures with a proven track record
on vision tasks. Namely, ConvNeXt implement various techniques at different levels: from reconfiguring details like
activation functions and normalization layers; redesigning more general architecture details that relate to residual and
convolutional blocks; to modifications in the training strategies. This, in turn, leads to models with state-of-the-art per-
formance, not only better than popular models from the same class of convolutional architectures but also better than
the more recent attentional architectures, discussed next. While there are several variants of the ConvNeXt architec-
ture that differ in their size, in this study we evaluate the performance of the smallest variant, namely ConvNeXt tiny.
Note that, to our knowledge, this is the first application of ConvNeXt on EO-image classification tasks.

We next take the notion of the recent success of the class of attentional network architectures and study the
performance of Vision Transformers (ViT) [39] in the context of EO-image classification tasks. Namely, ViTs inspire
by the popular NLP (natural language processing) Transformer architecture [85], leveraging an attention mechanism
for vision tasks. Much like the original Transformer that seeks to learn implicit relationships in sequences of word-
tokens via multi-head self-attention, ViTs focus on learning such relationships between image patches. Typically they
employ a standard transformer encoder that takes a lower-dimensional (linear) representation of these image patches
together with additional positional embedding from each, in turn, feeding the encoder output to a standard MLP head.
ViTs have shown great performance on a variety of vision tasks, particularly when combined with pre-training from
large datasets. This also includes several applications in remote sensing [86, 30, 87].

An attention mechanism, in the context of vision tasks, can be achieved differently (e.g., attending over channels
and/or spatial information, etc.) and even employed with typically convolutional architectures[88, 89, 84]. One such
alternative, that builds only on the classical MLP architecture, is the MLPMixer [66]. Namely, similar to a ViT, an
MLPMixer operates on image patches; and contains two main components: A block of MLP layers for ’mixing’ the
spatial, patch-level, information on every channel; and a block of MLP layers for ’mixing’ the channel-information of
an image. This renders lightweight models, with performance on par with many much more sophisticated architec-
tures, on a variety of vision problems, both more general as well as EO tasks [90, 30, 87]. We employ an MLPMixer
with an input size of 224x224 and a patch resolution of 16×16 pixels.

From each of the nine highlighted architectures, we evaluate two model versions: trained entirely on a given
dataset and fine-tuned models that have been pre-trained on a different image dataset. This results in comparing 18
models on each predictive task, which are available on our repository.

3 Experimental design

3.1 Training and evaluation protocol
To establish a unified evaluation framework and to support the reproducibility of the results, we generated train,

validation, and test splits using 60%, 20%, and 20% fractions, respectively. All of the data splits were obtained using
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stratified sampling. This technique ensures that the distribution of the target variable(s) among the different splits
remains the same [91]. We performed such stratification for all datasets, except the ones which include predefined
splits provided by the original authors. More specifically, for the BigEarthNet and SO2Sat datasets, we use the train,
validation and test splits as provided in [58, 36, 54]. Since SAT6, RSD46-WHU, DFC15 and AID datasets consist
only with predefined train and test splits, we further take 20% from the train part for validation. Finally, note that the
PlanetUAS dataset was part of a competition, and as such, the test data is not publicly available. Therefore, from the
original train data, we generated train, validation, and test splits using the 60%, 20%, and 20% fractions, respectively.

All the models are trained using the train splits, with parameters selection/search performed using the validation
splits. Additionally, to overcome over-fitting, we perform early stopping on the validation split for each dataset,
the best checkpoint/model found (with the lowest validation loss) is saved and then applied on the original test split
to obtain the final assessment of the predictive performance. All the train/validation/test splits for each dataset are
available in our repository.

Note that, during training we perform data augmentation for each dataset, by first resizing all the images to
256x256, followed by selecting a random crop of size 224x224. We then perform random horizontal and/or vertical
flips. During evaluation/testing, we first resize the images to 256×256, followed by a central crop of size 224×224.
We believe that this, in general, helps our models to generalize better on a given dataset. Also note that, in the study
we are using only RGB images. In the case of the multispectral datasets (Eurosat, SO2Sat and BigEarthNet) we
computed the images in the RGB color space by combining the red (B04), green (B03) and blue (B02) bands. For
the Brazilian Coffee Scenes dataset we use images in green, red and near-infrared spectral bands, since these are most
useful and representative for distinguishing vegetation areas as suggested by the authors.

Since we train models on 22 datasets, with a different number of classes, different training samples, and class-
distributions (as shown in Tables 1 and 2), we perform a hyperparameters search for each model and each dataset, to
account for these variations. Namely, we search over different values of learning rate: 0.01, 0.001, and 0.0001. We
use ReduceLROnPlateau as a learning scheduler which reduces the learning rate when the loss has stopped improving.
Models often benefit from reducing the learning rate by a factor once learning stagnates. This scheduler tracks the
values of the loss measure, reducing the learning rate by a given factor when there is no improvement for a certain
number of epochs (denoted as ‘patience’). In our experiments, we track the value of the validation loss, with patience
set to 5 and a reduction factor set to 0.1 (the new learning rate will be lr ∗ factor). Additionally, we also apply early
stop criteria if no improvements in the validation loss are observed over 10 epochs. Finally, we use fixed values for
some of the hyperparameters such as batch size which was set to 128. For optimization, we use RAdam optimizer [92]
without weight decay. RAdam is a variant of the standard Adam [93], which employs a mechanism that rectifies the
variance from the adaptive learning rate. This, in turn, allows for an automated warm-up, tailored to the particular
dataset at hand.

For each model architecture, we train two variants: (i) models trained entirely on a given dataset and (2) fine-tuned
models previously trained on a different (and larger) image dataset. The former, which we refer to as models ”trained
from scratch”, refer to models trained only on the dataset at hand and initialized with random weights in the training
procedure. The latter leverages transfer learning via model pre-training. In the next section, we provide further details
on how we use and fine-tune these pre-trained models. All models were trained on NVIDIA A100-PCIe GPUs with
40 GB of memory running CUDA version 11.5. We used the AiTLAS toolbox 3 to configure and run the experiments.
All configuration files for each experiment are also available in our repository along with the trained models. We
believe this provides a standardized evaluation framework for EO image classification tasks.

3.2 Transfer learning strategy

In this study, we take the notion of transfer learning as a strategy that can lead to performance improvements of
vision models on image classification tasks [32], in particular in EO domains [94]. In our problem setting, transfer
learning allows downstream, task-specific, models to leverage learned representations from model architectures that
have been pre-trained on much larger image datasets. This, in turn, often leads to (fine-tuned) models with much
better generalization power using fewer training data (and training iterations), which is especially useful for tasks that
stem from smaller datasets. Often, in the case of DL models for image classification, there are two strategies for

3https://github.com/biasvariancelabs/aitlas
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performing transfer learning that is being used: (1) fine-tuning the model weights only for the last, classifier layer or
(2) fine-tuning the model weights of all layers in the network. The former approach, retains the values of all but the
last layer’s weights of the model from the pre-training, keeping them ’frozen’ during fine-tuning. The latter, on the
other hand, allows the weights to change throughout the entire network during fine-tuning.

In our experiments, we implement the latter approach and fine-tune each network entirely for each specific dataset.
Note that, the choice of the pre-training dataset, and its relation to the domain of the downstream task, may also
influence the predictive performance of the fine-tuned model [14]. However, since here we are interested in a more
general evaluation that takes into account 22 different datasets, we take a standard approach, using pre-trained model
architectures on the ImageNet-1K [61] dataset (version V1). More specifically, we use implementations from the
PyTorch vision catalog [67] for most models, except ViT and MLPMixer for which we base the implementations
on [68]. In turn, we fine-tune the entire parameter set. In practice, this can lead to better generalization and higher
accuracy [95, 96], thereof.

3.3 Evaluation measures

Assessing the performance of machine learning models is a non-trivial task, specific to the learning task at hand
and dependent on the general objectives of the model being learned. Different evaluation measures capture different
aspects of the models’ behavior and their predictive power on novel examples, not used for training. Since the goal
of this study analyzing the predictive performance of different DL models across different datasets on multi-class and
multi-label classification tasks – we examine the experimental work through the lens of evaluation measures most
suitable for these two tasks.

More specifically, for multi-class classification tasks, we report the following measures: Accuracy, Macro Preci-
sion, Weighted Precision, Macro Recall, Weighted Recall, Macro F1 score, and Weighted F1 score. Note that, since
for these tasks the micro-averaged measures such as F1 score, Micro Precision, and Micro Recall have values equal to
accuracy, we do not report them. Note that, for image classification tasks is customary to report top-n accuracy (typi-
cally n is set to 1 or 5) [61], where the score is computed based on the correct label being among the n most probable
labels outputted by the model. In this paper, we report top-1 accuracy, denoted as ’Accuracy’ unless stated otherwise.
For multi-label classification tasks, we report Micro Precision, Macro Precision, Weighted Precision, Micro Recall,
Macro Recall, Weighted Recall, Micro F1 score, Macro F1 score, Weighted F1 score, and mean average precision
(mAP). Since all measures, but mAP, require setting a threshold on the predictions, we choose a threshold value of
0.5 for all models and settings. Further details and definitions of the evaluation measures used in the study are given
in Appendix A. We also provide additional performance details in terms of confusion matrices of each experiment,
allowing for a more detailed (per class/label) analysis of model performance (reported in Appendix C).

4 Results

We present the results of a large-scale study in which we compare different DL models for multi-class (MCC)
and multi-label classification (MLC) tasks from 22 datasets. To this end, we evaluate models from 9 architectures:
AlexNet, VGG16, ResNet50, ResNet152, DenseNet162, EfficientNetB0, ConvNeXt, Vision Transformer (ViT), and
MLPMixer. For each model architecture, we evaluate two variants: (i) models trained from scratch and (2) fine-tuned
models previously trained on the ImageNet-1K dataset. In the reminder, we outline and discuss:

1. The performance of models trained from scratch with respect to the two types of tasks
2. The benefits of pre-training models of different architectures, and their effect in view of the dataset properties
3. The ’performance vs. cost of model training’ trade-off between the considered modeling approaches

Detailed results of each experiment, with additional performance measures, are presented in Appendices B and C

4.1 Training models from scratch

We begin by analyzing the performance of models trained from scratch, i.e., models initialized with random
weights during training. Tables 4 and 5 present these results for the MCC and MLC tasks, respectively. Table 4
reports the accuracy (%) of the models learned from scratch for the 15 MCC datasets. It also reports the rank of
the models, estimated based on their performance and averaged over the 15 datasets. In general, the results show
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Table 4: Accuracy (%) of models trained from scratch on multi-class classification datasets. Bold indicates best performing model
for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance and averaged across
the 15 datasets.

Dataset \Model AlexNet VGG16 ResNet50 ResNet152 DenseNet161 EfficientNetB0 ViT MLPMixer ConvNeXt

WHU-RS19 66.169 68.657 79.602 80.597 80.597 75.622 74.627 69.652 72.139
Optimal31 55.108 56.720 67.204 62.903 71.237 68.548 62.634 59.140 58.871
UC merced 81.190 78.571 85.238 84.048 86.190 84.286 83.095 82.381 84.286
SIRI-WHU 83.750 84.792 88.958 88.750 86.667 86.042 86.250 82.500 84.167
RSSCN7 80.536 81.607 82.679 82.679 87.321 83.929 86.071 83.214 83.036
BCS 89.410 89.410 89.236 88.542 90.799 85.417 87.847 86.285 84.375
AID 81.350 81.950 89.050 89.900 93.300 90.050 79.350 71.750 81.100
CLRS 71.400 76.067 85.567 82.300 86.167 82.267 65.467 61.133 69.167
RSI-CB256 97.354 98.828 98.828 99.152 99.131 99.111 98.121 98.424 98.444
Eurosat 96.167 97.185 97 97.407 97.630 97.796 95.037 95.500 95.426
PatternNet 97.829 97.911 99.063 98.882 99.243 98.832 96.694 98.832 97.829
RESISC45 82.159 83.889 92.333 90.683 93.460 91.365 81.016 69.413 85.937
RSD46-WHU 86.032 88.625 90.549 89.944 92.211 90.612 86.466 81.253 88.693
So2Sat 56.511 62.271 59.587 61.477 55.428 65.173 55.333 53.580 60.154
SAT6 99.272 99.564 100 99.998 99.995 99.998 99.985 99.984 99.998

Avg. Rank 7.27 5.8 3.13 3.27 1.93 3.13 6.60 7.33 5.87

that convolutional architectures, especially the DenseNet, the EfficientNet, and the two ResNets, consistently perform
well. This is even more evident for datasets such as PatternNet, RSI-CB256, and SAT6, where the DenseNet (and
the other top-ranked models) lead to near-perfect results (accuracy greater than 99%). More specifically, DenseNet
is the best performing model in more than half of the tasks (9 out of 15) and achieves accuracy greater than 90% in
8 of the tasks. For smaller datasets, such as WHU-RS19, Optimal31, UC Merced, SIRI-WHU, RSSCN7 and CLRS,
these performances are generally much lower. However, the most challenging task is So2SAT, where EfficientNetB0
achieves the highest accuracy of 65.17%, while many of the models trail behind with performance of 55-60%. While
these results are consistent with previous findings [35], this is a clear sign of over-fitting, influenced by the quality
and size of the images in the dataset. The ViT, MLPMixer, and the latest ConvNeXt models are ranked in the bottom
4 (only better than AlexNet). Their performance is lower, but still practically competitive with the leading DenseNet
for many datasets.

The general conclusions outlined above also apply to MLC tasks. Table 5 reports on the mean average precision
(%) of the models learned from scratch across the 7 MLC datasets. The DenseNets rank the best (they provide the
best result for 2 out of 7 tasks). However, unlike the MCC tasks, the performance difference to other convolutional
models (i.e., the two ResNets and the EfficientNetB0) is much smaller. Moreover, models were only able to achieve
high performance (above 90%) on two tasks, DFC15 and MLRSNet, with DenseNet and ResnNet50 achieving the best
results. However, this is an expected result, as MLC tasks are generally more challenging than MCC tasks. This can
be attributed to two things in particular: First, in many cases, the semantic labels can be very similar, which makes
many of the models to struggle. Second, MLC datasets tend to have a greater class/label imbalance, in contrast to the
more uniform class distribution in MCC datasets. In this context, the most challenging MLC tasks overall are Plane-
tUAS and BigEarthNet43, where the best performing models (the two ResNets) achieve mAP od 64.96% and 64.34%

Table 5: Mean average precision (mAP %) of models trained from scratch on multi-label classification datasets. Bold indicates best
performing model for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance
and averaged across the 7 datasets.

Dataset \Model AlexNet VGG16 ResNet50 ResNet152 DenseNet161 EfficientNetB0 ViT MLPMixer ConvNeXt

AID 68.780 69.206 70.867 69.646 71.218 72.889 65.581 64.235 65.595
UC Merced 75.516 76.797 79.867 73.657 85.414 79.874 87.142 75.677 72.271
DFC15 88.099 89.871 94.675 94.188 95.848 93.973 94.164 91.663 89.564
Planet UAS 60.282 60.682 64.192 64.956 64.738 63.868 59.414 58.550 61.277
MLRSNet 90.850 91.524 95.259 93.982 94.745 94.395 87.250 85.281 90.710
BigEarthNet 19 75.711 77.989 78.726 78.519 79.725 79.211 75.871 77.005 77.909
BigEarthNet 43 56.082 58.969 64.343 62.736 63.390 62.173 57.410 58.772 60.472

Avg. Rank 7.57 5.57 2.43 3.86 1.71 3.14 6.43 7.57 6.71
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Figure 2: Comparison of average performance improvement of models from the 9 different architectures when (red) trained
from scratch and (blue) employing pre-trained models across (left) MCC and (right) MLC datasets. Error bars indicate confidence
interval of 68%. Models are ordered (worst to best) based on the average performance-rank of the pre-trained variants across all of
the 22 datasets. Model pre-training leads to substantial performance improvements.

, respectively. Finally, similar to the previous MCC analysis, ViT, MLPMixer, and ConvNeXt remain only better
ranked than AlexNet. Nevertheless, their performance on these MLC tasks is much more competitive, for instance, in
the case of ViT, which is the best model on the UC Merced task.

4.2 The benefits of using pre-trained models

While training models from scratch leads to decent performance (in general), in practice, leveraging pre-trained
models can lead to significant performance improvements on image classification tasks [32], and in particular on tasks
in EO domains [94].

This is also the general conclusion from our analysis. When using models that were first pre-trained on ImageNet-
1K and then fine-tuned on the specific datasets, we found that: Pre-trained models lead to substantial performance
improvements compared to models trained from scratch. Figure 2 illustrates this performance-improvement trend for
different models across the 22 MCC and MLC tasks. We find that pre-training significantly improves the performance
of all the evaluated models. Notably, we observe that ViT models benefit the most from pre-training, followed by
MLPMixer and ConvNeXt models. This is a significant improvement over the models trained from scratch. These
results, especially for the case of ViT, are consistent with previously reported findings [39, 30].

