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a b s t r a c t

The bag-of-visual-words approach to represent images is very popular in the image annotation commu-
nity. A crucial part of this approach is the construction of visual codebook. The visual codebook is typi-
cally constructed by using a clustering algorithm (most often k-means) to cluster hundreds of thousands
of local descriptors/key-points into several thousands of visual words. Given the large numbers of exam-
ples and clusters, the clustering algorithm is a bottleneck in the construction of bag-of-visual-words rep-
resentations of images. To alleviate this bottleneck, we propose to construct the visual codebook by using
predictive clustering trees (PCTs) for multi-label classification (MLC). Such a PCT is able to assign multiple
labels to a given image, i.e., to completely annotate a given image. Given that PCTs (and decision trees in
general) are unstable predictive models, we propose to use a random forest of PCTs for MLC to produce
the overall visual codebook. Our hypothesis is that the PCTs for MLC can exploit the connections between
the labels and thus produce a visual codebook with better discriminative power. We evaluate our
approach on three relevant image databases. We compare the efficiency and the discriminative power
of the proposed approach to the literature standard – k-means clustering. The results reveal that our
approach is much more efficient in terms of computational time and produces a visual codebook with
better discriminative power as compared to k-means clustering. The scalability of the proposed approach
allows us to construct visual codebooks using more than usually local descriptors thus further increasing
its discriminative power.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many of the popular methods for image annotation are using a
bag-of-visual-words to represent the visual content of an image
(Nowak and Dunker, 2010; Everingham et al., 2012; van de Sande
et al., 2010). The basic idea of this approach is first to sample a set
of key-points (i.e., local regions) from the image using some meth-
od (e.g., densely, randomly or using a key-point detector). A local
visual descriptor, such as the scale-invariant feature transform
(SIFT) descriptor and normalized pixel values, is then calculated
for each key-point. The resulting distribution of local descriptors
is then quantified against a pre-specified visual codebook. The
visual codebook converts the distribution of local descriptors into
a histogram. The main issues that need to be considered when
applying this approach include sampling of the key-points,
selection of the type of local descriptor, building the visual

codebook (set of visual words) and assignment of the local
descriptors to visual words from the visual codebook.

1.1. Motivation

The discriminative power of the visual codebook determines
the performance of the annotation. However, the construction of
the visual codebook and the assignment of the local descriptors
to the visual words from the visual codebook is very often a bottle-
neck in image annotation (Philbin et al., 2007). This is mainly
because k-means clustering, which is computationally expensive,
is the most widely used method for visual codebook construction.
The computational cost of the k-means algorithm is even more
pronounced on complex datasets with a large number of images
(van de Sande et al., 2010). Moreover, k-means clustering is a
un-supervised learning algorithm and thus does not exploit the
information contained in the label annotations.

To resolve these issues, Moosmann et al. (2008) and Uijlings
et al. (2009) propose to use supervised tree-based machine learn-
ing methods to construct the visual codebook. These methods are
able to exploit the image annotations in the context of single-label
classification, i.e., for images annotated with only a single label.
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This means that the proposed approaches can handle image dat-
abases with relatively simple images with single annotations.
However, in reality, the images are annotated with multiple labels:
An image depicting some street will probably also depict buildings,
cars, trees and people.

1.2. Contribution of the research

In this paper, we present a method for fast and efficient con-
struction of visual codebooks that is able to use images with multi-
ple annotations/labels. We use predictive clustering trees (PCTs)
for multi-label classification (MLC) (Blockeel et al., 1998) to de-
crease the time needed to construct the visual codebook and, at
the same time, to improve its discriminative power. PCTs are capa-
ble of annotating an instance with multiple labels simultaneously
and thus exploiting the interactions that may occur among the dif-
ferent labels.

Although most visual codebooks are built without using the la-
bels, our approach uses the available annotations and the interac-
tions among them to guide the visual codebook construction
process. The PCTs are trained to perform multi-label classification:
The visual codebook is then constructed by assigning a distinct vi-
sual word to each leaf of the tree. The PCTs can be considered as a
data-driven and a semantic approach to visual codebook construc-
tion because they rely on the available image annotations (labels).

