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Abstract— The paper presents an approach to Optical 

Character Recognition (OCR) applied on receipts printed in 

Macedonian language. The OCR engine recognizes the 

characters of the receipt and extracts some useful information, 

such as: the name of the market, the names of the products 

purchased, the prices of the products, the total amount of money 

spent, and also the date and the time of the purchase. We used 

the publicly available OCR framework Tesseract, which was 

trained on pictures of receipts printed in Macedonian language. 

The results showed that it can recognize the characters with 93% 

accuracy. Additionally, we used another approach that uses the 

original Tesseract to extract the features out of the picture and 

the final classification was performed with k-nearest neighbor’s 

classifier using dynamic time warping as a distance metrics. Even 

though the accuracy achieved with the modified approach was 

for 6 percentage points lower than the original approach, it is a 

proof of concept and we plan to further research it in future 

publications. The additional analysis of the results showed that 

the accuracy is higher for the words which are prescribed for 

each receipt, such as the date and the time of the purchase and 

the total amount of money spent. 

 
Keywords—OCR; Receipt digitalization; Tesseract; DTW; 

I.  INTRODUCTION AND RELATED WORK 

Optical Character Recognition (OCR) is conversion of 
photographed or scanned images, which contain printed or 
typewritten text, into machine readable characters (text). The 
basic idea origins since 1929 when the first OCR patent is 
obtained by Tausheck [1]. It is based on template matching by 
using optics and mechanics. After the first commercial 
computer (UNIVAC I) is installed (1951), the era of converting 
images of text into computer readable text has started. In 1956 
the first approach to convert images of text into computer 
readable text was presented [2]. At that time hardware and 
software are strong limitations, so the OCR approaches are 
based on template matching and simple algebraic operations. 
Since then a lot research has been done on OCR and with the 
advancement of the technology more complex OCR 
approaches are developed. Today OCR is done in much more 
intelligent way, but it also requires more computational power, 
which can be a problem for smartphone implementations. 

OCR can be used in common industries and applications 
including date tracking on pharmaceutical or food packaging, 
sorting mail at post offices and other document handling 
applications, reading serial numbers in automotive or 

electronics applications, passport processing, secure document 
processing (checks, financial documents, bills), postal tracking, 
publishing, consumer goods packaging (batch codes, lot codes, 
expiration dates), and clinical applications. Also OCR readers 
and software can be used, as well as smart cameras and vision 
systems which have additional capabilities like barcode reading 
and product inspection.  

In recent years, numerous OCR-based smartphone 
applications were also introduced. A successful example 
application is the Google’s Goggles application [3], which has 
more than 10 million downloads. Beside the OCR functionality 
it has several others such as: image search, text translation, bar 
code scanner. Their OCR engine can analyze text in several 
languages, not including the Macedonian language. 
Additionally, the implementation of the OCR engine is not on 
the smartphone itself, but on a server and therefore it requires 
internet connection in order to perform an OCR action. 
Recently Google has allowed public and freely available API 
for their OCR engine [4], which resulted in numerous 
smartphone OCR-based applications. However they can only 
be used with internet connection and furthermore, the API does 
not provide support for the Macedonian language. Finally, 
there are some examples of OCR-based applications that claim 
to support the Macedonian language, e.g., Translang [5]. 
However, none of them supports an OCR for Cyrillic script, 
which is the official script of the Macedonian language.  

In this paper we present an application of OCR on receipts 
printed in Macedonian language. The next section presents the 
methodology used for the process of OCR. Then, in the 
Experimental Results section, the recognition accuracy is 
presented. Finally, the conclusion and a brief discussion about 
the approach and the results are given. 

II. METHODOLOGY 

Figure 1 shows the whole process of the OCR. First, the 
user takes a photo of a receipt that he/she received from a 
market. Then, the OCR engine recognizes the characters 
printed on the receipt and therefore extracts some useful 
information out of the receipt, e.g., the name of the market, the 
names of the products purchased by the user, the prices of the 
products, the total amount of money spent, and also the date 
and the time of the purchase. For the process of the OCR, the 
open source OCR engine called Tesseract [6] is used.  
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Figure 1. The OCR process applied on a receipt printed in Macedonian 

language (Cyrillic script). 

A. Tesseract 

Creating an OCR engine is a challenging research task and 
requires great knowledge in image processing, feature 
extraction and machine learning. However, there are several 
open source projects that provide OCR framework and are 
widely used in the creation of OCR-related applications. In 
order not to reinvent the wheel and also to save time for 
development, in this study we decided to use an OCR 
framework which is freely available. After studying several 
frameworks, we decided to use the Tesseract. Tesseract is OCR 
engine that is developed by HP between 1984 and 1994 to run 
in a desktop scanner, but it is never used in an HP product [7]. 
Since then it has a lot of improvements. In 2005 it becomes 
open source and is managed by Google since then. The last 
stable version (V3.02) is released in 2012 and V3.03 is 
expected to be released in 2014. Tesseract is written in C and 
C++ but it also has Android and iOS wrappers which make it 
useful for smartphone application. 