Tables 6 and 7 present the detailed results of these analyses for MCC and MLC tasks, respectively. Similarly
to the analyses in the previous section, we report model accuracy (%) in the case of MCC tasks and mean average
precision (%) in the case of MLC tasks. We also report the rank of the models, averaged over the respective datasets.
Considering MCC tasks (Table 6), the models achieve very good performance (accuracy over 90%) on 14 (out of 15)
tasks, with (almost) perfect results in five of those. Notably, we observed significant performance improvements, com-
pared to model-counterparts trained from scratch, on smaller datasets (such as WHU-RS19, Optimal31, UC Merced,
SIRI-WHU, RSSCN7, and CLRS), reaffirming the utility of transfer learning from large datasets in the context of EO
image classification tasks. In terms of model architectures, DenseNet ranks at the top among the model architectures.
However, in contrast to our previous analysis of models trained from scratch, here the ranking is not the clearest indi-
cator of overall performance: In many cases, the performance of ViTs is practically identical to DenseNets, achieving
best performance in 6 out of 15 cases. This is further highlighted for the case of the challenging So2SAT task, where
the ViT model leads to an accuracy of 68.55%, in contrast to DenseNet with an accuracy of 65.75%. In this specific
case, we observed that over-fitting remains an issue, even for pre-trained models. Our inspection of the train/vali-
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Table 6: Accuracy (%) of models pre-trained on ImageNet-1K on multi-class classification datasets. Bold indicates best performing
model for a given dataset. We report the average rank of a model (lower is better), ranked based on the performance and averaged
across the 15 datasets.

Dataset\Model AlexNet VGG16 ResNet50 ResNet152 DenseNet161 EfficientNetB0 ViT MLPMixer ConvNeXt

WHU-RS19 93.532 99.005 99.502 98.010 100 99.502 99.502 98.507 99.005
Optimal31 80.914 88.710 92.204 92.473 94.355 91.667 94.624 92.742 93.011
UC merced 92.143 95.476 98.571 98.810 98.333 98.571 98.333 98.333 97.857
SIRI-WHU 92.292 93.958 95 96.250 95.625 95 95.625 95.208 96.250
RSSCN7 91.964 93.929 95 95 94.821 95.536 95.893 95.179 94.643
BCS 89.583 90.972 92.014 92.361 92.708 91.319 92.014 93.056 91.493
AID 92.900 96.100 96.550 97.200 97.250 96.250 97.750 96.700 96.950
CLRS 84.100 89.900 91.567 91.900 92.200 90.500 93.200 90.100 91.100
RSI-CB256 99.354 99.051 99.677 99.859 99.737 99.717 99.758 99.657 99.596
Eurosat 97.574 98.148 98.833 99.000 98.889 98.907 98.722 98.741 98.778
PatternNet 99.161 99.424 99.737 99.490 99.737 99.539 99.655 99.704 99.671
RESISC45 90.492 93.905 96.460 96.54 96.508 94.873 97.079 95.952 96.270
RSD46-WHU 90.646 92.422 94.158 94.404 94.507 93.387 94.238 93.673 93.627
So2Sat 59.203 65.375 61.903 65.169 65.756 65.801 68.551 67.066 66.169
SAT6 99.980 99.993 100 100 100 99.988 99.998 99.995 99.999

Avg. Rank 8.93 7.67 4.07 3.27 2.60 5.13 2.73 4.67 4.80

Table 7: Mean average precision (mAP %) of models pre-trained on ImageNet-1K on multi-label classification datasets. Bold
indicates best performing model for a given dataset. We report the average rank of a model (lower is better), ranked based on the
performance and averaged across the 7 datasets.

Dataset \Model AlexNet VGG16 ResNet50 ResNet152 DenseNet161 EfficientNetB0 ViT MLPMixer ConvNeXt

AID 75.906 79.893 80.758 80.942 81.708 78.002 81.539 80.879 82.298
UC Merced 92.638 92.848 95.665 96.010 96.056 95.384 96.699 96.34 96.431
DFC15 94.057 96.566 97.662 97.600 97.529 96.787 97.617 97.941 97.994
Planet UAS 64.048 65.584 65.528 64.825 66.339 64.157 66.804 67.330 66.447
MLRSNet 93.399 94.633 96.272 96.432 96.306 95.391 96.410 95.049 95.807
BigEarthNet 19 77.147 78.418 79.983 79.776 79.686 80.221 77.310 77.288 77.147
BigEarthNet 43 58.554 61.205 66.256 64.066 64.229 64.589 58.997 59.648 66.166

Avg. Rank 8.86 6.71 4.00 4.29 3.86 5.71 3.71 4.57 3.14

dation loss trends showed that, with training errors decreasing, validation errors increased almost instantly (after 1-2
epochs) regardless of the model at hand. This fortunately is not the case for the remaining tasks, where we observed
a decent performance overall. The models, especially the top-half ranked, achieved stable and mostly comparable
performance.

The benefits of pre-training models extend also to MLC tasks (Table 7), although, the performance gains, com-
pared to model counterparts trained from scratch, are not as large as for MCC tasks. In particular, we found that
pre-training can lead to small improvements (1%-2%) on challenging tasks such as PlanetUAS and BigEarthNet43
(mAP of 67.33% and 66.26% achieved by Resnet50 and EfficientNetB0, respectively); to more considerable improve-
ments (up to 10%) in some cases such as AID and UCMerced (mAP of 82.29% and 96.7% obtained by ConvNeXt
and ViT, respectively). We also found that the ConvNeXt models benefited the most from pre-training - they ranked
the best overall and achieved best performance on 2 (out of the 7) tasks. They are followed by ViT and DenseNet,
which perform comparably on most tasks.

4.3 The ’performance vs. training cost’ trade-off
Having established the baseline performance of our evaluated models and demonstrated the clear benefits of using

pre-trained models, we focus here on another line of comparison - the cost of model training. Recall from Section 2.2,
and in particular Table 3, that we study model architectures that differ significantly in the number of learnable param-
eters. Typically, larger models require, not only more computing resources, but also much more training time than
smaller models. In our experimental setup, we train all models on the same computing infrastructure, under the same
conditions, and with the same training/evaluation setup (in terms of hyperparameters and data partitioning). Therefore
we can directly analyze the ’performance vs. training cost’ (in terms of total training time) trade-off, for each model
variant from the 9 different architectures (either pre-trained or trained from scratch), across the 22 datasets. This way,
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Figure 3: Performance vs. total training time comparison of the top-3 overall ranked model architectures, (left) when trained
from scratch and (right) when employing pre-trained models on (top) MCC and (bottom) MLC tasks. Performance is reported as
accuracy (%) and mean average precision (mAP %) for MCC and MLC tasks, respectively. Note that log scale of the total training
time (seconds). The models are denoted with different colors and markers, with the size of the marker denoting model momentum:
The Ratio between the model size (in terms of number of parameters) and average time per training epoch taken by the model.
Generally, ViTs are faster to train than DenseNet and ResNet152, archiving comparable performance esp. with pre-trained model
variants.

we can explicitly measure the benefits of each model and make further modeling decisions based on the performance
of the models and the ’cost’ of training them.

Figure 3 illustrates the trade-off for the top-3 performing model architectures, overall: DenseNet, ViT, and
ResNet152. More specifically, it shows all trained models of these 3 architectures, including pre-trained and trained
from scratch variants, applied on MCC and MLC tasks. While the performance analyzes showed many similarities
between these models, in terms of training times, the difference between them is much more obvious. In general,
ViT requires less training time than both DenseNets and ResNet152, even though DenseNets have near a quarter of
the number of parameters of ViT. This difference is even more pronounced for pre-trained models. Here, ViT models
usually lead to comparable/better predictive performance than DenseNet models, requiring (in some cases) up to half
the training time.

We can further analyze these training-time trends for each model and dataset, as presented in Figure 4. In particu-
lar, Figure 4(a,b) illustrates the total training times of each pre-trained model as a fraction of the cumulative training
time of all models (per dataset). This confirms that, in many cases, ViT models can be trained almost twice as fast as
models from the other top-performing architectures, such as DenseNet and ResNet152. The training cost of ViT mod-
els is similar to that of EfficientNetB0, ConvNeXt, and MLPMixer, which are efficient ’by design’, but perform worse
on these tasks. Figure 4(c,d) shows further details about the training times, but in terms of the average training time
per epoch. On average, epochs when fine-tuning pre-trained models last a bit less than epochs when training models
from scratch. However, in terms of total time, using pre-trained models almost halves the training time as compared
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Figure 4: Total training time of pre-trained models for each of the (a) MCC and (b) MLC datasts. The training time of each
model architecture (denoted with different colors) is depicted as a fraction (%) of the cumulative training time for each dataset.
Furthermore, (c) and (d) illustrate the average time per epoch of each model variant on (c) MCC and (d) MLC tasks, comparing
the (red) pre-trained model variants (from (a) and (b)) to their counterparts (blue) trained from scratch.

to training them from scratch (see Appendix B). This, in general, is an expected behavior, which nevertheless can help
designing and planning DL pipelines for similar EO applications. Note, however, that we do not take into account the
time needed to pre-train each model, which will certainly increase the total training times significantly.

5 Conclusions

We present a systematic review and evaluation of several modern DL architectures applied in the context of Earth
Observation. More specifically, we introduce AiTLAS: Benchmark Arena – an open-source EO benchmark framework
and demonstrate its utility with a comprehensive comparative analysis of models from nine different state-of-the-
art DL architectures, comparing them to a variety of multi-class and multi-label image classification tasks from 22
datasets. We compare models trained from scratch as well as pre-trained models under the same conditions and with
the same hardware. We evaluate more than 400 different models with different architectures and learning paradigms
across tasks from 22 datasets with different sizes and properties. To our knowledge, the evaluation of these different
setups (in terms of machine learning tasks, model setups, model architectures, and datasets) makes this the largest and
most comprehensive empirical studies of deep learning methods applied to EO datasets to date. All of the important
details about the study design as well as the results and trained models are freely available. This will contribute to
more systematic and rigorous experiments in future work and, more importantly, will enable better usability and faster
development of novel approaches. We believe that both this study and the associated repository can serve as a starting
point and a guiding design principle for evaluating and documenting machine learning approaches in the different
domains of EO. More importantly, we hope that with further involvement from the community, AiTLAS: Benchmark
Arena can become a reference point for further studies in this highly active research area.

More broadly, we believe that this work, along with the resources developed, will have a strong impact on the
AI and EO research communities. First, such ready-to-use resources containing trained models, clear experimental
designs, and detailed results will facilitate better adoption of sophisticated modeling approaches in the EO community
- bringing the EO and AI communities closer together. Second, it demonstrates the FAIRification process of AI4EO
resources, i.e., making resources adhere to the FAIR principles (Findable, Accessible, Interoperable, and Reusable
[97]). Finally, it contributes to the ’Green AI’ initiative by saving additional computational overhead. Since all
experimental details, especially the trained models, are publicly available – other experts and researchers can compare,
reproduce, and reuse these resources - reducing the need to repeatedly run unnecessary experiments.
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Reproducibility

All the necessary details, in terms of the trained models, model parameters and implementations as well as de-
tails on all of the used datasets and their prepossessed versions are available at https://github.com/biasvariancelabs/
aitlas-arena. All the models were trained/fine-tuned on NVIDIA A100-PCIE-40GB GPUs, running CUDA Version
11.5 (www.nvidia.com/en-gb/data-center/a100/). Note that, we do not host the datasets. To obtain them, please refer
to each of the respective studies (referenced in Tables 1 and 2) or follow the links provided in our repository. The
study was performed using the AiTLAS Toolbox [37], a library for exploratory and predictive analysis of satellite
imaginary pertaining to different remote-sensing tasks, available at https://aitlas.bvlabs.ai.
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A Evaluation metrics

The predictive performance of machine learning models is typically assessed using different evaluation measures
that capture different aspects of the models’ behavior. Selecting the proper evaluation measures requires knowledge
of the task and problem at hand. In order to have an unbiased and fair view of the performance, one needs to consider
the models’ performance along several measures and then compare their performance. In this study, we assess the
performance of the models using a variety of different measures available for the machine learning tasks studied here:
multi-class and multi-label classification.

Multi-class classification refers to the task where a sample can be assigned to exactly one class/label selected
from a predefined set of possible classes/labels. Here, we overview several evaluation measures used for this task.
Most widely used evaluation measure is accuracy due to its intuitive interpretation and straightforward calculation. It
denotes the percentage of correctly labeled samples. Precision and Recall are defined for binary tasks (two classes,
often called positive and negative class) by default. To extend the binary measures to multi-class classification tasks,
we adopt the One-vs-Rest (One-vs-All) approach which converts a multi-class task into a series of binary tasks for
each class/label in the target. Within this approach the sample from given class/label is treated as positive, and the
samples from all the other classes/labels are treated as negative.

To calculate most of the evaluation measures, we need to define the following concepts: True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN). These concepts combined together form the confusion
matrix for the performance of a given model over a given dataset. The TP, TN, FP and FN are defined as follows:

• TP: the label is positive and the prediction is also positive

• TN: the label is negative and the prediction is also negative

• FP: the label is negative but the prediction is positive

• FN: the label is positive but the prediction is negative

Precision is then calculated as the fraction of correctly predicted positive observations from the total predicted
positive observations:

Precision =
TP

TP + FP

Recallis calculated as the fraction of correctly predicted positive observations from the available positive observa-
tions:

Recall =
TP

TP + FN

F1 score is also a common evaluation measure used in machine learning tasks, basically it combines precision and
recall through a weighted average. Therefore, this score takes both false positives and false negatives into account and
is very useful, especially if we have an imbalanced class/label distribution. The F1 score can be calculated as:

F1 = 2 · Precision ·Recall

Precision+Recall

These evaluation measures can then be aggregated across the multiple classes using three strategies:

• Macro averaging: calculate the evaluation measures for each class/label separately and then average the indi-
vidual values,

• Micro averaging: calculate the class wise confusion matrices and then aggregate the confusion matrices into a
single one (i.e., add together the TP, FP, FN and FP values for each class). The aggregated confusion matrix is
then used to calculate the values for the different evaluation measures, and

• Weighted averaging: based on macro averaging but using the frequency of the class/label as a weight in the
average calculation.
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Using these aggregation strategies, we then obtain macro-averaged, micro-averaged and weighted-averaged pre-
cision, recall and F1 score. Note that micro F1 score, micro precision and micro recall yield the same values as
accuracy for the multi-class classification task. Taking into account this, for the multi-class classification tasks we
report the following evaluation measures: Accuracy, Macro Precision, Weighted Precision, Macro Recall, Weighted
Recall, Macro F1 score and Weighted F1 score.

Multi-label classification refers to the task where a sample can be assigned to multiple class/label from a prede-
fined set of possible classes/labels. To transform the multi-label classification task to binary classification and apply
the same metrics previously defined, we adopt the binary relevance method [41] that considers each label as an inde-
pendent binary problem. In our case, in each node from the output layer, we use the sigmoid activation function to
obtain a probability of the input image being labeled with each of the classes/labels. In order to use these probabilities
to predict the classes/labels of the image, we need to define a threshold value. The model predicts that the image
contains the classes/labels with probabilities that exceed the given threshold. The threshold value controls the rate of
false positives versus false negatives. Increasing the threshold reduces the number of false positives, whereas decreas-
ing the threshold reduces the number of false negatives. In our experiments, we use threshold value of 0.5. Taking
into account this transformation, we can apply the formulas from above to calculate the same evaluation measures
for multi-label classification tasks. While these evaluation measures are threshold dependent, we additionally use the
the mean average precision (mAP) - a threshold independent evaluation measure widely used in image classification
tasks. mAP is calculated as the mean over the average precision values of the individual labels. Average precision
summarizes a precision-recall curve as the weighted mean of the precision values obtained at each threshold, with the
increase in recall from the previous threshold used as the weight:

AP =
∑
n

(Rn −Rn−1)Pn

Where Pn and Rn are the precision and recall at the n-th threshold. It is a useful metric to compare how well models
are ordering the predictions, without considering any specific decision threshold.

For the multi-label classification task, we report the following evaluation measures: Micro Precision, Macro Pre-
cision, Weighted Precision, Micro Recall, Macro Recall, Weighted Recall, Micro F1 score, Macro F1 score, Weighted
F1 score and mean average precision (mAP). All measures but mAP, require setting a threshold on the predictions.
Here, we set the threshold value at 0.5 for all the models and settings.

For both tasks, we provide the means to perform even more detailed analysis of the performance by reporting the
confusion matrices as a performance summary of the models. The confusion matrices provide detailed per class/label
view of the models’ performance.
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B Training Time Details

Table B.8: Multi-class classification tasks.
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Table B.9: Multi-Label classification tasks.
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per epoch.

Normalized Cummulative Training Time [%]

AID_mlc

UCMerced_mlc

 DFC15

MLRSNet

PlanetUAS

BigEarthNet19

BigEarthNet43

Model
AlexNet
VGG16
EfficientNetB0

MLPMixer
ConvNeXt
ResNet50

ResNet152
ViT
DenseNet161

(d) Multi-Label tasks: Trained from scratch

Normalized Cummulative Training Time [%]

AID_mlc

UCMerced_mlc

 DFC15

MLRSNet

PlanetUAS

BigEarthNet19

BigEarthNet43

Model
AlexNet
VGG16
EfficientNetB0

MLPMixer
ConvNeXt
ResNet50

ResNet152
ViT
DenseNet161

(e) Multi-Label tasks: Pre-trained models
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per epoch.