The main research questions that we are addressing in this
manuscript are as follows. First, we investigate whether the
proposed method for codebook construction is more efficient and
scalable than the literature standard (i.e., k-means). Next, we test
the discriminative power of the obtained visual codebook and
compare it to the discriminative power of the codebook obtained
using k-means. Furthermore, we investigate the influence of the
number of selected key-points used to obtain the visual words
on the discriminative power of the codebook. Finally, we examine
the influence of the number of PCTs for MLC used for codebook
construction on the codebook’s discriminative power.

1.3. Organization of the paper

The remainder of this paper is organized as follows. In Section 2,
we present related work. Section 3 introduces predictive clustering
trees and their extension for multi-label classification. In Section 4,
we explain the experimental setup. The obtained results and a dis-
cussion thereof are given in Section 5. Section 6 concludes the paper.

2. Related work

Many studies have shown that the bag-of-visual-words
approach exhibits an impressive performance for image annotation
problems (Everingham et al., 2012; Nowak, 2010; Nowak and
Huiskes, 2010). A crucial step in the bag-of-visual-words approach
is the codebook construction. The visual codebook can be con-
structed using unsupervised or supervised machine learning
methods.

The unsupervised methods are most widely used by the image
annotation community. Typically, the visual codebook is con-
structed by applying k-means clustering to the key-points, i.e.,
the local descriptors (e.g., SIFT) extracted from the images (van
de Sande et al., 2010; Lowe, 2004). The k-means algorithm has
two serious limitations when applied to the image annotation
problem (Jurie and Triggs, 2005). First, it works with small visual
codebooks, i.e., with only thousands of visual words, while many
datasets may have tens of thousands of visual words. Second, it
constructs more clusters close to the most frequently occurring
features. These limitations can be addressed with the hierarchical

k-means (HKM) approach (Nister and Stewenius, 2006) and
radius-based clustering (van Gemert et al., 2010).

The supervised machine learning methods for constructing vi-
sual codebooks use the label annotations of the images to guide
the construction of the visual codebooks. They can use single-label
or multi-label methods. With the first type of methods, a visual
codebook is constructed for each label separately and then these
are aggregated over all possible labels. The second type of methods
constructs a single visual codebook valid for all labels. Our ap-
proach belongs to the second type of methods.

Uijlings et al. (2009) and Chatfield et al. (2011) have recently
published detailed overviews of bag-of-words methods for crea-
tion of visual codebooks. These surveys compare several state-
of-the-art methods for un-supervised and supervised creation of
visual codebooks used in the context of single-label classification
or multi-class classification. The comparison of tree-based and
k-means methods for visual codebook construction reveals that
the tree-based methods are more efficient than methods based
on k-means. However, the improvement of the computational effi-
ciency comes with the price of decreasing the discriminative
power of the codebook (i.e., the classifier using the tree-based
codebook produced worse annotations). The methods from the
literature have, so far, considered the construction of visual
codebooks in the context of single-label classification/annotation
or multi-class classification/annotation. Another method, proposed
by Wojcikiewicz et al. (2010), constructs a separate codebook for
each possible label and then reconciles the several codebooks using
agglomerative information bottleneck. The experimental evalua-
tion over a single image database with small number of labels
per image showed small increase of performance as compared to
classical k-means clustering. All of these methods, in the process
of codebook construction, do not consider the label dependencies,
i.e., that if an image is annotated with the label cloud, it will prob-
ably be also annotated with the label sky.

In order to alleviate all of these issues, we propose here a meth-
od for constructing a visual codebook for multi-label classification/
annotation problems that can explore the existing connections be-
tween the labels. This is due to the fact that we construct a single
predictive model that is valid for the complete label space.
Moreover, decision trees in combination with random forest
ensemble methods have not yet been considered for building vi-
sual codebooks for a large number of visual concepts (labels),
where an image can be annotated with multiple labels (multi-label
image annotation problems). To this end, we propose to use
random forest of PCTs for MLC, considering that there are many
real-life challenging multi-label image annotation problems
(Nowak and Dunker, 2010; Nowak, 2010; Nowak and Huiskes,
2010).

3. Visual codebook construction using predictive clustering
trees

3.1. The task of multi-label classification (MLC)

The problem of single-label classification is concerned with
learning from examples, where each example x 2 X (X denotes
the domain of descriptive variables for the examples) is associated
with a single label ki from a finite set of disjoint labels
L ¼ fk1; k2; . . . ; kQg;Q > 1. For Q > 2, the learning problem is re-
ferred to as multi-class classification. On the other hand, the task
of learning a mapping from an example x 2 X to a set of labels
Y#L is referred to as a multi-label classification. In contrast to mul-
ti-class classification, alternative labels in multi-label classification
are not assumed to be mutually exclusive: multiple labels may be
associated with a single example, i.e., each example can be a
member of more than one class. Labels in the set Y are relevant
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and labels in the set L n Y are irrelevant for a given example. An
example dataset that is used for multi-label classification of images
is given in Fig. 1.

In other words, multi-label classification/annotation is con-
cerned with learning from examples, where each example is asso-
ciated with multiple labels (Tsoumakas and Katakis, 2007). These
multiple labels belong to a predefined set of labels. In the case of
multi-label classification, the goal is to construct a predictive
model that will provide a list of relevant labels for a given, previ-
ously unseen example.

3.2. Predictive clustering trees for multi-label classification

Predictive clustering trees (PCTs) (Blockeel et al., 1998) general-
ize decision trees (Breiman et al., 1984) and can be used for a vari-
ety of learning tasks, including different types of prediction and
clustering. The PCT framework views a decision tree as a hierarchy
of clusters: the top-node of a PCT corresponds to one cluster con-
taining all data, which is recursively partitioned into smaller clus-
ters while moving down the tree. The leaves represent the clusters
at the lowest level of the hierarchy and each leaf is labeled with its
cluster’s prototype (prediction).

PCTs can be induced with a standard top–down induction of deci-
sion trees (TDIDT) algorithm (Breiman et al., 1984). The algorithm is
presented in Table 1. It takes as input a set of examples (E) and out-
puts a tree. The heuristic (h) that is used for selecting the tests (t) is
the reduction in variance caused by partitioning (P) the instances
(see line 4 of BestTest procedure in Table 1). By maximizing the var-
iance reduction the cluster homogeneity is maximized and it
improves the predictive performance. If no acceptable test can be
found (see line 6), that is, if the test does not significantly reduce

Fig. 1. An excerpt from the dataset ImageCLEF@ICPR2010 (Nowak, 2010) for the task of MLC for image annotation. The table contains a set of images with their visual
descriptors (descriptive variables) and annotations (labels). The set of possible image labels include: Plants, Flowers, Trees, Sky, Clouds, Water, Lake, River, Sea, Mountains,
Day, Night, Sunny, Sunset sunrise, Animals, Food, Vehicle, etc. The complete list of labels is given in the Supplementary material.

Table 1
The top–down induction algorithm for PCTs.

procedure PCT (E) returns tree procedure BestTestðEÞ
1: ðt�;h�;P�Þ ¼ BestTestðEÞ 1: ðt�; h�;P�Þ ¼ ðnone;0; ;Þ
2: If t� – none then 2: for each possible test tdo
3: for each Ei 2 P� do 3: P = partition induced by t on E
4: treei = PCT (Ei) 4: h ¼ VarðEÞ �

P
Ei2P

jEi j
jEj VarðEiÞ

5: return nodeðt�;
S

iftreeigÞ 5: If ðh > h�Þ ^ Acceptableðt;PÞ then
6: else 6: ðt�; h�;P�Þ ¼ ðt; h;PÞ
7: return leafðPrototypeðEÞÞ 7: return ðt� ;h�;P�Þ

descriptor1>5

yes no

yes no yes no

...

yes no

...

descriptor47>3

descriptor125>23

descriptor5>34

visual word 1

visual word 340 visual word 341

Fig. 2. An example of a predictive clustering tree for MLC constructed using SIFT descriptors of image key-points and the image labels. The PCT is constructed using the
dataset presented in Fig. 1. The internal nodes contain tests on the descriptors, while the leafs contain clusters of local key-points and their annotations.

40 I. Dimitrovski et al. / Pattern Recognition Letters 38 (2014) 38–45



Author's personal copy

the variance, then the algorithm creates a leaf and computes the
prototype of the instances belonging to that leaf.

The main difference between the algorithm for learning PCTs
and other algorithms for learning decision trees is that the former
considers the variance function and the prototype function (that
computes a label for each leaf) as parameters that can be instanti-
ated for a given learning task.