Figure B.5: Total training time of models trained from scratch and pre-trained models for each of the (a,b) MCC and (d,e) MLC
datasts. The training time of each model architecture (denoted with different colors) is depicted as a fraction (%) of the cumulative
training time for each dataset. Furthermore, (c) and (f) illustrate the average time per epoch of each model variant on (c) MCC and
(f) MLC tasks, comparing the (red) pre-trained model variants (from (a) and (b)) to their counterparts (blue) trained from scratch.
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C Detailed data descriptions & extended results

C.1 UC Merced

The UC Merced dataset [9] consists of 2100 images divided into 21 land-use scene classes. Each class has 100
RGB aerial image which are 256x256 pixels and have a spatial resolution of 0.3m per pixel. The images were man-
ually extracted from large images from the United States Geological Survey (USGS) National Map of the following
US regions: Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston, Jacksonville, Las Vegas, Los
Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara, Seattle, Tampa, Tucson, and Ventura. Samples
from the datasets can be seen on Figure C.6.

The 21 classes are: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest,
freeway, golf course, harbor, intersection, medium density residential, mobile home park, overpass, parking lot, river,
runway, sparse residential, storage tanks, and tennis courts. The authors have not set predefined train-test splits, so we
have made such for our study (Figure C.7).

The detailed results for all pre-trained models are shown on Table C.10 and for all the models learned from scratch
are presented on Table C.11. The best performing model is the pre-trained ResNet152. The results on a class level are
show on Table C.12 along with a confusion matrix on Figure C.8.

Figure C.6: Example images with labels from the UC Merced dataset.
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Figure C.7: Class distribution for the UC Merced dataset.

Table C.10: Detailed results for pre-trained models on UCMerced
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AlexNet 92.14 92.24 92.24 92.14 92.14 92.03 92.03 1.29 44 24
VGG16 95.48 95.64 95.64 95.48 95.48 95.48 95.48 3.16 101 22
ResNet50 98.57 98.64 98.64 98.57 98.57 98.59 98.59 2.85 111 29
RestNet152 98.81 98.86 98.86 98.81 98.81 98.80 98.80 5.05 202 30
DenseNet161 98.33 98.40 98.40 98.33 98.33 98.34 98.34 5.41 357 56
EfficientNetB0 98.57 98.61 98.61 98.57 98.57 98.57 98.57 2.46 214 77
ConvNeXt 97.86 97.99 97.99 97.86 97.86 97.87 97.87 3.68 173 37
Vision Transformer 98.33 98.44 98.44 98.33 98.33 98.36 98.36 4.00 112 18
MLP Mixer 98.33 98.40 98.40 98.33 98.33 98.34 98.34 3.10 130 32

Table C.11: Detailed results for models trained from scratch on the UC Merced dataset.
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AlexNet 81.19 81.30 81.30 81.19 81.19 80.87 80.87 1.30 126 82
VGG16 78.57 78.96 78.96 78.57 78.57 78.30 78.30 4.66 466 85
ResNet50 85.24 85.20 85.20 85.24 85.24 84.75 84.75 2.54 178 55
RestNet152 84.05 84.02 84.02 84.05 84.05 83.68 83.68 5.02 467 78
DenseNet161 86.19 86.42 86.42 86.19 86.19 85.75 85.75 5.46 415 61
EfficientNetB0 84.29 85.27 85.27 84.29 84.29 84.16 84.16 2.53 253 93
ConvNeXt 84.29 84.51 84.51 84.29 84.29 84.14 84.14 3.75 375 92
Vision Transformer 83.10 83.64 83.64 83.10 83.10 82.76 82.76 4.44 413 78
MLP Mixer 82.38 82.12 82.12 82.38 82.38 82.01 82.01 3.06 269 73

26



Table C.12: Per class results for the pre-trained ResNet152 model on the UC Merced dataset.

Label Precision Recall F1 score

agricultural 100.00 100.00 100.00
airplane 100.00 100.00 100.00
baseballdiamond 100.00 100.00 100.00
beach 100.00 100.00 100.00
buildings 94.74 90.00 92.31
chaparral 100.00 100.00 100.00
denseresidential 90.91 100.00 95.24
forest 100.00 100.00 100.00
freeway 100.00 100.00 100.00
golfcourse 100.00 100.00 100.00
harbor 100.00 100.00 100.00
intersection 100.00 100.00 100.00
mediumresidential 100.00 90.00 94.74
mobilehomepark 100.00 95.00 97.44
overpass 100.00 100.00 100.00
parkinglot 100.00 100.00 100.00
river 100.00 100.00 100.00
runway 100.00 100.00 100.00
sparseresidential 95.24 100.00 97.56
storagetanks 95.24 100.00 97.56
tenniscourt 100.00 100.00 100.00

Figure C.8: Confusion matrix for the pre-trained ResNet152 model on the UC Merced dataset.
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C.2 WHU-RS19

WHU-RS19 is a set of satellite images exported from Google Earth, which provides high-resolution satellite
images up to 0.5m and red, green and blue spectral bands [42]. It contains 19 classes of meaningful scenes in high-
resolution satellite imagery, including: airport, beach, bridge, commercial area, desert, farmland, football field, forest,
industrial area, meadow, mountain, park, parking lot, pond, port, railway station, residential area, river, and viaduct.
For each class, there are about 50 samples with a total of 1005 images in the entire dataset. The data does not come
with predefined train and test splits, so per standard we have made splits (Figure C.10).

The size of images is 600x600 pixel. The image samples of the same class are collected from different regions
in satellite images of different resolutions and then might have different scales, orientations and illuminations. This
makes the dataset challenging, however, the number of images is relatively small compared to the other datasets.
Sample images from the dataset are shown in Figure C.9.

Detailed results for all pre-trained models are shown on Table C.13 and for all the models learned from scratch
are presented on Table C.14. The best performing model is the pre-trained DenseNet161. The results on a class level
are show on Table C.15 along with a confusion matrix on Figure C.11.

Figure C.9: Example images with labels from the WHU-RS19 dataset.
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Figure C.10: Class distribution for the WHU-RS19 dataset.

Table C.13: Detailed results for pre-trained models the WHU-RS19 dataset.
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AlexNet 93.53 94.44 94.30 93.63 93.53 93.73 93.59 2.78 142 41
VGG16 99.00 99.08 99.09 99.04 99.00 99.01 99.00 3.00 144 38
ResNet50 99.50 99.56 99.54 99.52 99.50 99.52 99.50 2.85 285 96
RestNet152 98.01 98.21 98.22 97.99 98.01 98.01 98.03 4.02 253 53
DenseNet161 100.00 100.00 100.00 100.00 100.00 100.00 100.00 4.04 400 89
EfficientNetB0 99.50 99.56 99.54 99.47 99.50 99.49 99.50 2.76 276 100
ConvNeXt 99.00 99.04 99.05 99.00 99.00 98.99 99.00 3.20 211 56
Vision Transformer 99.50 99.56 99.54 99.52 99.50 99.52 99.50 3.40 102 20
MLP Mixer 98.51 98.64 98.64 98.47 98.51 98.49 98.50 2.84 247 77

Table C.14: Detailed results for models trained from scratch the WHU-RS19 dataset.
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AlexNet 66.17 67.93 67.68 66.28 66.17 66.53 66.36 2.53 223 73
VGG16 68.66 70.53 70.25 68.69 68.66 69.02 68.87 4.79 479 96
ResNet50 79.60 82.28 81.91 79.75 79.60 79.88 79.67 3.85 300 63
RestNet152 80.60 82.62 82.27 80.63 80.60 81.08 80.91 4.29 343 65
DenseNet161 80.60 82.75 82.44 80.59 80.60 80.75 80.60 4.04 271 52
EfficientNetB0 75.62 77.50 77.00 76.08 75.62 76.02 75.54 2.78 189 53
ConvNeXt 72.14 73.09 72.63 72.41 72.14 72.36 71.99 3.03 303 90
Vision Transformer 74.63 75.96 75.69 74.89 74.63 75.05 74.78 3.44 303 73
MLP Mixer 69.65 70.70 70.51 69.91 69.65 69.10 68.83 3.86 386 89
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Table C.15: Per class results for the pre-trained DenseNet161 model on the WHU-RS19 dataset.

Label Precision Recall F1 score

Airport 100.00 100.00 100.00
Beach 100.00 100.00 100.00
Bridge 100.00 100.00 100.00
Commercial 100.00 100.00 100.00
Desert 100.00 100.00 100.00
Farmland 100.00 100.00 100.00
footballField 100.00 100.00 100.00
Forest 100.00 100.00 100.00
Industrial 100.00 100.00 100.00
Meadow 100.00 100.00 100.00
Mountain 100.00 100.00 100.00
Park 100.00 100.00 100.00
Parking 100.00 100.00 100.00
Pond 100.00 100.00 100.00
Port 100.00 100.00 100.00
railwayStation 100.00 100.00 100.00
Residential 100.00 100.00 100.00
River 100.00 100.00 100.00
Viaduct 100.00 100.00 100.00

Figure C.11: Confusion matrix for the pre-trained DenseNet161 model on the WHU-RS19 dataset.
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C.3 AID

Aerial Image Dataset (AID) is a large-scale aerial image dataset generated by collecting sample images from
Google Earth imagery. The goal of AID is to advance the state-of-the-art in scene classification of remote sensing im-
ages. For creating AID, more than ten thousands aerial scene images have been collected and annotated. It consists of
10000 RGB images with 600x600 pixels resolution (Figure C.12). The dataset is made up of the following 30 classes
(aerial scene types): airport, bare land, baseball field, beach, bridge, center, church, commercial, dense residential,
desert, farmland, forest, industrial, meadow, medium residential, mountain, park, parking, playground, pond, port,
railway station, resort, river, school, sparse residential, square, stadium, storage tanks and viaduct.

All the images were labeled by the specialists in the field of remote sensing image interpretation. All samples
from each class are chosen from different countries and regions around the world, but mainly in China, USA, England,
France, Italy, Japan, Germany etc. They are extracted at different time and seasons under different image conditions.
Although, all images have a 600x600 pixels resolution, their spatial resolution varies from 8 to 0.5 meters.

The dataset has no predefined train-test splits, so for properly conducting the study we have made train, test and
validation splits. The distribution of the splits is presented on Figure C.13. Detailed results for all pre-trained models
are shown on Table C.16 and for all the models learned from scratch are presented on Table C.17. The best performing
model is the pre-trained ViT model. The results on a class level are show on Table C.18 along with a confusion matrix
on Figure C.14.

Figure C.12: Example images with labels from the AID dataset.
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Figure C.13: Class distribution for the AID dataset.

Table C.16: Detailed results for pre-trained models on the AID dataset.
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AlexNet 92.90 92.90 92.94 92.65 92.90 92.72 92.87 21.32 725 24
VGG16 96.10 95.95 96.11 95.91 96.10 95.90 96.08 21.35 854 30
ResNet50 96.55 96.48 96.56 96.26 96.55 96.30 96.50 20.29 1035 41
RestNet152 97.20 97.14 97.24 97.07 97.20 97.08 97.19 22.20 1132 41
DenseNet161 97.25 97.25 97.30 97.10 97.25 97.12 97.23 24.36 1072 34
EfficientNetB0 96.25 96.24 96.26 96.15 96.25 96.16 96.23 20.00 800 30
ConvNeXt 96.95 96.95 96.97 96.81 96.95 96.85 96.93 23.06 807 25
Vision Transformer 97.75 97.56 97.76 97.53 97.75 97.52 97.73 20.45 1145 46
MLP Mixer 96.70 96.58 96.74 96.52 96.70 96.51 96.69 19.78 811 31

Table C.17: Detailed results for models trained from scratch on the AID dataset.
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AlexNet 81.35 81.23 81.32 81.14 81.35 81.07 81.23 19.46 1927 84
VGG16 81.95 81.80 82.04 81.52 81.95 81.50 81.84 19.65 1356 54
ResNet50 89.05 89.09 89.23 88.82 89.05 88.85 89.04 19.66 1514 62
RestNet152 89.90 90.08 90.09 89.60 89.90 89.73 89.88 22.25 1513 53
DenseNet161 93.30 93.32 93.42 93.13 93.30 93.17 93.30 24.48 2228 76
EfficientNetB0 90.05 90.19 90.32 89.88 90.05 89.92 90.08 19.33 1121 43
ConvNeXt 81.10 81.51 81.18 80.87 81.10 81.03 80.98 19.15 1915 96
Vision Transformer 79.35 79.27 79.27 79.51 79.35 79.30 79.21 19.63 1060 39
MLP Mixer 71.75 72.02 71.87 72.01 71.75 71.73 71.52 19.06 953 35
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Table C.18: Per class results for the pre-trained Vision Transformer on the AID dataset.

Label Precision Recall F1 score

Airport 98.61 98.61 98.61
BareLand 98.41 100.00 99.20
BaseballField 97.78 100.00 98.88
Beach 100.00 100.00 100.00
Bridge 100.00 100.00 100.00
Center 87.72 96.15 91.74
Church 93.48 89.58 91.49
Commercial 95.71 95.71 95.71
DenseResidential 98.80 100.00 99.39
Desert 100.00 100.00 100.00
Farmland 100.00 100.00 100.00
Forest 100.00 100.00 100.00
Industrial 94.94 96.15 95.54
Meadow 100.00 100.00 100.00
MediumResidential 98.28 98.28 98.28
Mountain 100.00 100.00 100.00
Park 94.44 97.14 95.77
Parking 100.00 100.00 100.00
Playground 98.63 97.30 97.96
Pond 98.81 98.81 98.81
Port 97.44 100.00 98.70
RailwayStation 96.23 98.08 97.14
Resort 94.12 82.76 88.07
River 98.80 100.00 99.39
School 91.38 88.33 89.83
SparseResidential 98.36 100.00 99.17
Square 98.44 95.45 96.92
Stadium 96.49 94.83 95.65
StorageTanks 100.00 100.00 100.00
Viaduct 100.00 98.81 99.40

Figure C.14: Confusion matrix for the pre-trained Vision Transformer model on the AID dataset.
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C.4 Eurosat

EuroSAT [43] is a land use and land cover classification dataset based on Sentinel-2 satellite images covering 13
spectral bands and consisting out of 10 classes with in total 27000 labeled and geo-referenced images. The dataset
provides RGB and multi-spectral (MS) version of the data. The spectral bands and their respective spatial resolutions
are presented on Table C.19. The 10 image classes are the following: Annual Crop, Forest, Herbaceous Vegetation,
Highway, Industrial, Pasture, Permanent Crop, Residential, River, Sea/Lake. Some samples from the dataset are
presented on Figure C.15.The class distrubtion of our train, test and validation splits are provided on Figure C.16.

Detailed results for all pre-trained models are shown on Table C.20 and for all the models learned from scratch
are presented on Table C.21. The best performing model is the pre-trained ResNet152 model. The results on a class
level are show on Table C.22 along with a confusion matrix on Figure C.17.

Figure C.15: Example images with labels from the Eurosat dataset.
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Figure C.16: Class distribution for the Eurosat dataset.

Table C.19: Eurosat bands and spatial resolutions.

Band Spatial resolution m
B01 - Aerosols 60

B02 - Blue 10
B03 - Green 10
B04 - Red 10

B05 - Red edge 1 20
B06 - Red edge 2 20
B07 - Red edge 3 20

B08 - NIR 10
B08A - Red edge 4 20
B09 - Water vapor 60

B10 - Cirrus 60
B11 - SWIR 1 20
B12 - SWIR 2 20

Table C.20: Detailed results for pre-trained models on the Eurosat dataset.
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AlexNet 97.57 97.48 97.58 97.48 97.57 97.48 97.57 8.88 426 38
VGG16 98.15 98.14 98.15 98.06 98.15 98.09 98.15 33.69 977 19
ResNet50 98.83 98.82 98.83 98.77 98.83 98.79 98.83 26.56 1912 62
RestNet152 99.00 99.00 99.00 98.96 99.00 98.98 99.00 56.00 1904 24
DenseNet161 98.89 98.88 98.89 98.82 98.89 98.85 98.89 61.12 2078 24
EfficientNetB0 98.91 98.91 98.91 98.86 98.91 98.88 98.91 23.47 1056 35
ConvNeXt 98.78 98.76 98.78 98.75 98.78 98.75 98.78 40.38 1050 16
Vision Transformer 98.72 98.71 98.73 98.64 98.72 98.68 98.72 43.19 1123 16
MLP Mixer 98.74 98.73 98.74 98.65 98.74 98.68 98.74 30.41 669 12
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Table C.21: Detailed results for models trained from scratch on the Eurosat dataset.
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AlexNet 96.17 96.02 96.18 96.10 96.17 96.06 96.17 8.02 802 95
VGG16 97.19 97.17 97.19 97.04 97.19 97.10 97.18 33.62 2622 63
ResNet50 97.00 96.93 97.01 96.85 97.00 96.88 97.00 26.45 2619 84
RestNet152 97.41 97.36 97.41 97.27 97.41 97.31 97.40 56.21 4328 62
DenseNet161 97.63 97.57 97.64 97.51 97.63 97.54 97.63 62.50 5125 67
EfficientNetB0 97.80 97.76 97.80 97.72 97.80 97.74 97.79 24.19 2032 69
ConvNeXt 95.43 95.25 95.44 95.29 95.43 95.27 95.43 40.03 2642 51
Vision Transformer 95.04 94.86 95.02 94.80 95.04 94.82 95.02 44.22 2963 52
MLP Mixer 95.50 95.29 95.50 95.35 95.50 95.31 95.49 31.45 2327 59

Table C.22: Per class results for the pre-trained ResNet152 model on the Eurosat dataset.

Label Precision Recall F1 score

Annual Crop 98.66 98.33 98.50
Forest 99.17 99.50 99.33
Herbaceous Vegetation 98.01 98.67 98.34
Highway 99.20 98.80 99.00
Industrial 99.40 99.00 99.20
Pasture 98.74 98.25 98.50
Permanent Crop 98.59 97.60 98.09
Residential 99.50 100.00 99.75
River 99.20 99.60 99.40
Sea Lake 99.50 99.83 99.67

Figure C.17: Confusion matrix for the pre-trained ResNet152 model on the Eurosat dataset.
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C.5 PatternNet

PatternNet is a large-scale remote sensing dataset that was collected specifically for Remote sensing image re-
trieval. It contains 38 classes: airplane, baseball field, basketball court, beach, bridge, cemetery, chaparral, christmas
tree farm, closed road, coastal mansion, crosswalk, dense residential, ferry terminal, football field, forest, freeway,
golf course, harbor, intersection, mobile home park, nursing home, oil gas field, oil well, overpass, parking lot, parking
space, railway, river, runway, runway marking, shipping yard, solar panel, sparse residential, storage tank, swimming
pool, tennis court, transformer station and wastewater treatment plant. There are a total of 38 classes with 800 images
of size 256×256 pixels for each class. The class distribution of the train, test and validation splits we generated is
presented on Figure C.19, since the dataset does not have predefined ones.

PatternNet dataset has the following main characteristics: It’s the largest publicly available dataset specifically
designed for remote sensing image retrieval. It has a higher spatial resolution, so that the classes of interest constitute
a larger portion of the image. It has high inter-class similarity and high intra-class diversity. Some sample images are
shown on Figure C.18.

Detailed results for all pre-trained models are shown on Table C.23 and for all the models learned from scratch are
presented on Table C.24. The best performing models are the pre-trained DenseNet161 and ResNet50 models. The
results on a class level are show on Table C.25 along with a confusion matrix on Figure C.20.

Figure C.18: Example images with labels from the PatternNet dataset.
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Figure C.19: Class distribution for the PatternNet dataset.

Table C.23: Detailed results for pre-trained models on the PatternNet dataset.
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AlexNet 99.16 99.17 99.17 99.16 99.16 99.16 99.16 15.17 637 32
VGG16 99.42 99.43 99.43 99.42 99.42 99.42 99.42 37.74 1321 25
ResNet50 99.74 99.74 99.74 99.74 99.74 99.74 99.74 29.10 1193 31
RestNet152 99.49 99.49 99.49 99.49 99.49 99.49 99.49 62.94 1070 7
DenseNet161 99.74 99.74 99.74 99.74 99.74 99.74 99.74 68.87 3168 36
EfficientNetB0 99.54 99.54 99.54 99.54 99.54 99.54 99.54 25.86 569 12
ConvNeXt 99.67 99.67 99.67 99.67 99.67 99.67 99.67 45.93 1378 20
Vision Transformer 99.65 99.66 99.66 99.65 99.65 99.65 99.65 48.50 1067 12
MLP Mixer 99.70 99.71 99.71 99.70 99.70 99.70 99.70 33.80 1521 35
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Table C.24: Detailed results for models trained from scratch on the PatternNet dataset.
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AlexNet 97.83 97.83 97.83 97.83 97.83 97.82 97.82 13.75 1141 68
VGG16 97.91 97.93 97.93 97.91 97.91 97.91 97.91 37.47 2061 40
ResNet50 99.06 99.07 99.07 99.06 99.06 99.06 99.06 35.65 3030 70
RestNet152 98.88 98.89 98.89 98.88 98.88 98.88 98.88 69.05 6905 88
DenseNet161 99.24 99.25 99.25 99.24 99.24 99.24 99.24 71.08 5260 59
EfficientNetB0 98.83 98.84 98.84 98.83 98.83 98.83 98.83 27.54 2286 68
ConvNeXt 97.83 97.83 97.83 97.83 97.83 97.82 97.82 45.06 4326 81
Vision Transformer 96.69 96.69 96.69 96.69 96.69 96.68 96.68 49.05 3237 51
MLP Mixer 98.83 98.84 98.84 98.83 98.83 98.83 98.83 34.54 2038 44

Table C.25: Per class results for the pre-trained DenseNet161 model on the PatternNet dataset.

Label Precision Recall F1 score

airplane 100.00 100.00 100.00
baseball field 100.00 100.00 100.00
basketball court 99.37 98.75 99.06
beach 100.00 100.00 100.00
bridge 98.77 100.00 99.38
cemetery 100.00 100.00 100.00
chaparral 100.00 100.00 100.00
christmas tree farm 100.00 100.00 100.00
closed road 99.38 100.00 99.69
coastal mansion 98.73 97.50 98.11
crosswalk 100.00 100.00 100.00
dense residential 100.00 100.00 100.00
ferry terminal 100.00 98.75 99.37
football field 100.00 100.00 100.00
forest 100.00 100.00 100.00
freeway 100.00 100.00 100.00
golf course 100.00 100.00 100.00
harbor 100.00 100.00 100.00
intersection 99.38 100.00 99.69
mobile home park 100.00 100.00 100.00
nursing home 100.00 99.38 99.69
oil gas field 100.00 100.00 100.00
oil well 100.00 100.00 100.00
overpass 100.00 100.00 100.00
parking lot 100.00 100.00 100.00
parking space 100.00 100.00 100.00
railway 100.00 100.00 100.00
river 100.00 100.00 100.00
runway 100.00 99.38 99.69
runway marking 99.38 100.00 99.69
shipping yard 100.00 100.00 100.00
solar panel 100.00 100.00 100.00
sparse residential 96.91 98.13 97.52
storage tank 99.38 99.38 99.38
swimming pool 100.00 100.00 100.00
tennis court 100.00 99.38 99.69
transformer station 99.38 100.00 99.69
wastewater treatment plant 99.38 99.38 99.38
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Figure C.20: Confusion matrix for the pre-trained DenseNet161 model on the PatternNet dataset.
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C.6 Resisc45

RESISC45 [76] dataset is a publicly available benchmark for Remote Sensing Image Scene Classification (RE-
SISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31500 images, covering 45
scene classes with 700 images in each class. The 45 scene classes are as follows: airplane, airport, baseball diamond,
basketball court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert,
forest, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium res-
idential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland,
river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, ther-
mal power station, and wetland. Accordingly, these classes contain a variety of spatial patterns, some homogeneous
with respect to texture, some homogeneous with respect to color, others not homogeneous at all.

The images are with a size of 256x256 pixels in the RGB color space. The spatial resolution varies from about 30m
to 0.2m per pixel for most of the scene classes except for the classes of island, lake, mountain, and snowberg that have
lower spatial resolutions. The 31500 images cover more than 100 countries and regions all over the world, including
developing, transition, and highly developed economies (Figure C.21). Our generated train, test and validation splits
distribution is show on Figure C.22.

Detailed results for all pre-trained models are shown on Table C.26 and for all the models learned from scratch
are presented on Table C.27. The best performing model is the pre-trained Vision Transformer model. The results on
a class level are show on Table C.28 along with a confusion matrix on Figure C.23.

Figure C.21: Example images with labels from the Resisc45 dataset.
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Figure C.22: Class distribution for the Resisc45 dataset.

Table C.26: Detailed results for pre-trained models on the Resisc45 dataset.
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AlexNet 90.49 90.56 90.56 90.49 90.49 90.49 90.49 12.03 385 22
VGG16 93.90 93.91 93.91 93.90 93.90 93.89 93.89 39.87 1196 20
ResNet50 96.46 96.50 96.50 96.46 96.46 96.46 96.46 30.61 1163 28
RestNet152 96.54 96.57 96.57 96.54 96.54 96.54 96.54 65.11 2409 27
DenseNet161 96.51 96.53 96.53 96.51 96.51 96.51 96.51 72.05 3098 33
EfficientNetB0 94.87 94.93 94.93 94.87 94.87 94.88 94.88 27.12 678 15
ConvNeXt 96.27 96.28 96.28 96.27 96.27 96.26 96.26 46.79 1778 28
Vision Transformer 97.08 97.10 97.10 97.08 97.08 97.07 97.07 51.19 2713 43
MLP Mixer 95.95 95.99 95.99 95.95 95.95 95.96 95.96 35.62 1033 19

Table C.27: Detailed results for models trained from scratch on the Resisc45 dataset.
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AlexNet 82.16 82.29 82.29 82.16 82.16 82.10 82.10 10.91 633 43
VGG16 83.89 84.00 84.00 83.89 83.89 83.84 83.84 38.37 2993 63
ResNet50 92.33 92.40 92.40 92.33 92.33 92.33 92.33 31.31 1941 47
RestNet152 90.68 90.79 90.79 90.68 90.68 90.69 90.69 64.83 4084 48
DenseNet161 93.46 93.50 93.50 93.46 93.46 93.46 93.46 71.22 5484 62
EfficientNetB0 91.37 91.47 91.47 91.37 91.37 91.38 91.38 27.66 2102 61
ConvNeXt 85.94 86.30 86.30 85.94 85.94 86.05 86.05 46.51 2279 34
Vision Transformer 81.02 81.18 81.18 81.02 81.02 80.98 80.98 50.21 2611 37
MLP Mixer 69.41 69.67 69.67 69.41 69.41 69.22 69.22 35.69 1285 21
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Table C.28: Per class results for the pre-trained Vision Transformer model on the Resisc45 dataset,

Label Precision Recall F1 score

airplane 99.28 98.57 98.92
airport 95.89 100.00 97.90
baseball diamond 97.89 99.29 98.58
basketball court 97.22 100.00 98.59
beach 98.59 100.00 99.29
bridge 97.87 98.57 98.22
chaparral 97.90 100.00 98.94
church 90.85 92.14 91.49
circular farmland 98.59 100.00 99.29
cloud 100.00 99.29 99.64
commercial area 95.07 96.43 95.74
dense residential 94.20 92.86 93.53
desert 97.86 97.86 97.86
forest 97.79 95.00 96.38
freeway 99.27 97.14 98.19
golf course 98.58 99.29 98.93
ground track field 100.00 99.29 99.64
harbor 100.00 100.00 100.00
industrial area 94.96 94.29 94.62
intersection 97.86 97.86 97.86
island 98.59 100.00 99.29
lake 93.75 96.43 95.07
meadow 95.00 95.00 95.00
medium residential 91.61 93.57 92.58
mobile home park 97.22 100.00 98.59
mountain 95.74 96.43 96.09
overpass 99.25 94.29 96.70
palace 91.91 89.29 90.58
parking lot 99.28 98.57 98.92
railway 93.84 97.86 95.80
railway station 96.30 92.86 94.55
rectangular farmland 91.95 97.86 94.81
river 99.24 92.86 95.94
roundabout 99.29 100.00 99.64
runway 100.00 95.71 97.81
sea ice 100.00 98.57 99.28
ship 97.22 100.00 98.59
snowberg 98.59 100.00 99.29
sparse residential 96.43 96.43 96.43
stadium 97.90 100.00 98.94
storage tank 98.56 97.86 98.21
tennis court 98.54 96.43 97.47
terrace 96.21 90.71 93.38
thermal power station 96.45 97.14 96.80
wetland 97.01 92.86 94.89
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Figure C.23: Confusion matrix for the pre-trained Vision Transformer model on the Resisc45 dataset.
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C.7 RSI-CB256

RSI-CB256 [46] is a large scale remote sensing image classification benchmark via crowdsource data such as Open
Street Map (OSM) data, ground objects in remote sensing images etc. It contains 35 categories and more than 24000
images with a size of 256x256 pixels (Figure C.24). A strict object category system according to the national standard
of land-use classification in China and the hierarchical grading mechanism of ImageNet-1K has been established.
Using crowd-source data as a supervisor facilitates machine self-learning through the Internet. The class distribution
of the train, test and validation splits is presented in Figure C.25.

Detailed results for all pre-trained models are shown on Table C.29 and for all the models learned from scratch
are presented on Table C.30. The best performing model is the pre-trained ResNet152 model. The results on a class
level are show on Table C.31 along with a confusion matrix on Figure C.26.

Figure C.24: Example images with labels from the RSI-CB256 dataset.

Figure C.25: Class distribution for the RSI-CB526 dataset.
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Table C.29: Detailed results for pre-trained models on the RSI-CB256 dataset.
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AlexNet 99.35 99.13 99.36 99.06 99.35 99.09 99.35 34.84 1568 35
VGG16 99.05 98.93 99.07 98.75 99.05 98.83 99.05 34.04 885 16
ResNet50 99.68 99.53 99.68 99.54 99.68 99.53 99.68 33.69 1078 22
RestNet152 99.86 99.85 99.86 99.82 99.86 99.83 99.86 51.90 1609 21
DenseNet161 99.74 99.68 99.74 99.64 99.74 99.66 99.74 56.60 2717 38
EfficientNetB0 99.72 99.63 99.72 99.65 99.72 99.64 99.72 33.50 1340 30
ConvNeXt 99.60 99.50 99.60 99.55 99.60 99.52 99.60 40.35 1977 39
Vision Transformer 99.76 99.75 99.76 99.71 99.76 99.73 99.76 41.18 1400 24
MLP Mixer 99.66 99.54 99.66 99.61 99.66 99.57 99.66 35.29 1235 25

Table C.30: Detailed results for models trained from scratch on the RSI-CB256 dataset.
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AlexNet 97.35 96.55 97.39 96.54 97.35 96.51 97.35 34.99 2414 54
VGG16 98.83 98.51 98.84 98.36 98.83 98.43 98.83 34.90 2757 64
ResNet50 98.83 98.51 98.84 98.36 98.83 98.43 98.83 36.39 3166 72
RestNet152 99.15 98.98 99.15 98.81 99.15 98.89 99.15 51.86 4472 72
DenseNet161 99.13 98.80 99.13 98.71 99.13 98.75 99.13 56.75 4029 56
EfficientNetB0 99.11 98.85 99.12 98.91 99.11 98.87 99.11 26.50 2123 71
ConvNeXt 98.44 97.75 98.45 97.74 98.44 97.73 98.44 36.93 2622 56
Vision Transformer 98.12 97.52 98.13 97.12 98.12 97.31 98.12 41.08 3204 63
MLP Mixer 98.42 97.81 98.43 97.80 98.42 97.79 98.42 29.00 2900 86

46



Table C.31: Per class results for the pre-trained ResNet152 model on the RSI-CB256 dataset.

Label Precision Recall F1 score

airplane 100.00 100.00 100.00
airport runway 100.00 100.00 100.00
artificial grassland 100.00 100.00 100.00
avenue 100.00 99.08 99.54
bare land 98.30 100.00 99.14
bridge 98.95 100.00 99.47
city building 100.00 100.00 100.00
coastline 100.00 98.91 99.45
container 100.00 99.24 99.62
crossroads 99.11 100.00 99.55
dam 100.00 100.00 100.00
desert 100.00 98.62 99.31
dry farm 100.00 100.00 100.00
forest 100.00 100.00 100.00
green farmland 100.00 100.00 100.00
highway 100.00 97.73 98.85
hirst 100.00 100.00 100.00
lakeshore 100.00 100.00 100.00
mangrove 100.00 100.00 100.00
marina 100.00 100.00 100.00
mountain 100.00 100.00 100.00
parkinglot 98.94 100.00 99.47
pipeline 100.00 100.00 100.00
residents 100.00 100.00 100.00
river 100.00 100.00 100.00
river protection forest 100.00 100.00 100.00
sandbeach 100.00 100.00 100.00
sapling 100.00 100.00 100.00
sea 99.52 100.00 99.76
shrubwood 100.00 100.00 100.00
snow mountain 100.00 100.00 100.00
sparse forest 100.00 100.00 100.00
storage room 100.00 100.00 100.00
stream 100.00 100.00 100.00
town 100.00 100.00 100.00
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Figure C.26: Confusion matrix for the pre-trained ResNet152 model on the RSI-CB256 dataset.
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C.8 RSSCN7
RSSCN7 [47] is a scene classification dataset. The images are obtained from Google Earth. This dataset was

collected for academic research. It contains a total of 2800 remote sensing images, which are organized into 7 scene
classes: grass land, forest, farm land, parking lot, residential region, industrial region, and river/lake (Figure C.27).
For each, class there are 400 RGB images that are cropped on four different scales with 100 images per scale. Each
image has a 400x400 pixels size. The main challenge of this dataset is the scale variations of the images. The class
distribution over the train, test and validation splits is presented on Figure C.28.

Detailed results for all pre-trained models are shown on Table C.32 and for all the models learned from scratch
are presented on Table C.33. The best performing model is the pre-trained Vision Transformer model. The results on
a class level are show on Table C.34 along with a confusion matrix on Figure C.29.

Figure C.27: Example images with labels from the RSSCN7 dataset.