In this work, we focus on the task of multi-label classification,
which can be considered as a special case of multi-target predic-
tion (Kocev et al., 2013). Therefore, the variance function is com-
puted as the sum of the Gini indices (Breiman et al., 1984) of the

labels, i.e., VarðEÞ ¼
PQ

i¼1GiniðE; kiÞ;GiniðE; kiÞ ¼ 1� freq2
ki

, where Q

is the number of labels, ki is a given label and freqki
is the frequency

of the label ki. The prototype function returns a vector of probabil-
ities for the set of labels that indicate whether an example is
labeled with a given label.

Fig. 2 presents an example PCT for MLC. The tree is a predic-
tive model which predicts the presence of different visual con-
cepts in an image. The internal nodes contain tests on the
descriptors (in this example, SIFT descriptors), while the leafs as-
sign the annotations for a given image. For a detailed description
of PCTs for multi-target prediction the reader is referred
to Blockeel et al. (1998) and Kocev et al. (2013). The PCT frame-
work is implemented in the CLUS system, which is available at
http://clus.sourceforge.net.

3.3. Visual codebook construction

The architecture of the system for fast and efficient visual code-
book construction and multi-label annotation is presented in Fig. 3.
The system consists of a visual codebook construction part and a
classification part. The visual codebook construction part imple-
ments the construction of the visual codebook and the image
descriptions. The classification part implements the multi-label
annotation algorithm based on SVMs.

The visual codebook construction part starts with the genera-
tion of the local descriptors for the training images. The SIFT
descriptors describe the local shape of a region (i.e., a key-point)
using edge orientation histograms (Lowe, 2004). The key-points
can be obtained using several approaches: dense sampling, random
sampling or using a key-point detector. However, Zhang et al.
(2007) have shown that the dense sampling strategy, which sam-
ples an image grid in a uniform fashion using a fixed pixel interval
between key-points, yields a visual codebook with the best
discriminative power. Considering this, we use dense sampling of
the key-points with an interval distance of 6 pixels and sample
at multiple scales (r ¼ 1:2 and r ¼ 2:0). We compute a 128-
dimensional SIFT descriptor for each image key-point, because SIFT
descriptors are the most widely used local descriptors by the image
annotation community. Note that the SIFT descriptors from a given
image share the same annotation labels.

Next, the obtained local descriptors for the key-points from the
training images are used to create the visual codebook (van de
Sande et al., 2010; Lowe, 2004). From all of the key-points of the
training images, a smaller subset is randomly selected. Typically,
k-means clustering is applied to the local descriptors and the
resulting clusters represent the visual words. In our system, we
use PCTs for MLC to construct the visual codebook. We create the
training dataset as follows. Each row represent a image key-point
described with the local descriptors (as descriptive variables) and
the labels of the image from which the key-point was taken. In this
way, the image labels guide the process of the construction of the
visual words. Since the variance function of the PCTs includes the
informations about all of the labels, the codebook obtained in this
way exploits the label interaction for creating a better codebook.
To control the size of the visual codebook, we apply pre-pruning
of the trees by requiring a given minimum number of instances
in each tree leaf. Each leaf of the tree is a separate visual word
and all leaves constitute the visual codebook.

The single PCTs are very fast to construct, but they are unstable,
i.e., can change substantially for small changes in the data. To

Train images

Set of SIFT descriptors

Sampling strategy
+ SIFT descriptors

PCTs for MLC

Visual codebook

Set of histograms

Test images

Set of SIFT descriptors

Sampling strategy
+ SIFT descriptors

Set of histograms

Learning algorithm

visual codebook construction part

classification part

SVM classifier

Annotations/labels

Fig. 3. Architecture of the proposed system for fast and efficient visual codebook construction and multi-label annotation.
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overcome this limitation and to further improve the discriminative
power of the visual codebook, we construct a small random forest
of PCTs for MLC (Moosmann et al., 2008). Each PCTs is obtained
both by bootstrap sampling the training set and by randomly
changing the feature set during learning. More precisely, at each
node in the decision tree, a random subset of the input attributes
is taken, and the best feature is selected from this subset (instead
of the set of all attributes). The number of attributes that are re-
tained is given by a function f ðxÞ of the total number of input attri-
butes D; f ðxÞ ¼ log2Db c þ 1 (note that one can consider also other
functions, such as f ðxÞ ¼ D; f ðxÞ ¼

ffiffiffiffi
D
p

; f ðxÞ ¼ 0:1� Db c) (Breiman,
2001). The final visual codebook is then obtained by concatenating
the individual visual codebooks from each PCT in the forest.

We then obtain the image descriptions for the training images.
For each image, we sort all of the local SIFT descriptors (for all of
the key-points) through the PCTs for MLC and the leaf that it falls
into gives the corresponding visual word. The votes for each visual
word are then accumulated (over all local descriptors) for each im-
age into a fixed-size histogram (i.e., each visual word is a descrip-
tive variable). The images are thus described with both the
histograms of the visual words and the labels.

The produced image descriptions are then used in the image
classification part of the system to learn a predictive model (i.e.,
classifier). In our system, we construct support vector machines
(SVMs) with a v2 kernel, which is the image annotation community
standard (van de Sande et al., 2010). The predictive model will be
used to produce annotations for un-seen (i.e., test) images. For each
un-seen image, the key-points are first sampled in a similar way as
for the codebook construction part by using dense sampling. Next,
local SIFT descriptors for the sampled key-points are calculated.
These descriptors are then sorted through the PCTs for MLC (from
the codebook construction part) to obtain the image histogram, i.e.,
image description. Finally, using the image description and the
SVM classifier the system produces annotations for the given
image.

3.4. Computational complexity aspects

We assume that the training set contains N instances and D
descriptive attributes and Q is the number of possible image labels.
Furthermore, I is the number of iterations for k-means and w is the
number of clusters. Kocev et al. (2013) derive in detail the compu-
tational complexity of PCTs. Here, we briefly summarize and discus
the complexity of PCTs for MLC.

The overall complexity for constructing a PCT for MLC is
OðDNlog2NÞ þ OðQDN log NÞ þ OðN log NÞ. The upper bounds of this
complexity is given by the first two terms. If we assume that
Q > log N (the images are annotated with many labels) then the
complexity of the PCTs for MLC is OðQDN log NÞ. On the other hand,
if the number of images is much larger than the number of labels,
i.e., log N > Q then the complexity is OðDNlog2NÞ. Recall that we
use a randomized version of the tree construction algorithm: boot-
strap sampling of the training set and by randomly changing the
feature set during learning. This means that the training set has
less examples N0 (where typically N0 ¼ 0:632� N (Breiman,
1996)) and that at each node less variables are used D0 ¼ f ðDÞ. This
speeds-up significantly the PCT construction algorithm.

The computational complexity of k-means clustering for con-
struction of w clusters is OðwINDÞ (Manning et al., 2008). Let us
compare the computational complexity of both methods. In the
case where the number of labels is large (Q > log N) or small
(Q < log N), the ratio of the computational complexities depends
from the ratio Q log N

wI or log2N
wI , respectively. If this ratio is bigger than

1, then PCTs have worse complexity than the k-means, and,
otherwise, if it is smaller than 1. However, note that in real world
scenarios Q and log N are much smaller than w: typically the

images are annotated with at most hundreds labels and the dat-
abases contain at most millions of images (log2106 < 20), while
there are typically thousands of visual words in a codebook and
depending on the problem at hand the number of iterations can
be several tens or even hundreds. If we also consider the speed-
up from the randomization of the tree-construction, we can
conclude that the PCTs for MLC are much more computationally
efficient than the k-means clustering.

4. Experimental design

4.1. Experimental questions

The goal of this study is to answer the following questions:

1. Is the proposed method more efficient than the literature stan-
dard in terms of:
(a) codebook construction?
(b) projecting an image into a histogram?

2. Does the use of image labels during the process of visual code-
book construction with PCTs for MLC improve the discrimina-
tive power of the visual codebook?

3. Is the proposed method scalable for a large number of key-
points considered for codebook construction?

4. How does the number of PCTs for MLC influence the discrimina-
tive power of the codebook?

For answering questions 1a, 1b and 2, we compare our approach
of using PCTs for visual codebook construction to the community
standard of using k-means for the same task. Uijlings et al.
(2009) have shown that k-means produces a visual codebook with
best discriminative power (i.e., the classifiers using this codebook
produce the most correct annotations). Furthermore, Chatfield
et al. (2011) also select k-means clustering with a combination of
histogram encoding as a baseline in their experiments. The other
methods suggested in these studies are not applicable in our con-
text because we are only focusing on the partitioning of the local
descriptors space and not on the encoding phase (we adopt histo-
gram encoding). More specifically, we compare the execution
times of the two methods for visual codebook construction: We
measure the time needed to obtain the clusters in k-means and
the time needed to train the PCTs for MLC. Furthermore, we mea-
sure the time needed to obtain the final histograms which are used
for classification. Finally, we compare the predictive performance
of the visual codebook constructed using PCTs for MLC with the
performance of the one constructed using the k-means algorithm.