Figure C.28: Class distribution for the RSSCN7 dataset.
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Table C.32: Detailed results for pre-trained models on the RSSCN7 dataset.
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AlexNet 91.96 92.05 92.05 91.96 91.96 91.92 91.92 3.19 118 27
VGG16 93.93 93.95 93.95 93.93 93.93 93.90 93.90 4.68 159 24
ResNet50 95.00 95.08 95.08 95.00 95.00 94.99 94.99 3.90 121 21
RestNet152 95.00 95.07 95.07 95.00 95.00 95.01 95.01 7.09 241 24
DenseNet161 94.82 94.83 94.83 94.82 94.82 94.82 94.82 7.59 220 19
EfficientNetB0 95.54 95.56 95.56 95.54 95.54 95.54 95.54 3.79 163 33
ConvNeXt 94.64 94.76 94.76 94.64 94.64 94.61 94.61 5.23 183 25
Vision Transformer 95.89 95.95 95.95 95.89 95.89 95.91 95.91 5.54 227 31
MLP Mixer 95.18 95.23 95.23 95.18 95.18 95.17 95.17 4.30 86 10

Table C.33: Detailed results for models trained from scratch on the RSSCN7 dataset.
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AlexNet 80.54 80.64 80.64 80.54 80.54 80.45 80.45 6.97 697 85
VGG16 81.61 81.50 81.50 81.61 81.61 81.41 81.41 6.74 526 63
ResNet50 82.68 82.65 82.65 82.68 82.68 82.41 82.41 3.76 316 69
RestNet152 82.68 82.65 82.65 82.68 82.68 82.41 82.41 6.90 407 44
DenseNet161 87.32 87.55 87.55 87.32 87.32 87.38 87.38 8.50 595 55
EfficientNetB0 83.93 84.03 84.03 83.93 83.93 83.87 83.87 3.65 365 93
ConvNeXt 83.04 82.84 82.84 83.04 83.04 82.90 82.90 5.43 543 87
Vision Transformer 86.07 86.17 86.17 86.07 86.07 86.00 86.00 5.52 453 67
MLP Mixer 83.21 83.29 83.29 83.21 83.21 83.17 83.17 4.08 408 100

Table C.34: Per class results for the pre-trained Vision Transformer model on the RSSCN7 dataset.

Label Precision Recall F1 score

farm land 97.40 93.75 95.54
forest 100.00 98.75 99.37
grass land 91.57 95.00 93.25
industrial region 92.59 93.75 93.17
parking lot 94.94 93.75 94.34
residential region 100.00 98.75 99.37
river lake 95.12 97.50 96.30
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Figure C.29: Confusion matrix for the pre-trained Vision Transformer model on the RSSCN7 dataset.
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C.9 SAT6

SAT-6 [48] consists of a total of 405000 image patches each of size 28x28 and covering 6 land cover classes -
barren land, trees, grassland, roads, buildings and water bodies (Figure C.30). The authors of the dataset selected
324000 images for the training dataset and 81000 were selected as testing dataset. Additionally we have selected 20%
of the images from the train dataset to create the validation split. The training and test datasets were selected from
disjoint National Agriculture Imagery Program (NAIP) tiles. The specifications for the various land cover classes of
SAT-6 were adopted from those used in the National Land Cover Data (NLCD) algorithm. The class distribution of
the train, test and validation splits is presented on Figure C.30.

Detailed results for all pre-trained models are shown on Table C.35 and for all the models learned from scratch are
presented on Table C.36. All pre-trained model obtained excellent result on the dataset with ResNet50, ResNet152,
DenseNet161, ConvNeXt, Vision Transformer and MLPMixer achieving 100 % accuracy. The results on a class level
are show on Table C.37 along with a confusion matrix on Figure C.32 for the DenseNet161 model.

Figure C.30: Example images with labels from the SAT6 dataset.

Table C.35: Detailed results for pre-trained models on the SAT6 dataset.
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AlexNet 99.98 99.98 99.98 99.97 99.98 99.97 99.98 92.48 5364 48
VGG16 99.99 99.99 99.99 99.99 99.99 99.99 99.99 550.04 29702 44
ResNet50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 410.33 37340 81
RestNet152 100.00 100.00 100.00 100.00 100.00 100.00 100.00 872.87 61974 61
DenseNet161 100.00 100.00 100.00 100.00 100.00 100.00 100.00 970.39 55312 47
EfficientNetB0 99.99 99.99 99.99 99.99 99.99 99.99 99.99 363.00 8712 14
ConvNeXt 100.00 100.00 100.00 99.99 100.00 100.00 100.00 630.78 42262 57
Vision Transformer 100.00 100.00 100.00 100.00 100.00 100.00 100.00 692.50 42935 52
MLP Mixer 100.00 100.00 100.00 100.00 100.00 100.00 100.00 476.34 15243 22
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Figure C.31: Class distribution for the SAT6 dataset.

Table C.36: Detailed results for models trained from scratch on the SAT6 dataset.
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AlexNet 99.27 98.67 99.27 98.65 99.27 98.66 99.27 107.26 10726 98
VGG16 99.56 99.42 99.56 99.42 99.56 99.42 99.56 579.10 57910 98
ResNet50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 457.04 45704 99
RestNet152 100.00 100.00 100.00 100.00 100.00 100.00 100.00 987.21 98721 94
DenseNet161 100.00 100.00 100.00 100.00 100.00 100.00 100.00 956.03 95603 85
EfficientNetB0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 420.37 42037 95
ConvNeXt 100.00 100.00 100.00 100.00 100.00 100.00 100.00 627.69 62769 97
Vision Transformer 99.99 99.98 99.99 99.98 99.99 99.98 99.99 687.12 61841 75
MLP Mixer 99.98 99.98 99.98 99.96 99.98 99.97 99.98 479.37 47937 95

Table C.37: Per class results for the pre-trained DenseNet model on the SAT6 dataset.

Label Precision Recall F1 score

buildings 100.00 100.00 100.00
barren land 100.00 100.00 100.00
trees 100.00 100.00 100.00
grassland 100.00 100.00 100.00
roads 100.00 100.00 100.00
water bodies 100.00 100.00 100.00
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Figure C.32: Confusion matrix for the pre-trained DenseNet161 model on the SAT6 dataset.
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C.10 Siri-Whu

The SIRI-WHU [49] is a scene classification dataset comprised of 2400 images organized into 12 classes. Each
class contains 200 images with a 2m spatial resolution and a size of 200×200 pixels (Figure C.33). It was collected
from Google Earth (Google Inc.) by the Intelligent Data Extraction and Analysis of Remote Sensing (RS IDEA)
Group in Wuhan University. The 12 land-use classes contain agriculture, commercial, harbor, idle land, industrial,
meadow, overpass, park, pond, residential, river, and water. This dataset mainly covers urban areas in China, which
means it lack diversity and is less challenging. The class distribution is presented on Figure C.34.

Detailed results for all pre-trained models are shown on Table C.38 and for all the models learned from scratch
are presented on Table C.39. The best performing model is the pre-trained ResNet152 model. The results on a class
level are show on Table C.40 along with a confusion matrix on Figure C.35.

Figure C.33: Example images with labels from the SIRI-WHU dataset.
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Figure C.34: Class distribution for the SIRI-WHU dataset.

Table C.38: Detailed results for pre-trained models on the SIRI-WHU dataset.
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AlexNet 92.29 92.64 92.64 92.29 92.29 92.31 92.31 4.28 197 36
VGG16 93.96 94.08 94.08 93.96 93.96 93.96 93.96 4.98 214 33
ResNet50 95.00 95.12 95.12 95.00 95.00 95.01 95.01 4.66 191 31
RestNet152 96.25 96.27 96.27 96.25 96.25 96.24 96.24 6.65 226 24
DenseNet161 95.63 95.64 95.64 95.63 95.63 95.61 95.61 7.30 365 40
EfficientNetB0 95.00 95.09 95.09 95.00 95.00 95.01 95.01 4.57 329 62
ConvNeXt 96.25 96.34 96.34 96.25 96.25 96.24 96.24 5.64 203 26
Vision Transformer 95.63 95.73 95.73 95.63 95.62 95.63 95.63 5.37 322 50
MLP Mixer 95.21 95.36 95.36 95.21 95.21 95.23 95.23 4.55 150 23

Table C.39: Detailed results for models trained from scratch on the SIRI-WHU dataset.
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AlexNet 83.75 83.83 83.83 83.75 83.75 83.66 83.66 3.54 326 77
VGG16 84.79 85.05 85.05 84.79 84.79 84.70 84.70 7.32 732 93
ResNet50 88.96 89.14 89.14 88.96 88.96 88.94 88.94 3.81 305 65
RestNet152 88.75 88.67 88.67 88.75 88.75 88.62 88.62 6.54 608 78
DenseNet161 86.67 87.38 87.38 86.67 86.67 86.56 86.56 7.49 749 94
EfficientNetB0 86.04 86.23 86.23 86.04 86.04 85.94 85.94 3.61 238 51
ConvNeXt 84.17 84.32 84.32 84.17 84.17 84.09 84.09 11.99 1007 69
Vision Transformer 86.25 86.31 86.31 86.25 86.25 86.14 86.14 5.08 503 84
MLP Mixer 82.50 82.40 82.40 82.50 82.50 82.34 82.34 3.92 392 98
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Table C.40: Per class results for the pre-trained ResNet152 model on the SIRI-WHU dataset.

Label Precision Recall F1 score

agriculture 100.00 100.00 100.00
commercial 100.00 97.50 98.73
harbor 90.48 95.00 92.68
idle land 97.50 97.50 97.50
industrial 100.00 97.50 98.73
meadow 92.11 87.50 89.74
overpass 95.24 100.00 97.56
park 92.31 90.00 91.14
pond 100.00 100.00 100.00
residential 97.56 100.00 98.77
river 92.50 92.50 92.50
water 97.50 97.50 97.50

Figure C.35: Confusion matrix for the pre-trained ResNet152 model on the SIRI-WHU dataset.
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C.11 CLRS

This dataset [50] is a database designed for the task named Continual/Lifelong learning for remote sensing image
scene classification. The proposed CLRS dataset consists of 15000 remote sensing images divided into 25 scene
classes covering over 100 countries (Figure C.36). The images have a spatial resolution between 0.26 8.85 meters.
The data is acquired from multiple sources such as: Google Earth, Bing Map, Google Map, and Tianditu. The class
distribution of the train, test and validation splits is presented on Figure C.37.

Detailed results for all pre-trained models are shown on Table C.41 and for all the models learned from scratch
are presented on Table C.42. The best performing model is the pre-trained Vision Transformer model. The results on
a class level are show on Table C.43 along with a confusion matrix on Figure C.38.

Figure C.36: Example images with labels from the CLRS dataset.
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Figure C.37: Class distribution for the CLRS dataset.

Table C.41: Detailed results for pre-trained models on the CLRS dataset.
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AlexNet 84.10 84.19 84.19 84.10 84.10 84.03 84.03 20.48 635 21
VGG16 89.90 89.97 89.97 89.90 89.90 89.90 89.90 20.23 607 20
ResNet50 91.57 91.67 91.67 91.57 91.57 91.58 91.58 18.60 279 15
RestNet152 91.90 91.99 91.99 91.90 91.90 91.91 91.91 31.96 799 15
DenseNet161 92.20 92.29 92.29 92.20 92.20 92.20 92.20 35.46 993 18
EfficientNetB0 90.50 90.61 90.61 90.50 90.50 90.49 90.49 19.73 513 16
ConvNeXt 91.10 91.29 91.29 91.10 91.10 91.12 91.12 23.62 496 11
Vision Transformer 93.20 93.29 93.29 93.20 93.20 93.22 93.22 25.32 785 21
MLP Mixer 90.10 90.21 90.21 90.10 90.10 90.05 90.05 19.75 316 6
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Table C.42: Detailed results for models trained from scratch on the CLRS dataset.

Model \Metric A
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AlexNet 71.40 71.59 71.59 71.40 71.40 71.33 71.33 20.35 2035 92
VGG16 76.07 76.20 76.20 76.07 76.07 76.00 76.00 19.33 1450 60
ResNet50 85.57 85.72 85.72 85.57 85.57 85.57 85.57 19.43 1788 77
RestNet152 82.30 82.47 82.47 82.30 82.30 82.19 82.19 32.05 2373 60
DenseNet161 86.17 86.29 86.29 86.17 86.17 86.18 86.18 35.81 2757 62
EfficientNetB0 82.27 82.55 82.55 82.27 82.27 82.31 82.31 20.71 1512 58
ConvNeXt 69.17 69.02 69.02 69.17 69.17 69.01 69.01 23.09 2309 96
Vision Transformer 65.47 66.41 66.41 65.47 65.47 65.49 65.49 24.96 1173 32
MLP Mixer 61.13 62.18 62.18 61.13 61.13 60.87 60.87 17.98 809 30

Table C.43: Per class results for the pre-trained Vision Transformer model on the CLRS dataset.

Label Precision Recall F1 score

airport 97.48 96.67 97.07
bare-land 92.00 95.83 93.88
beach 99.15 97.50 98.32
bridge 90.91 91.67 91.29
commercial 79.84 85.83 82.73
desert 97.50 97.50 97.50
farmland 93.70 99.17 96.36
forest 100.00 100.00 100.00
golf-course 94.96 94.17 94.56
highway 92.11 87.50 89.74
industrial 88.79 85.83 87.29
meadow 96.72 98.33 97.52
mountain 99.15 97.50 98.32
overpass 89.68 94.17 91.87
park 85.60 89.17 87.35
parking 98.25 93.33 95.73
playground 95.04 95.83 95.44
port 94.74 90.00 92.31
railway 86.29 89.17 87.70
railway-station 88.79 85.83 87.29
residential 90.68 89.17 89.92
river 90.32 93.33 91.80
runway 98.33 98.33 98.33
stadium 95.61 90.83 93.16
storage-tank 96.55 93.33 94.92
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Figure C.38: Confusion matrix for the pre-trained Vision Transformer model on the CLRS dataset.
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C.12 RSD46-WHU
RSD46-WHU is a large-scale open dataset for scene classification in remote sensing images. The dataset is

manually collected from Google Earth and Tianditu. The ground resolution of most classes is 0.5m, and the others
are about 2m. There are 500-3000 images in each class. The RSD46-WHU dataset contains around 117000 images
with 46 classes (Figure C.39). The image are not evenly distributed between classes and each class contains between
428 to 3000 images. The dataset comes with predefined train and test splits. For creating the validation split we used
20% of the images from the train split. The class distribution of the different splits is presented on Figure C.40.

Detailed results for all pre-trained models are shown on Table C.44 and for all the models learned from scratch are
presented on Table C.45. The best performing model is the pre-trained DenseNet161 model. The results on a class
level are show on Table C.46 along with a confusion matrix on Figure C.41.

Figure C.39: Example images with labels from the RSD46-WHU dataset.

Table C.44: Detailed results for pre-trained models on the RSD46-WHU dataset.
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AlexNet 90.65 90.43 90.61 90.35 90.65 90.36 90.61 58.03 2031 25
VGG16 92.42 92.30 92.38 92.25 92.42 92.22 92.37 158.32 4433 18
ResNet50 94.16 94.07 94.15 94.18 94.16 94.11 94.14 123.27 3205 16
RestNet152 94.40 94.33 94.40 94.41 94.40 94.36 94.39 269.45 7814 19
DenseNet161 94.51 94.36 94.49 94.41 94.51 94.36 94.48 297.70 6847 13
EfficientNetB0 93.39 93.20 93.38 93.39 93.39 93.26 93.35 111.55 2231 10
ConvNeXt 93.63 93.61 93.67 93.47 93.63 93.48 93.60 196.20 3924 10
Vision Transformer 94.24 94.38 94.23 94.08 94.24 94.16 94.20 210.37 3997 9
MLP Mixer 93.67 93.77 93.69 93.47 93.67 93.55 93.65 148.25 3558 14

62



Figure C.40: Class distribution for the RSD46-WHU dataset.

Table C.45: Detailed results for models trained from scratch on the RSD46-WHU dataset.
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AlexNet 86.03 85.83 86.03 85.67 86.03 85.71 85.99 58.84 3707 48
VGG16 88.62 88.37 88.56 88.37 88.62 88.32 88.55 162.89 8796 39
ResNet50 90.55 90.40 90.53 90.26 90.55 90.30 90.52 127.53 8672 53
RestNet152 89.94 89.84 89.99 89.77 89.94 89.78 89.95 272.70 19907 58
DenseNet161 92.21 92.11 92.23 92.03 92.21 92.06 92.21 301.16 15318 36
EfficientNetB0 90.61 90.57 90.61 90.25 90.61 90.37 90.58 113.93 6446 40
ConvNeXt 88.69 88.66 88.67 88.33 88.69 88.46 88.66 194.93 11891 46
Vision Transformer 86.47 86.22 86.45 85.94 86.47 86.02 86.42 211.93 9325 29
MLP Mixer 81.25 81.56 81.59 80.11 81.25 80.51 81.19 148.42 4149 12

63



Table C.46: Per class results for the pre-trained DenseNet161 model on the RSD46-WHU dataset.

Label Precision Recall F1 score

Airplane 99.56 99.78 99.67
Airport 98.39 99.19 98.79
Artificial dense forest land 87.11 86.90 87.01
Artificial sparse forest land 87.06 82.55 84.75
Bare land 94.12 96.00 95.05
Basketball court 90.37 92.39 91.37
Blue structured factory building 96.57 97.83 97.19
Building 82.44 83.40 82.92
Construction site 82.11 79.43 80.75
Cross river bridge 99.70 99.70 99.70
Crossroads 97.74 98.70 98.22
Dense tall building 94.35 94.35 94.35
Dock 98.94 98.73 98.83
Fish pond 97.52 97.93 97.72
Footbridge 99.49 99.24 99.36
Graff 98.37 93.79 96.03
Grassland 95.07 95.52 95.29
Low scattered building 96.15 97.49 96.82
Lrregular farmland 97.68 98.51 98.09
Medium density scattered building 76.98 68.15 72.30
Medium density structured building 89.58 92.11 90.82
Natural dense forest land 95.40 96.89 96.14
Natural sparse forest land 93.16 97.98 95.51
Oiltank 90.66 96.68 93.57
Overpass 99.19 98.13 98.66
Parking lot 96.49 96.07 96.28
Plasticgreenhouse 100.00 99.34 99.67
Playground 96.85 95.84 96.34
Railway 99.14 99.14 99.14
Red structured factory building 97.78 98.66 98.22
Refinery 92.84 87.72 90.21
Regular farmland 95.20 94.80 95.00
Scattered blue roof factory building 94.44 96.72 95.57
Scattered red roof factory building 93.28 97.73 95.45
Sewage plant-type-one 95.06 96.25 95.65
Sewage plant-type-two 88.73 98.44 93.33
Ship 99.56 99.33 99.45
Solar power station 99.78 99.78 99.78
Sparse residential area 91.42 88.14 89.75
Square 94.52 97.38 95.93
Steelsmelter 90.48 90.89 90.68
Storage land 99.03 96.52 97.76
Tennis court 95.93 91.38 93.60
Thermal power plant 88.95 85.19 87.03
Vegetable plot 94.12 92.59 93.35
Water 99.02 99.51 99.26
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Figure C.41: Confusion matrix for the pre-trained DenseNet161 model on the RSD46-WHU dataset.
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C.13 Brazilian Coffee Scenes

The Brazilian Coffee Scenes dataset [53] consists of only two classes: coffee and non-coffee class. Each class has
1438 images with 64x64 pixels cropped from SPOT satellite images over four counties in the state of Minas Gerais,
Brazil: Arceburgo, Guaranesia, Guaxupe, and Monte Santo (Figure C.42). The images in the dataset are in green, red
and near-infrared spectral bands, since these are most useful and representative for distinguishing vegetation areas.
The dataset is manually annotated by agricultural researchers. Images which contain coffee pixels in at least 85% of
the image were assigned to the coffee class. Image with less than 10% of coffee pixels are assigned to the non-coffee
class. The number of classes and the degree to which the data is tailored, should make this less challenging dataset.
The class distribution is presented on Figure C.43.

Detailed results for all pre-trained models are shown on Table C.47 and for all the models learned from scratch
are presented on Table C.48. The best performing model is the pre-trained MLPMixer model. The results on a class
level are show on Table C.49 along with a confusion matrix on Figure C.44.

Figure C.42: Example images with labels from the Brazilian Coffee Scenes dataset.

Figure C.43: Class distribution for the Brazilian Coffee Scenes dataset.
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Table C.47: Detailed results for pre-trained models on the Brazilian Coffee Scenes dataset.
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AlexNet 89.58 89.59 89.59 89.58 89.58 89.58 89.58 1.48 43 19
VGG16 90.97 91.00 91.00 90.97 90.97 90.97 90.97 4.17 121 19
ResNet50 92.01 92.06 92.06 92.01 92.01 92.01 92.01 3.45 76 12
RestNet152 92.36 92.37 92.37 92.36 92.36 92.36 92.36 6.61 119 8
DenseNet161 92.71 92.81 92.81 92.71 92.71 92.70 92.70 7.33 176 14
EfficientNetB0 91.32 91.32 91.32 91.32 91.32 91.32 91.32 3.17 133 32
ConvNeXt 91.49 91.58 91.58 91.49 91.49 91.49 91.49 5.08 132 16
Vision Transformer 92.01 92.03 92.03 92.01 92.01 92.01 92.01 5.07 76 5
MLP Mixer 93.06 93.07 93.07 93.06 93.06 93.05 93.05 3.94 67 7

Table C.48: Detailed results for models trained from scratch on the Brazilian Coffee Scenes dataset.
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AlexNet 89.41 89.62 89.62 89.41 89.41 89.40 89.40 1.53 115 60
VGG16 89.41 89.45 89.45 89.41 89.41 89.41 89.41 5.95 440 59
ResNet50 89.24 89.39 89.39 89.24 89.24 89.23 89.23 4.55 296 50
RestNet152 88.54 88.56 88.56 88.54 88.54 88.54 88.54 7.95 469 44
DenseNet161 90.80 90.80 90.80 90.80 90.80 90.80 90.80 7.31 373 36
EfficientNetB0 85.42 85.71 85.71 85.42 85.42 85.39 85.39 3.26 326 98
ConvNeXt 84.38 84.39 84.39 84.38 84.38 84.37 84.37 5.09 509 95
Vision Transformer 87.85 87.89 87.89 87.85 87.85 87.84 87.84 5.55 322 43
MLP Mixer 86.28 86.29 86.29 86.28 86.28 86.28 86.28 4.47 201 30

Table C.49: Per class results for MLPMixer on the Brazilian Coffee Scenes dataset.

Label Precision Recall F1 score

coffee 92.18 94.10 93.13
noncoffee 93.97 92.01 92.98

Figure C.44: Confusion matrix for MLPMixer on the Brazilian Coffee Scenes dataset.
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C.14 Optimal 31

The Optimal 31 dataset [52] is for remote sensing image scene classification. The dataset contains 31 classes,
each class contains 60 images with a size of 256×256 pixels. Totaling 1860 aerial RGB images (Figure C.45). These
classes include: airplane, airport, basketball court, baseball field, bridge, beach, bushes, crossroads, church, round
farmland, business district, desert, harbor, dense houses, factory, forest, freeway, golf field, island, lake, meadow,
medium houses, mountain, mobile house area, overpass, playground, parking lot, roundabout, runway, railway, and
square farmland. It is considered challenging due to small number of images dispersed across many classes. We have
generated train, test and validation spits for our study and their class distribution is presented on Figure C.46.

Detailed results for all pre-trained models are shown on Table C.50 and for all the models learned from scratch
are presented on Table C.51. The best performing model is the pre-trained Vision Transformer model. The results on
a class level are show on Table C.52 along with a confusion matrix on Figure C.47.

Figure C.45: Example images with labels from the Optimal 31 dataset.
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Figure C.46: Class distribution for the Optimal 31 dataset.

Table C.50: Detailed results for pre-trained models on the Optimal 31 dataset.
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AlexNet 80.91 81.90 81.90 80.91 80.91 80.74 80.74 1.10 45 31
VGG16 88.71 89.58 89.58 88.71 88.71 88.79 88.79 2.97 95 22
ResNet50 92.20 92.85 92.85 92.20 92.20 92.25 92.25 2.58 129 40
RestNet152 92.47 92.99 92.99 92.47 92.47 92.47 92.47 4.62 217 37
DenseNet161 94.35 94.92 94.92 94.35 94.35 94.43 94.43 5.02 306 51
EfficientNetB0 91.67 92.04 92.04 91.67 91.67 91.60 91.60 2.25 187 73
ConvNeXt 93.01 93.33 93.33 93.01 93.01 92.99 92.99 3.50 203 48
Vision Transformer 94.62 94.85 94.85 94.62 94.62 94.56 94.56 3.71 126 24
MLP Mixer 92.74 93.17 93.17 92.74 92.74 92.74 92.74 2.82 141 40

Table C.51: Detailed results for models trained from scratch on the Optimal 31 dataset.
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AlexNet 55.11 55.61 55.61 55.11 55.11 54.24 54.24 1.23 101 67
VGG16 56.72 58.89 58.89 56.72 56.72 56.58 56.58 4.81 409 70
ResNet50 67.20 69.56 69.56 67.20 67.20 67.17 67.17 2.60 161 47
RestNet152 62.90 64.95 64.95 62.90 62.90 62.78 62.78 5.92 314 38
DenseNet161 71.24 72.01 72.01 71.24 71.24 70.65 70.65 5.16 330 49
EfficientNetB0 68.55 70.59 70.59 68.55 68.55 68.70 68.70 2.36 156 51
ConvNeXt 58.87 60.69 60.69 58.87 58.87 58.92 58.92 3.59 330 77
Vision Transformer 62.63 63.89 63.89 62.63 62.63 62.32 62.32 3.79 235 47
MLP Mixer 59.14 60.36 60.36 59.14 59.14 58.47 58.47 3.26 326 98
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Table C.52: Per class results for the pre-trained Vision Transformer model on the Optimal 31 dataset.

Label Precision Recall F1 score

airplane 100.00 100.00 100.00
airport 100.00 100.00 100.00
baseball diamond 92.31 100.00 96.00
basketball court 100.00 100.00 100.00
beach 100.00 100.00 100.00
bridge 100.00 91.67 95.65
chaparral 100.00 100.00 100.00
church 100.00 91.67 95.65
circular farmland 92.31 100.00 96.00
commercial area 85.71 100.00 92.31
dense residential 84.62 91.67 88.00
desert 100.00 91.67 95.65
forest 91.67 91.67 91.67
freeway 100.00 91.67 95.65
golf course 91.67 91.67 91.67
ground track field 92.31 100.00 96.00
harbor 85.71 100.00 92.31
industrial area 84.62 91.67 88.00
intersection 100.00 100.00 100.00
island 100.00 100.00 100.00
lake 91.67 91.67 91.67
meadow 83.33 83.33 83.33
medium residential 88.89 66.67 76.19
mobile home park 90.91 83.33 86.96
mountain 100.00 100.00 100.00
overpass 92.31 100.00 96.00
parking lot 100.00 100.00 100.00
railway 92.31 100.00 96.00
rectangular farmland 100.00 83.33 90.91
roundabout 100.00 100.00 100.00
runway 100.00 91.67 95.65
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Figure C.47: Confusion matrix for the pre-trained Vision Transformer model on the Optimal 31 dataset.
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C.15 So2Sat

This dataset [54] consists of co-registered synthetic aperture radar and multispectral optical image patches ac-
quired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and the corresponding local climate zones (LCZ)
label. So2Sat has a total of 400673 images of size 32x32 pixels organized into 17 classes. Sample images are shown
on Figure C.45.

The dataset is distributed over 42 cities across different continents and cultural regions of the world. The classes
include: compact high rise, compact middle rise, compact low rise, open high rise, open middle rise, open low rise,
lightweight low rise, large low rise, sparsely built, heavy industry, dense trees, scattered trees, bush scrub, low plants,
bare rock or paved, bare soil or sand, and water.

The creators of So2Sat have provided different versions for train, test and validation splits for the dataset. The
class distribution of the splits is depicted on Figure C.49. We are using Version 2 4 with only Sentinel 2 data. Version
2 provides a training set covering 42 cities around the world, a validation set covering western half of 10 other cities
covering 10 cultural zones and a test set containing the eastern half of the 10 other cities.

Detailed results for all pre-trained models are shown on Table C.53 and for all the models learned from scratch
are presented on Table C.54. The best performing model is the pre-trained Vision Transformer model. The results on
a class level are show on Table C.55 along with a confusion matrix on Figure C.50.

Figure C.48: Example images with labels from the So2Sat dataset.

4available at So2Sat-LCZ42 repo https://github.com/zhu-xlab/So2Sat-LCZ42.
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Figure C.49: Class distribution for the So2Sat dataset.

Table C.53: Detailed results for pre-trained models on the So2Sat dataset.
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AlexNet 59.20 46.01 59.31 42.70 59.20 41.57 57.59 158.09 1790 1
VGG16 65.38 57.30 64.34 50.00 65.38 49.64 63.00 716.09 7877 1
ResNet50 61.90 51.01 60.88 48.45 61.90 48.35 60.41 565.55 6221 1
ResNet152 65.17 56.66 64.48 53.42 65.17 52.93 63.75 1,200.64 13207 1
DenseNet161 65.76 55.47 64.58 48.59 65.76 48.67 63.81 1,324.09 14784 1
EfficientNetB0 65.80 56.30 65.64 53.37 65.80 53.65 64.77 510.45 5615 1
ConvNeXt 66.17 59.11 66.87 54.87 66.17 54.71 65.56 853.91 9393 1
Vision Transformer 68.55 62.95 69.64 57.17 68.55 57.26 67.48 925.09 10176 1
MLP Mixer 67.07 63.74 68.25 51.34 67.07 51.94 65.66 643.91 7278 1

Table C.54: Detailed results for models trained from scratch on the So2Sat dataset.
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AlexNet 56.51 41.86 54.97 40.70 56.51 39.72 54.65 174.74 3320 4
VGG16 62.27 51.36 61.08 45.40 62.27 45.54 59.78 723.72 13027 3
ResNet50 59.59 46.54 59.35 43.94 59.59 43.37 58.18 558.79 10617 4
ResNet152 61.48 49.43 62.30 48.71 61.48 46.98 60.22 1,198.37 22769 4
DenseNet161 55.43 48.87 60.98 42.53 55.43 40.76 54.11 1,325.67 23862 3
EfficientNetB0 65.17 53.75 64.00 50.34 65.17 50.36 63.88 499.21 11981 9
ConvNeXt 60.15 50.97 61.52 48.03 60.15 47.17 59.73 851.06 15319 3
Vision Transformer 55.33 43.56 55.31 37.42 55.33 37.01 52.20 926.50 14824 1
MLP Mixer 53.58 42.31 53.80 36.73 53.58 36.61 51.19 651.31 10421 1
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Table C.55: Per class results for the pre-trained Vision Transformer model on the So2Sat dataset.

Label Precision Recall F1 score

Compact high rise 62.37 21.80 32.31
Compact middle rise 70.74 61.49 65.79
Compact low rise 68.52 75.33 71.77
Open high rise 76.54 59.39 66.89
Open middle rise 56.12 59.50 57.76
Open low rise 47.29 64.36 54.52
Lightweight low rise 57.14 39.76 46.89
Large low rise 87.11 84.87 85.98
Sparsely built 67.30 45.80 54.51
Heavy industry 39.39 69.49 50.28
Dense trees 97.11 73.86 83.91
Scattered trees 26.16 55.89 35.64
Bush or scrub 15.22 1.80 3.22
Low plants 60.68 90.55 72.66
Bare rock or paved 79.38 37.56 50.99
Bare soil or sand 62.05 32.87 42.97
Water 97.10 97.60 97.35

Figure C.50: Confusion matrix for the pre-trained Vision Transformer model on the So2Sat dataset.
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C.16 UC Merced multi-label

The UC Merced dataset was extended in [55] for multi-label classification. The dataset still has the same number
of 2100 images of 256x256 pixels size (Figure C.51). The difference is in the number of classes (labels) and the
number of annotations (classes) an image belongs to. Each image in the dataset has been manually labeled with one
or more (maximum seven) labels based on visual inspection in order to create the ground truth data (the multilabels
are available at http://bigearth.eu/datasets). The total number of distinct class labels in the dataset is 17. The labels
are: airplane, bare-soil, buildings, cars, chaparral, court, dock, field, grass, mobile-home, pavement, sand, sea, ship,
tanks, trees, water. The average number of labels per image is 3.3. This dataset has no predefined train-test splits by
the authors. For our study, we made appropriate splits and their distribution is presented on Figure C.52.

Detailed results for all pre-trained models are shown on Table C.56 and for all the models learned from scratch
are presented on Table C.57. The best performing model is the pre-trained Vision Transformer model. The results on
a class level are show on Table C.58 along with a confusion matrix on Figure C.53.

Figure C.51: Example images with labels from the UC Merced multi-label dataset.

Figure C.52: Label distribution for the UC Merced multi-label dataset.
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Table C.56: Detailed results for pre-trained models on the UC Merced multi-label dataset.
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AlexNet 92.64 82.78 88.47 83.14 86.23 86.07 86.23 84.47 86.91 84.52 1.31 71 44
VGG16 92.85 86.43 91.38 86.61 86.37 87.84 86.37 86.40 89.33 86.39 3.30 132 30
ResNet50 95.66 86.19 92.37 86.53 87.71 88.84 87.71 86.94 90.23 86.95 2.76 124 35
ResNet152 96.01 88.10 93.19 88.33 86.23 89.45 86.23 87.15 91.07 87.13 5.04 227 35
DenseNet161 96.06 88.82 93.99 88.90 87.01 89.69 87.01 87.91 91.51 87.76 5.64 468 73
EfficientNetB0 95.38 87.98 93.22 88.23 87.36 89.19 87.36 87.67 90.92 87.65 2.54 254 98
ConvNeXt 96.43 88.80 94.30 88.91 87.92 89.92 87.92 88.36 91.84 88.32 3.92 259 56
Vision Transformer 96.70 88.87 94.16 89.09 89.62 90.55 89.62 89.24 92.14 89.16 4.13 132 22
MLP Mixer 96.34 88.62 94.38 88.75 87.99 88.16 87.99 88.31 90.77 88.21 3.25 182 46

Table C.57: Detailed results for models trained from scratch on the UC Merced multi-label dataset.
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AlexNet 75.52 72.54 67.64 70.50 73.87 63.95 73.87 73.20 64.95 71.73 1.03 103 91
VGG16 76.80 74.33 72.59 73.65 78.53 70.75 78.53 76.37 71.14 75.77 3.24 324 99
ResNet50 79.87 76.72 77.52 76.42 78.67 71.21 78.67 77.68 72.73 76.99 2.76 276 99
ResNet152 73.66 76.89 69.85 74.78 73.80 65.05 73.80 75.32 66.81 73.92 5.06 506 86
DenseNet161 85.41 81.30 84.62 81.61 79.52 76.19 79.52 80.40 79.63 80.26 5.60 487 72
EfficientNetB0 79.87 78.45 74.10 76.91 75.85 72.13 75.85 77.13 72.89 76.25 2.23 252 99
ConvNeXt 72.27 72.40 69.27 71.19 74.65 62.31 74.65 73.50 63.50 71.89 3.81 381 100
Vision Transformer 87.14 81.02 85.66 81.10 79.31 75.95 79.31 80.16 79.29 79.69 4.12 412 95
MLP Mixer 75.68 75.29 73.64 74.60 73.38 64.54 73.38 74.32 67.44 73.43 3.11 311 99

Table C.58: Per label results for the pre-trained Vision Transformer model on the UC Merced multi-label dataset.

airplane 100.00 95.00 97.44
bare-soil 86.29 74.31 79.85
buildings 89.61 89.03 89.32
cars 87.36 86.86 87.11
chaparral 100.00 95.65 97.78
court 100.00 76.19 86.49
dock 100.00 100.00 100.00
field 100.00 85.71 92.31
grass 87.96 85.71 86.82
mobile-home 90.00 90.00 90.00
pavement 83.39 97.29 89.80
sand 91.38 91.38 91.38
sea 100.00 100.00 100.00
ship 100.00 95.24 97.56
tanks 100.00 90.00 94.74
trees 89.62 94.06 91.79
water 95.12 92.86 93.98
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Figure C.53: Confusion matrix for the pre-trained Vision Transformer model on the UC Merced multi-label dataset.
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C.17 BigEarthNet

BigEarthNet is a new large-scale multi-label Sentinel-2 benchmark archive [58] [36] . The BigEarthNet consists
of 590326 Sentinel-2 image patches, each of which is a section of: 120x120 pixels for 10m bands; 60x60 pixels
for 20m bands; and 20x20 pixels for 60m bands. Each image patch is annotated by multiple land-cover classes
(i.e., multi-labels) that are provided from the CORINE Land Cover database. It was constructed by selecting 125
Sentinel-2 tiles acquired between June 2017 and May 2018. Covering different countries and seasonal period. More
precisely, the number of images acquired in autumn, winter, spring and summer seasons are 154943, 117156, 189276
and 128951 respectively. The image patches are geographically distributed across 10 countries (Austria, Belgium,
Finland, Ireland, Kosovo, Lithuania, Luxembourg, Portugal, Serbia, Switzerland) of Europe. The images are stored
in tiff format and accompanied with additional metadata in JSON format.