Next, we address question 3 by constructing different visual
codebooks by varying the number of key-points considered for
codebook construction. We construct these codebooks just for
the proposed method. Performing experiments of such scale using
k-means will require much more computational time.

Finally, we answer question 4 by varying the number of PCTs for
MLC used to obtain the visual codebook. In order to preserve the
same size of the visual codebook (4000 visual words), we use
different values for the pre-pruning of the trees. More specifically,
as the number of trees grows, the size of the trees reduces in order
to keep the number of leaves stable.

4.2. Image databases

We evaluate the proposed method for visual codebook con-
struction on three challenging image databases: PASCALVOC2007
(Everingham et al., 2012), ImageCLEF@ICPR2010 (Nowak, 2010)
and ImageCLEF2010 (Nowak and Huiskes, 2010). These benchmark
databases have approximately equal number of training images,
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but different number of testing images, number of possible labels
and labels per image. These databases are briefly summarized in
Table 2.

4.3. Visual features and visual codebook construction

We extract key-points from the images using dense sampling at
a spatial pyramid configuration of 1� 1. Note that the proposed
method can be easily applied to other spatial pyramid configura-
tions and thus further increase the predictive power (Lazebnik
et al., 2006). We then calculate 128 dimensional SIFT descriptors
for each key-point.

For the k-means algorithm, we are clustering the selected
300000 SIFT descriptors into 4000 clusters, thus obtaining a visual
codebook with 4000 words (Nowak and Dunker, 2010; Everingham
et al., 2012; van de Sande et al., 2010; Uijlings et al., 2009). In order
to directly compare this to our method, we use the same 300,000
descriptors to construct the codebook using PCTs for MLC. More-
over, Moosmann et al. (2008) show that a small ensemble with 4
trees gives good performance, hence, we also construct a forest
with 4 PCTs. To limit the number of words, in this case, we pre-
pruned the trees requiring a minimum of around 200 key-points
per leaf. With this we ensure that the visual codebook has approx-
imately 4000 words. Note that we first perform the experiments
with our method and then use the same number of words for the
k-means algorithm. For example, the random forest of PCTs for
MLC constructs a visual codebook with 4070 words for the ImageC-
LEF 2010 database, thus the number of clusters for k-means was
set to 4070. To further explore the power of the proposed method,
we perform two additional experiments by varying the number of
key-points used to construct the codebook and the number of con-
structed PCTs for MLC.

4.4. Classifier setup

Classification (in this case predicting image labels) is an inde-
pendent step in automatic image annotation. Since our goal is to
evaluate the visual codebook construction, we use SVMs with v2

kernel as classifiers for all of the visual codebooks. We used the lib-
SVM implementation of SVMs (Chang and Lin, 2001) with probabi-
listic output (Lin et al., 2007) to train the classifier.

To solve the multi-label classification problems, we employ the
one-vs-all approach. Namely, we build a binary classifier for each
visual concept: the examples associated with that visual concept
are labeled positive and the remaining examples are labeled nega-
tive. This results in an imbalanced ratio of positive versus negative
training examples. We resolve this issue by adjusting the weights
of the positive and negative class (van de Sande et al., 2010). We
also optimize the cost parameter C of the SVMs using an
automated parameter search procedure (van de Sande et al.,
2010). For the parameter optimization, we separate 20% of the
training set and use it as validation set. After finding the optimal
C value, the SVM is trained on the whole set of training images.

4.5. Evaluation measure

The most widely used performance evaluation measure in im-
age annotation is the mean average precision (MAP) (Everingham

et al., 2012; Nowak and Huiskes, 2010). Considering this, we adopt
MAP to evaluate the performance of the annotation algorithms and
thus the discriminative power of the visual codebooks. The MAP is
calculated as follows. First, for each image label the precision-recall
curve is computed by monotonically decreasing the value of the
precision and setting the precision for a given recall value r to
the maximum precision obtained for any recall value r0 P r. Next,
the average precision is computed as the area under this curve by
numerical integration. There is no need for an approximation since
the curve is piecewise constant. Finally, the MAP value is obtained
by taking the mean value of the average precisions of all labels. A
more detailed description and the source code for computing the
MAP value can be found in Everingham et al. (2012).

5. Results and discussion

5.1. Efficiency of the codebook construction

We measure the efficiency of both method in terms of time
needed to construct the codebook and time needed to project the
images into a histogram. Table 3 presents the time needed to con-
struct the visual codebook using k-means and random forests of
PCTs for MLC. The results show that random forests of PCTs are
creating the visual codebook consistently faster than the k-means
algorithm: The average speed-up ratio is �24.4 times.

Next, we consider the time needed to project an image into a
histogram. The k-means algorithm on average requires 0.850 s to
produce a histogram for an image, while the random forest of PCTs
needs only 0.021 s. In the former case, the projection of an image is
actually a nearest neighbor search in the space of image descrip-
tions and is much slower than a pass through the trees in the
random forest, which is applied in the latter case. The average
speed-up ratio is �40.5 times. In conclusion, these results confirm
our first hypothesis that random forests of PCTs for MLC construct
the visual codebook very efficiently and thus can be successfully
scaled to larger problems.

The efficiency of the SVM classifiers does not directly depend of
the codebook itself. Namely, the computational complexity of the
SVMs mainly depends on the number of training examples (i.e.,
training images) (Chang and Lin, 2001). Since both methods use
the same training images and the size of the image descriptors is
the same (4000 visual words), the time needed to construct the
SVM in approximately the same.

5.2. Discriminative power of the codebook

We discuss the predictive performance of the SVM classifiers
obtained using the two visual codebooks. The inspection of the re-

Table 2
Properties of the image databases for evaluation of the image annotation algorithms.

Image database #Train images #Test images #Labels #Labels per image

PASCAL VOC 2007 5011 4952 20 1.46
ImageCLEF@ICPR 2010 5000 3000 53 8.68
ImageCLEF 2010 5000 3000 93 12.06

Table 3
Comparison of the efficiency and the performance of the visual codebooks. The
efficiency is measured as time needed to construct the codebook and the performance
as MAP.

Image database Efficiency [s] Performance [MAP]

k-Means PCTs for MLC k-Means PCTs for MLC

PASCAL VOC 2007 12334.820 456.114 0.477 0.485
ImageCLEF@ICPR 2010 11977.230 466.829 0.425 0.453
ImageCLEF 2010 11209.750 544.740 0.329 0.367
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sults for mean average precision given in Table 3 reveals two major
conclusions. First, the visual codebook constructed with random
forests of PCTs for MLC outperforms the one constructed with k-
means clustering on all three databases. Second, the improvement
is larger for the databases with a larger average number of labels
per image. The latter means that our approach makes use of the
interactions and the connections that exist between the labels,
thus resulting in a visual codebook with better discriminative
power.

The average precisions for each label in the PASCALVOC2007,
the ImageCLEF@ICPR2010 and the ImageCLEF2010 database are gi-
ven in the Supplementary material. To begin with, our approach in-
creases the average precision for 70% of the labels from the
PASCALVOC2007 database by 0.017 and decreases the average
precision of the remaining 30% of the labels by 0.015. Next, for
the ImageCLEF@ICPR2010 database, our approach increases the
average precision for 90.6% of the labels by 0.033 and decreases
the average precision for the remaining labels by 0.017. Finally,
for the ImageCLEF2010 database, our approach increases the aver-
age precision for 91.4% of the labels by 0.044 and decreases the
average precision for the remaining labels by 0.017. In summary,
the more labels per image a database has, the proposed approach
increases the average precision for a larger portion of the labels
by a larger value.

5.3. Scalability of the codebook construction

In this section, we discuss the scalability of the proposed
approach and its practical implications. The results show that our
approach is much more efficient and has better discriminative
power than k-means clustering. This means that we may now
construct visual codebooks selecting a larger number of image
key-points. Namely, the number of images in the databases and
the number of possible labels are constantly growing, thus select-
ing around 300,000 key-points and 4000 words may not be
sufficient to capture the diversity that exists in the large databases.
Construction of larger visual codebook with k-means is computa-
tionally expensive or even impossible for extreme values for the
number of key-points. On the other hand, our approach can easily
produce larger codebook using larger portions of the key-points
that will have better discriminative power (Philbin et al., 2007).