The authors provide a predefined set of train-validation-test splits. Additionally, they proposed 2 versions of the
labels in the dataset.

The first version of the dataset contains 43 labels with an 3.0 labels per image (Figure C.55). The labels in this ver-
sion are: Continuous urban fabric, Discontinuous urban fabric, Industrial or commercial units, Road and rail networks
and associated land, Port areas, Airports, Mineral extraction sites, Dump sites, Construction sites, Green urban areas,
Sport and leisure facilities, Non-irrigated arable land, Permanently irrigated land, Rice fields, Vineyards, Fruit trees
and berry plantations, Olive groves, Pastures, Annual crops associated with permanent crops, Complex cultivation
patterns, Land principally occupied by agriculture, with significant areas of natural vegetation, Agro-forestry areas,
Broad-leaved forest, Coniferous forest, Mixed forest, Natural grassland, Moors and heathland, Sclerophyllous vege-
tation, Transitional woodland/shrub, Beaches, dunes, sands, Bare rock, Sparsely vegetated areas, Burnt areas, Inland
marshes, Peatbogs, Salt marshes, Salines, Intertidal flats, Water courses, Water bodies, Coastal lagoons, Estuaries,
Sea and ocean. The largest class (label), Mixed forest, appeared in 217119 image, whereas the label with fewest
appearances, Burnt areas, appeared in 328 images. This high imbalance should make the dataset more challenging.

Detailed results for all pre-trained models are shown on Table C.59 and for all the models learned from scratch are
presented on Table C.60. The best performing model is the pre-trained ResNet50 model. The results on a class level
are show on Table C.61 along with a confusion matrix on Figure C.56.

The second version of the dataset contains 19 labels with 2.9 labels per image on average (Figure C.57). The
labels contained here are: Urban fabric, Industrial or commercial units, Arable land, Permanent crops, Pastures,
Complex cultivation patterns, Land principally occupied by agriculture, with significant areas of natural vegetation,
Agro-forestry areas, Broad-leaved forest, Coniferous forest, Mixed forest, Natural grassland and sparsely vegetated
areas, Moors, heath-land and sclerophyllous vegetation, Transitional woodland, shrub, Beaches, dunes, sands, Inland
wetlands, Coastal wetlands, Inland waters, Marine waters. The label Mixed forest is most commonly found and is
present in 176546 images, whereas Beaches, dunes, sands appears in 1536 images and is the least frequently used
label. Sample images are shown on Figure C.54.

Detailed results for all pre-trained models are shown on Table C.62 and for all the models learned from scratch are
presented on Table C.63. The best performing model is the pre-trained EfficientNetB0 model. The results on a class
level are show on Table C.64 along with a confusion matrix on Figure C.58.

78



Figure C.54: Example images with labels from the BigEarthNet dataset.
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C.17.1 BigEarthNet 43

Figure C.55: Label distribution for the BigEarthNet 43 dataset.

Table C.59: Detailed results for pre-trained models on the BigEarthNet 43 dataset.
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AlexNet 58.55 80.15 61.88 79.67 72.14 51.99 72.14 75.93 55.62 75.48 89.85 7188 70
VGG16 61.21 80.71 64.71 80.29 72.74 53.97 72.74 76.52 57.74 76.08 542.30 12473 13
ResNet50 66.26 81.99 67.47 81.64 74.14 58.15 74.14 77.87 61.87 77.54 414.18 9112 12
ResNet152 64.07 82.17 70.42 81.73 72.08 52.11 72.08 76.80 58.27 76.17 881.69 14107 6
DenseNet161 64.23 81.87 68.31 81.39 72.63 53.58 72.63 76.97 58.80 76.48 969.67 14545 5
EfficientNetB0 64.59 82.14 70.17 81.75 73.37 53.93 73.37 77.51 59.71 77.08 365.40 7308 10
ConvNeXt 66.17 81.67 69.24 81.31 73.93 56.11 73.93 77.61 61.12 77.23 642.81 10285 6
Vision Transformer 59.00 79.77 65.42 79.39 71.39 48.98 71.39 75.35 54.65 74.81 702.00 14742 11
MLP Mixer 59.65 81.18 67.47 80.55 71.30 48.85 71.30 75.92 54.95 75.28 492.84 12321 15
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Table C.60: Detailed results for models trained from scratch on the BigEarthNet 43 dataset.
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AlexNet 56.08 79.15 58.19 78.68 71.41 50.79 71.41 75.08 53.54 74.65 84.18 5051 45
VGG16 58.97 80.56 64.94 80.13 71.99 48.02 71.99 76.03 53.38 75.49 544.28 15784 14
ResNet50 64.34 82.07 67.06 81.65 73.47 55.64 73.47 77.53 60.14 77.12 409.87 18854 31
ResNet152 62.74 80.72 66.55 80.30 72.96 53.88 72.96 76.64 58.59 76.12 878.00 32486 22
DenseNet161 63.39 82.20 66.27 81.74 71.83 53.84 71.83 76.67 58.40 76.00 982.63 29479 15
EfficientNetB0 62.17 81.25 66.61 80.90 73.01 52.02 73.01 76.91 56.94 76.48 364.13 11288 16
ConvNeXt 60.47 80.71 67.02 80.19 72.40 51.09 72.40 76.33 56.51 75.81 645.51 26466 26
Vision Transformer 57.41 79.12 63.50 78.74 71.20 47.96 71.20 74.95 52.94 74.31 709.86 20586 14
MLP Mixer 58.77 80.82 65.97 80.10 71.12 48.10 71.12 75.66 53.38 74.90 500.77 15524 16

Table C.61: Per label results for the pre-trained ResNet50 model on the BigEarthNet 43 dataset.

Continuous urban fabric 86.22 80.76 83.40
Discontinuous urban fabric 82.80 68.65 75.06
Industrial or commercial units 71.73 43.73 54.34
Road and rail networks and associated land 45.51 45.69 45.60
Port areas 55.17 40.00 46.38
Airports 57.89 40.15 47.41
Mineral extraction sites 40.54 47.07 43.56
Dump sites 40.00 26.51 31.88
Construction sites 51.55 31.45 39.06
Green urban areas 46.18 39.66 42.67
Sport and leisure facilities 43.18 41.39 42.27
Non-irrigated arable land 87.42 83.84 85.59
Permanently irrigated land 78.29 55.81 65.17
Rice fields 58.83 64.98 61.75
Vineyards 68.28 50.71 58.20
Fruit trees and berry plantations 45.71 56.13 50.38
Olive groves 69.20 53.50 60.35
Pastures 82.21 71.58 76.52
Annual crops associated with permanent crops 61.07 35.87 45.20
Complex cultivation patterns 75.10 68.25 71.51
Land principally occupied by agriculture, with significant areas of natural vegetation 74.00 62.83 67.96
Agro-forestry areas 80.92 80.28 80.60
Broad-leaved forest 82.73 73.50 77.85
Coniferous forest 87.69 86.35 87.01
Mixed forest 83.26 81.99 82.62
Natural grassland 74.31 44.00 55.27
Moors and heathland 64.08 46.18 53.68
Sclerophyllous vegetation 76.07 68.70 72.20
Transitional woodland/shrub 73.78 62.74 67.81
Beaches, dunes, sands 57.50 62.44 59.87
Bare rock 54.67 73.87 62.84
Sparsely vegetated areas 45.95 41.21 43.45
Burnt areas 10.00 2.78 4.35
Inland marshes 64.39 30.62 41.50
Peatbogs 79.99 60.93 69.17
Salt marshes 61.67 54.05 57.61
Salines 73.12 64.76 68.69
Intertidal flats 61.76 62.87 62.31
Water courses 84.35 67.79 75.17
Water bodies 90.36 77.90 83.67
Coastal lagoons 91.23 80.98 85.80
Estuaries 83.25 69.32 75.65
Sea and ocean 99.39 98.53 98.96
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Figure C.56: Confusion matrix for the pre-trained ResNet50 model on the BigEarthNet 43 dataset.
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C.17.2 BigEarthNet 19

Figure C.57: Label distribution for the BigEarthNet 19 dataset.
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Table C.62: Detailed results for pre-trained models on the BigEarthNet 19 dataset.
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AlexNet 77.15 80.90 75.60 80.58 73.59 66.06 73.59 77.07 70.04 76.77 90.43 5245 48
VGG16 78.42 81.33 77.61 81.02 73.92 66.27 73.92 77.45 70.92 77.11 537.90 10758 10
ResNet50 79.98 82.65 78.57 82.37 73.62 67.74 73.62 77.88 72.12 77.51 413.24 7025 7
ResNet152 79.78 82.58 80.36 82.43 73.95 66.57 73.95 78.03 71.79 77.57 874.56 13993 6
DenseNet161 79.69 81.92 78.55 81.83 74.42 66.99 74.42 77.99 71.61 77.72 976.93 14654 5
EfficientNetB0 80.22 82.87 80.56 82.61 74.36 66.32 74.36 78.38 72.14 78.09 366.35 6228 7
ConvNeXt 77.15 80.90 75.60 80.58 73.59 66.06 73.59 77.07 70.04 76.77 631.67 9475 5
Vision Transformer 77.31 82.31 76.93 81.85 70.99 64.08 70.99 76.23 69.18 75.70 698.50 15367 12
MLP Mixer 77.29 81.41 78.12 80.97 73.20 64.33 73.20 77.09 69.68 76.62 488.68 12217 15

Table C.63: Detailed results for models trained from scratch on the BigEarthNet 19 dataset.
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AlexNet 75.71 80.27 74.63 79.88 72.73 64.83 72.73 76.31 68.89 75.96 86.78 5120 44
VGG16 77.99 80.45 75.61 80.21 74.91 67.63 74.91 77.58 70.90 77.28 542.24 18436 19
ResNet50 78.73 82.94 78.20 82.44 72.61 66.15 72.61 77.44 71.28 76.99 413.89 26489 49
ResNet152 78.52 81.06 75.86 81.02 74.69 68.18 74.69 77.74 71.34 77.55 875.20 43760 35
DenseNet161 79.73 82.24 77.81 82.05 74.77 67.99 74.77 78.33 71.98 78.08 975.34 31211 17
EfficientNetB0 79.21 82.25 78.89 82.02 74.68 66.53 74.68 78.28 71.65 78.01 359.16 11493 17
ConvNeXt 77.91 81.39 78.16 81.18 73.57 64.64 73.57 77.29 70.08 76.95 643.66 24459 23
Vision Transformer 75.87 80.48 75.45 80.14 71.36 63.85 71.36 75.65 68.59 75.23 702.53 21076 15
MLP Mixer 77.01 81.39 77.37 81.12 72.59 64.34 72.59 76.74 69.74 76.42 495.88 15868 17

Table C.64: Per label results for the pre-trained EfficientNetB0 model on the BigEarthNet 19 dataset.

Urban fabric 83.86 72.64 77.85
Industrial or commercial units 74.70 39.85 51.97
Arable land 89.67 81.51 85.40
Permanent crops 81.17 53.17 64.25
Pastures 80.76 73.12 76.75
Complex cultivation patterns 75.31 67.58 71.23
Land principally occupied by agriculture, with significant areas of natural vegetation 73.83 61.14 66.89
Agro-forestry areas 84.68 75.80 79.99
Broad-leaved forest 81.81 74.04 77.73
Coniferous forest 88.37 84.93 86.61
Mixed forest 82.57 82.32 82.45
Natural grassland and sparsely vegetated areas 74.06 43.05 54.45
Moors, heathland and sclerophyllous vegetation 72.49 64.73 68.39
Transitional woodland, shrub 72.49 63.35 67.61
Beaches, dunes, sands 64.09 52.49 57.71
Inland wetlands 80.46 51.43 62.75
Coastal wetlands 81.07 44.19 57.20
Inland waters 90.33 76.76 83.00
Marine waters 99.01 97.96 98.48
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Figure C.58: Confusion matrix for the pre-trained EfficientNetB0 model on the BigEarthNet 19 dataset.
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C.18 MLRSNet

MLRSNet [56] is a multi-label high spatial resolution remote sensing dataset for semantic scene understanding. It
is composed of high-resolution optical satellite or aerial RGB images. MLRSNet contains a total of 109161 images
(Figure C.59) within 46 scene categories, and each image has at least one of 60 predefined labels. The number of labels
associated with each image varies between 1 and 13, but averages at 5.0 labels per image (Figure C.60). The labels
annotating the images are: airplane, airport, bare soil, baseball diamond, basketball court, beach, bridge, buildings,
cars, cloud, containers, crosswalk, dense residential area, desert, dock, factory, field, football field, forest, freeway,
golf course, grass, greenhouse, gully, habor, intersection, island, lake, mobile home, mountain, overpass, park, parking
lot, parkway, pavement, railway, railway station, river, road, roundabout, runway, sand, sea, ships, snow, snowberg,
sparse residential area, stadium, swimming pool, tanks, tennis court, terrace, track, trail, transmission tower, trees,
water, chaparral, wetland, wind turbine. The dataset does not have predefined train-tests splits.

Detailed results for all pre-trained models are shown on Table C.65 and for all the models learned from scratch
are presented on Table C.66. The best performing model is the pre-trained ResNet152 model. The results on a class
level are show on Table C.67 along with a confusion matrix on Figure C.61.

Figure C.59: Example images with labels from the MLRSNet dataset.

Table C.65: Detailed results for pre-trained models on the MLRSNet dataset.
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AlexNet 93.40 87.93 87.37 88.15 88.54 88.95 88.54 88.24 87.73 88.25 34.09 1125 23
VGG16 94.63 89.56 89.05 89.73 89.39 90.06 89.39 89.48 89.18 89.48 132.24 3306 15
ResNet50 96.27 91.33 92.54 91.38 90.72 91.79 90.72 91.03 92.00 91.00 101.67 1726 16
ResNet152 96.43 91.83 92.51 91.84 90.74 92.27 90.74 91.28 92.26 91.25 214.11 5781 17
DenseNet161 96.31 91.61 92.35 91.63 90.85 92.18 90.85 91.23 92.07 91.21 237.35 6171 16
EfficientNetB0 95.39 91.35 91.63 91.37 90.09 90.52 90.09 90.71 90.84 90.67 86.80 2604 20
ConvNeXt 95.81 91.04 90.71 91.12 90.60 91.90 90.60 90.82 91.10 90.81 155.65 3580 13
Vision Transformer 96.41 91.81 91.89 91.84 91.75 93.16 91.75 91.78 92.33 91.77 170.90 3589 11
MLP Mixer 95.05 90.77 91.21 90.83 89.14 89.23 89.14 89.95 89.86 89.88 121.38 1942 6
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Figure C.60: Label distribution for the MLRSNet dataset.