To test this hypothesis, we constructed different codebooks by
varying the number of key-points that are considered for learning

the PCTs for MLC. Note that the size of the codebook remains the
same as for the previous experiments, i.e., 4000 words. We present
the results in Fig. 4(a). The results show that including more key-
points in the process of codebook construction increases the dis-
criminative power of the codebook (i.e., the predictive power of
the subsequently constructed classifiers) for the three image dat-
abases. The biggest performance increase is for the ImageCLEF2010
database: From 0.348 for 100,000 key-points to 0.405 for 900,000
key-points, i.e., a relative increase of �16.4%. The second largest
performance increase is for the ImageCLEF@ICPR2010 database:
From 0.431 for 100,000 to 0.471 for 900,000 key-points, i.e.,
�9.3%. Finally, the performance increase for the PASCALVOC2007
database is from 0.472 for 100,000 to 0.514 for 900,000 key-points,
i.e.,�8.9%. All in all, the inclusion of more key-points in the process
of visual codebook construction increases the discriminative power
of the codebook. Note that largest increases are obtained for the
datasets with the largest numbers of labels: It seems that the per-
formance increase is related to the increase of the number of labels
per image.

5.4. Complexity of the model for codebook construction

We investigate the influence of the number of PCTs for MLC on
the discriminative power of the codebook. Moosmann et al. (2008)
show that 4 trees already give a satisfactory predictive perfor-
mance. We present results in Fig. 4(b) using different number of
trees to create the codebook. Note that the codebook size was kept
at 4000, as in all other experiments. This was achieved by limiting
the tree growth. The results show that the largest performance in-
crease occurs when the number of trees increases from 1 to 4.
Using more than 4 trees does not change significantly the discrim-
inative power of the codebook.

6. Conclusion

In this paper, we presented a method for fast and efficient con-
struction of visual codebooks for image annotation. The construc-
tion of a codebook is an essential part of the bag-of-visual-words
approach to image annotation. It should thus be efficient and
deliver a codebook with high discriminative power. However, the
construction of a visual codebook is a bottleneck in the bag-of-vi-
sual-words approach, because it typically uses k-means clustering
over several hundreds of thousands of image key-points to obtain
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Fig. 4. Performance of the classifiers (mean average precision) from the codebooks constructed with: (a) different number of key-points and 4000 visual words and (b)
different number of PCTs for MLC and 4000 visual words.

44 I. Dimitrovski et al. / Pattern Recognition Letters 38 (2014) 38–45



Author's personal copy

several thousands visual words. Existing methods are able to solve
these issues only partially: When using trees for constructing the
visual codebook, they sacrifice some of the discriminative power
of the codebook to construct it more efficiently. Moreover, existing
tree-based methods are applicable only in the context of single-
label and multi-class classification. In this paper, we proposed to
use predictive clustering trees (PCTs) for multi-label classification
(MLC). In this way, we efficiently construct visual codebooks and
increase the discriminative power of the codebook.

We evaluated the proposed method on three challenging image
databases: PASCALVOC2007, ImageCLEF@ICPR2010 and ImageC-
LEF2010. Each of the selected image databases contains a large
number of images and a varying number of labels and labels per
image. We compare the visual codebooks resulting from our meth-
od against the visual codebooks obtained with k-means clustering.
In our experimental evaluation, we used SVMs with v2 kernel as
classifiers – the most widely used classifiers in the image annota-
tion community.

The visual codebooks are compared by their efficiency and the
discriminative power they offer to the classifier. The experimental
results measuring the efficiency show that both constructing a vi-
sual codebook and projecting an image into a histogram with a
random forest of PCTs for MLC is much faster than with k-means
clustering. The discriminative power of the codebooks was as-
sessed through the predictive power of the SVM classifiers: We
measured the mean average precision for the three databases.
The results show that our method consistently outperforms
k-means clustering. Moreover, the difference in predictive perfor-
mance increases with the number of average labels per image. This
means that our method exploits the connections between the la-
bels in the database and constructs a visual codebook with better
discriminative power than k-means clustering.

To further explore the scalability of the proposed method, we
used it to construct visual codebooks with a much larger number
of key-points than usually considered. The results revealed that
using more key-points yielded codebooks with even better dis-
criminative power. All in all, the proposed method is more efficient
and offers a better visual codebook to the classifier as compared to
the current community standard.
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