Table C.66: Detailed results for models trained from scratch on the MLRSNet dataset.
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AlexNet 90.85 86.53 83.69 86.69 86.58 86.54 86.58 86.56 84.70 86.58 34.92 2549 58
VGG16 91.52 86.63 83.24 87.00 87.98 88.23 87.98 87.30 85.33 87.41 132.22 7272 40
ResNet50 95.26 90.65 90.76 90.68 89.42 90.33 89.42 90.03 90.37 90.00 102.26 6238 46
ResNet152 93.98 89.47 88.92 89.54 88.45 88.55 88.45 88.96 88.51 88.92 214.47 14155 51
DenseNet161 94.74 90.23 89.59 90.23 88.13 88.86 88.13 89.17 88.87 89.08 237.96 11422 33
EfficientNetB0 94.40 89.90 89.09 89.99 89.22 90.19 89.22 89.56 89.40 89.54 89.34 8934 87
ConvNeXt 90.71 87.86 84.80 88.00 85.38 84.73 85.38 86.60 84.36 86.60 159.35 5896 22
Vision Transformer 87.25 85.78 82.28 85.81 84.64 80.90 84.64 85.20 81.06 85.03 170.71 5975 20
MLP Mixer 85.28 84.45 82.59 84.45 82.19 75.60 82.19 83.31 78.11 83.01 123.20 3080 10
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Table C.67: Per label results for the pre-trained ResNet152 model on the MLRSNet dataset.

airplane 88.48 88.10 88.29
airport 86.95 79.73 83.18
bare soil 83.48 81.75 82.61
baseball diamond 98.99 99.39 99.19
basketball court 89.32 92.08 90.68
beach 99.40 99.20 99.30
bridge 95.92 92.99 94.43
buildings 93.97 89.90 91.89
cars 85.15 89.91 87.47
cloud 99.17 99.72 99.45
containers 99.80 99.80 99.80
crosswalk 82.61 73.08 77.55
dense residential area 99.70 95.90 97.76
desert 98.64 100.00 99.31
dock 99.02 98.27 98.64
factory 91.37 82.24 86.57
field 92.21 92.15 92.18
football field 67.03 85.12 75.00
forest 89.22 91.73 90.46
freeway 99.18 99.42 99.30
golf course 99.14 97.46 98.29
grass 88.68 86.83 87.75
greenhouse 98.85 99.04 98.94
gully 90.54 93.17 91.84
habor 99.02 98.27 98.64
intersection 75.81 94.00 83.93
island 99.60 98.82 99.21
lake 97.44 98.80 98.11
mobile home 64.29 87.10 73.97
mountain 97.99 95.37 96.66
overpass 94.10 93.52 93.81
park 90.70 91.05 90.87
parking lot 74.81 57.65 65.12
parkway 90.32 90.69 90.51
pavement 96.36 96.28 96.32
railway 90.69 94.09 92.36
railway station 88.32 83.07 85.61
river 98.80 99.20 99.00
road 91.85 91.41 91.63
roundabout 97.54 97.54 97.54
runway 99.24 86.95 92.69
sand 98.37 98.68 98.53
sea 99.06 98.80 98.93
ships 89.98 87.59 88.77
snow 96.39 89.90 93.03
snowberg 87.18 98.88 92.66
sparse residential area 98.26 96.58 97.41
stadium 92.37 95.74 94.02
swimming pool 93.53 79.49 85.94
tanks 95.10 100.00 97.49
tennis court 98.54 94.60 96.53
terrace 91.38 97.89 94.52
track 93.88 94.39 94.13
trail 79.91 78.92 79.41
transmission tower 99.42 98.65 99.03
trees 91.47 93.29 92.37
water 95.85 89.58 92.61
chaparral 96.53 94.24 95.37
wetland 89.87 88.29 89.07
wind turbine 99.76 99.76 99.76
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Figure C.61: Confusion matrix for the pre-trained ResNet152 model on the MLRSNet dataset.
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C.19 DFC15

DFC15 [57] is a multi-label dataset created from the semantic segmentation dataset, DFC15 (IEEE GRSS data
fusion contest, 2015), which was published and first used in 2015 IEEE GRSS Data Fusion Contest. The dataset is
acquired over Zeebrugge with an airborne sensor, which is 300m off the ground. In total, 7 tiles are collected in DFC
dataset, and each of them is pixels with a spatial resolution of 5cm. All tiles in DFC15 dataset are labeled in pixel-level,
and each pixel is categorized into 8 distinct object classes: impervious, water, clutter, vegetation, building, tree, boat,
and car. As a result of this process, the dataset contains 3342 images with a size of 600x600 pixels (Figure C.62).
The images are annotated with one or more of the 8 labels in the dataset, with an average of 2.8 labels per image
(Figure C.63). The most frequent labels is impervious and it appears in 3133 image. The label tree is least frequent
and it appears in 258 images.

Detailed results for all pre-trained models are shown on Table C.68 and for all the models learned from scratch
are presented on Table C.69. The best performing model is the pre-trained ConvNeXt model. The results on a class
level are show on Table C.70 along with a confusion matrix on Figure C.64.

Figure C.62: Example images with labels from the DFC15 dataset.

Figure C.63: Label distribution for the DFC15 dataset.
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Table C.68: Detailed results for pre-trained models on the DFC15 dataset.
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AlexNet 94.06 92.33 89.03 92.32 91.01 86.21 91.01 91.67 87.52 91.60 7.74 325 32
VGG16 96.57 94.09 91.75 94.30 92.60 88.57 92.60 93.34 89.79 93.30 8.94 286 22
ResNet50 97.66 95.21 94.19 95.19 93.50 91.54 93.50 94.35 92.81 94.31 8.49 331 29
ResNet152 97.60 95.08 93.78 95.04 93.97 90.88 93.97 94.52 92.25 94.46 9.45 444 37
DenseNet161 97.53 95.07 93.52 95.03 94.71 91.43 94.71 94.89 92.43 94.85 9.54 544 47
EfficientNetB0 96.79 95.54 94.09 95.51 94.08 90.97 94.08 94.81 92.48 94.77 8.33 583 60
ConvNeXt 97.99 94.99 93.84 94.98 94.24 91.39 94.24 94.61 92.55 94.58 8.72 471 44
Vision Transformer 97.62 96.40 94.75 96.33 93.34 89.45 93.34 94.84 91.96 94.77 8.76 219 15
MLP Mixer 97.94 95.23 94.29 95.20 93.92 90.82 93.92 94.57 92.48 94.53 8.18 229 18

Table C.69: Detailed results for models trained from scratch on the DFC15 dataset.
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AlexNet 88.10 90.40 84.01 90.16 85.57 76.29 85.57 87.92 79.75 87.69 7.83 783 99
VGG16 89.87 91.07 86.30 91.03 87.37 79.82 87.37 89.18 82.38 88.98 8.50 799 79
ResNet50 94.67 92.88 89.33 92.84 91.75 87.01 91.75 92.32 88.11 92.26 8.92 464 37
ResNet152 94.19 92.05 89.36 91.91 89.96 83.80 89.96 90.99 86.36 90.82 9.66 647 52
DenseNet161 95.85 94.23 92.10 94.19 92.28 87.62 92.28 93.24 89.65 93.15 9.89 613 47
EfficientNetB0 93.97 93.90 91.67 93.77 91.91 85.64 91.91 92.90 88.40 92.75 8.47 686 66
ConvNeXt 89.56 91.08 87.12 90.85 87.47 79.56 87.47 89.24 82.99 89.03 8.80 880 91
Vision Transformer 94.16 92.45 89.36 92.34 89.96 84.84 89.96 91.19 87.00 91.10 8.85 743 69
MLP Mixer 91.66 90.43 86.00 90.27 88.90 82.91 88.90 89.66 84.40 89.56 8.31 831 100

Table C.70: Per label results for the pre-trained ConvNeXt model on the DFC15 dataset.

impervious 96.67 98.87 97.76
water 95.12 94.20 94.66
clutter 96.01 94.26 95.13
vegetation 93.27 94.98 94.12
building 92.89 89.71 91.27
tree 85.96 85.96 85.96
boat 97.92 87.04 92.16
car 92.86 86.09 89.35

Figure C.64: Confusion matrix for the pre-trained ConvNeXt model on the DFC15 dataset.

91



C.20 Planet UAS

The Planet UAS dataset [60] was created by the company, Planet - designer and builder of the world’s largest
constellation of Earth-imaging satellites. The aim is to label satellite image chips with atmospheric conditions and
various classes of land cover/land use. The dataset is available on Kaggle and is approximately 32 GB worth of data.
The data contains 40479 satellite images organized in tiff and jpg files (Figure C.65). The jpg file show the natural
light spectrum of the image, whereas the tiff files provide extra information about the infrared features of the satellite
image, both with 256x256 pixels resolution. There are a total of 17 different labels with an average of 2.9 labels per
image.

The imagery has a ground-sample distance (GSD) of 3.7m and an orthorectified pixel size of 3m. The data comes
from Planet’s Flock 2 satellites in both sun-synchronous and ISS orbits and was collected between January 1, 2016 and
February 1, 2017. All of the scenes come from the Amazon basin which includes Brazil, Peru, Uruguay, Colombia,
Venezuela, Guyana, Bolivia, and Ecuador. There are a total of 17 different labels. Out of those, 4 labels correspond to
weather: Clear, Cloudy, Partly Cloudy, Haze. The rest of the (13) labels correspond to land: Habitation, Bare Ground,
Cultivation, Agriculture, Blow Down, Conventional Mine, Selective Logging, Slash Burn, Artisanal Mine, Blooming,
Primary, Water, and None.

The dataset only has the train set publicly available and we use that to generate train, test and validation splits
(Figure C.66).

Detailed results for all pre-trained models are shown on Table C.71 and for all the models learned from scratch
are presented on Table C.72. The best performing model is the pre-trained MLPMixer model. The results on a class
level are show on Table C.73 along with a confusion matrix on Figure C.67.

Figure C.65: Example images with labels from the Planet UAS dataset.
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Figure C.66: Label distribution for the PlanetUAS dataset.

Table C.71: Detailed results for pre-trained models on the PlanetUAS dataset.
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AlexNet 64.05 90.71 66.56 89.39 86.29 54.39 86.29 88.44 57.73 87.49 17.45 576 23
VGG16 65.58 92.09 64.14 90.90 86.88 55.99 86.88 89.41 59.19 88.58 50.38 1058 11
ResNet50 65.53 92.17 67.64 90.91 86.07 54.98 86.07 89.02 58.72 87.91 37.00 740 10
ResNet152 64.82 91.66 66.67 90.52 87.23 56.03 87.23 89.39 59.47 88.60 81.83 1964 14
DenseNet161 66.34 91.75 73.56 90.77 87.42 55.29 87.42 89.53 59.16 88.50 90.40 1808 10
EfficientNetB0 64.16 92.18 69.45 90.98 87.18 52.66 87.18 89.61 56.02 88.62 33.52 771 13
ConvNeXt 66.45 91.52 70.00 90.47 87.95 56.06 87.95 89.70 59.95 88.92 59.63 1431 14
Vision Transformer 66.80 91.31 69.63 90.18 87.79 56.11 87.79 89.52 59.95 88.56 65.71 920 4
MLP Mixer 67.33 92.18 74.70 91.30 86.68 56.56 86.68 89.35 60.79 88.59 45.94 735 6

Table C.72: Detailed results for models trained from scratch on the PlanetUAS dataset.
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AlexNet 60.28 90.32 67.35 88.88 84.81 51.24 84.81 87.48 54.52 86.25 18.65 1865 87
VGG16 60.68 90.39 60.11 88.74 84.97 50.56 84.97 87.60 53.21 86.44 50.68 2889 42
ResNet50 64.19 92.16 67.02 90.84 86.52 54.31 86.52 89.25 58.47 88.24 37.57 2592 54
ResNet152 64.96 91.57 69.94 90.42 86.97 55.02 86.97 89.21 59.06 88.28 80.86 6792 69
DenseNet161 64.74 91.79 69.52 90.53 87.01 55.20 87.01 89.34 59.12 88.37 90.11 4866 39
EfficientNetB0 63.87 91.70 65.64 90.55 87.03 53.86 87.03 89.30 57.21 88.40 33.47 2711 66
ConvNeXt 61.28 90.92 64.25 89.39 84.29 51.55 84.29 87.48 54.68 86.19 59.35 5935 90
Vision Transformer 59.41 90.35 60.32 88.16 83.12 47.68 83.12 86.58 51.94 84.94 65.52 4128 48
MLP Mixer 58.55 89.67 62.22 87.58 82.21 48.88 82.21 85.78 51.46 84.06 45.93 2572 41
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Table C.73: Per label results for the pre-trained MLPMixer model on the PlanetUAS dataset.

haze 71.67 71.80 71.73
primary 97.52 98.87 98.19
agriculture 88.07 76.54 81.90
clear 96.97 95.37 96.16
water 87.88 70.59 78.29
habitation 78.66 70.14 74.16
road 88.23 79.03 83.38
cultivation 67.71 44.97 54.04
slash burn 0.00 0.00 0.00
cloudy 83.25 83.25 83.25
partly cloudy 90.87 91.85 91.36
conventional mine 75.00 52.17 61.54
bare ground 45.95 27.57 34.46
artisinal mine 86.00 65.15 74.14
blooming 100.00 1.56 3.08
selective logging 45.45 22.73 30.30
blow down 66.67 10.00 17.39

Figure C.67: Confusion matrix for the pre-trained MLPMixer model on the PlanetUAS dataset.
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C.21 AID multi-label

Hua et al. [59] extend the AID dataset for multi-label classification. They manually relabeled some images in the
AID dataset. With extensive human visual inspections, 3000 aerial images from 30 scenes in the AID dataset were
selected and assigned with multiple object labels. The dataset has 17 labels with 5.2 labels per image on average. The
labels are: bare soil, airplane, building, car, charparral, court, dock, field, grass, mobile home, pavement, sand, sea,
ship, tank, tree and water. The authors provide a proposed train-test split. Figure C.68 show some example images
from the AID multi-label dataset. The distribution of the labels for the train, validation and test splits is shown in
Figure C.69 from which we can observe an imbalanced distribution, some of the labels are heavily populated with
images/samples, and some of the labels are with only few images/samples (for example the label mobile-home has
only one image in the respective train, validation and test splits).

Detailed results for all pre-trained models are shown on Table C.74 and for all the models learned from scratch
are presented on Table C.75. The best performing model is the pre-trained ResNet152 model. The results on a class
level are show on Table C.76 along with a confusion matrix on Figure C.70.

Figure C.68: Example images with labels from the AID multilabel dataset.

Table C.74: Detailed results for pre-trained models on AID multi-label
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AlexNet 75.91 88.34 75.10 87.33 86.04 66.15 86.04 87.18 68.61 86.19 5.55 172 21
VGG16 79.89 90.12 76.29 88.58 87.62 67.13 87.62 88.85 70.03 87.74 6.33 190 20
ResNet50 80.76 91.36 79.13 89.72 87.68 68.37 87.68 89.48 72.34 88.34 5.94 190 22
ResNet152 80.94 91.92 80.10 90.46 86.62 64.52 86.62 89.19 69.53 87.98 7.97 239 20
DenseNet161 81.71 90.77 80.12 89.54 88.84 68.22 88.84 89.80 71.80 88.76 8.71 366 32
EfficientNetB0 78.00 91.38 78.79 89.79 86.81 64.22 86.81 89.04 69.40 87.76 6.15 381 52
ConvNeXt 82.30 92.23 86.10 92.06 88.07 68.96 88.07 90.10 73.01 89.17 6.63 345 42
Vision Transformer 81.54 93.33 81.54 91.76 87.10 67.84 87.10 90.11 73.15 88.96 6.95 146 11
MLP Mixer 80.88 93.09 85.44 92.78 86.88 64.11 86.88 89.87 69.48 88.53 6.35 165 16
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Figure C.69: Label distribution for the AID multilabel dataset.

Table C.75: Detailed results for models trained from scratch on the AID multi-label dataset.
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AlexNet 68.78 86.93 69.98 85.45 84.33 60.45 84.33 85.61 63.48 84.42 5.82 524 75
VGG16 69.21 87.03 66.46 85.22 84.42 62.06 84.42 85.71 63.75 84.60 6.28 490 63
ResNet50 70.87 89.52 74.76 87.95 84.04 59.51 84.04 86.69 64.46 85.27 5.74 379 51
ResNet152 69.65 87.95 76.32 87.11 84.49 58.55 84.49 86.18 62.72 84.76 8.08 477 44
DenseNet161 71.22 88.57 76.27 87.52 85.23 60.19 85.23 86.87 64.09 85.33 8.47 449 38
EfficientNetB0 72.89 88.51 71.56 86.66 86.42 64.45 86.42 87.45 67.01 86.22 5.94 398 52
ConvNeXt 65.59 87.00 67.56 85.16 83.75 56.43 83.75 85.34 59.44 83.75 6.40 576 75
Vision Transformer 65.58 85.82 63.05 83.61 83.94 56.33 83.94 84.87 58.63 83.37 6.82 627 77
MLP Mixer 64.24 85.72 66.07 83.70 83.46 56.52 83.46 84.58 59.30 83.02 6.41 506 64

Table C.76: Per label results for the pre-trained ResNet152 model on the AID multi-label dataset.

airplane 100.00 25.00 40.00
bare-soil 77.30 77.30 77.30
buildings 93.72 96.64 95.16
cars 94.13 94.13 94.13
chaparral 100.00 2.70 5.26
court 80.43 49.33 61.16
dock 82.93 68.00 74.73
field 85.71 61.54 71.64
grass 95.30 95.71 95.50
mobile-home 0.00 0.00 0.00
pavement 97.82 97.82 97.82
sand 97.78 84.62 90.72
sea 100.00 90.91 95.24
ship 82.22 78.72 80.43
tanks 100.00 90.48 95.00
trees 95.42 94.82 95.12
water 80.99 64.61 71.88
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Figure C.70: Confusion matrix for the pre-trained ResNet152 model on the AID multi-label dataset.
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