1) Tesseract Architecture 
The first approach that is tested in the process of character 

recognition is the original Tesseract engine. Tesseract has 
traditional step-by-step pipeline architecture (shown in Figure 
2). First image preprocessing is done with adaptive 
thresholding where a binary image is produced. Then 
connected component analysis is done to provide character 
outlines. Next techniques for character chopping and character 
association are used to organize the outlines into words. In the 
end two-pass word recognition is done by using methods of 
clustering and classification. For the final decision about the 
recognized word, Tesseract consults with both language 
dictionary and user defined dictionary. The word with smallest 
distance is provided as an output. This is just brief overview of 
the Tesseract architecture, more details can be found in the 
authors’ literature [7]. 

2) Training Tesseract 
For the training phase, Tesseract needs a photograph (tiff or 

pdf file) of a text written in the same language as the one that it 
is trying to recognize. For each character from the learning text 
Tesseract extracts 4 different feature vectors. Then it uses 
clustering technique to construct a model for each character 
and those models are later used in the classification phase for 
decision of which character should be recognized.  
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Figure 2. Tesseract OCR engine architecture. 

For preparing the training text, several different approaches 
were tested regarding the font of the training text, the size of 
the characters in the training text and the content of the training 
text. Tests were done for each of the three problems. In the first 
approach the training text was written with a font that was 
made of quality photographs of single characters. In the second 
approach the training text was written with a font that is similar 
to the font of the receipts. For the size of the characters in the 
training text tests were done with different font sizes starting 
from 16px to 48px. Regarding the content of the training text 
two different approaches were tested. With the first approach 
for each character that the model is trying to recognize there 
are 10 to 25 different instances with respect to the frequency of 
the character in the Macedonian language. For example the 
count of the vowels was 20-25 and the count of the special 
characters or very infrequent characters such as H or Z was 10-
15. In the second approach the training text was consisted of 
1300-1500 random sampled words from different receipts. 

The tests showed that the engine is most accurate if the size 
of the letters in the training text is similar to the text on the 
photographed receipts. In this case the size that is used is 40px. 
Also it was concluded that better results can be achieved if the 
training text is consisted of random sampled words from 
different receipts the second approach. After all the testing 
done on Tesseract, the training text that was used for further 
analysis consisted of 1300-1500 random sampled words from 
different receipts, it was written with a font similar to the font 
of the receipts and the size of the characters was 40px. 

B. Tesseract-DTW 

For the process of character recognition we also tried 
another approach that uses Dynamic Time Warping (DTW) [8] 
and K-Nearest Neighbors (KNN) classifier [9]. This approach, 
Tesseract-DTW (shown in Figure 3), uses the original 
Tesseract only for feature extraction; the final classification is 
performed by the KNN classifier using the DTW as a distance 
metrics. The DTW metric was chosen because the size of each 
feature vector extracted by the Tesseract varies, and is not the 
same for each character. Please note that applying a standard 
classifier such as decision tree, SVM, etc., was not an option 
because of the varying size of the feature vectors. 

1) DTW 
DTW also known as dynamic programming matching is a 

well-known technique to find an optimal alignment between 
two given sequences [8]. It finds an optimal match between 
two sequences of feature vectors by allowing stretching and 
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compression of sections of the sequences. DTW first has been 
used by Sakoe and Chiba [10] to compare different speech 
patterns in automatic speech recognition. In fields such as data 
mining and information retrieval, DTW has been successfully 
applied to automatically cope with time deformations and 
different speeds associated with time-dependent data. Also it 
successfully has been used both for online [11] and offline 
signature verification [12].  
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Figure 3. Tesseract-DTW architecture. 

2) DTW distance 
To calculate the distance between two vectors X1 = (x11, 

x12, ..., x1i), and X2 = (x21, x22, ..., x2j), DTW needs a local 
cost measure, sometimes also referred to as local distance 
measure. In this study an Euclidean distance is used as cost 
measure, see equation (1). By evaluating the local cost measure 
for each pair of elements of the sequences X1 and X2, cost 
matrix M is calculated, see equation (2). The goal is to find an 
alignment between X1 and X2 having minimal overall cost. For 
calculating the minimal overall cost three conditions must be 
satisfied: boundary condition, monotonicity condition and step 
size condition. The minimal overall cost is the output of the 
DTW algorithm, shown in equation (4). 

 Cost (x1i, x2j) = Euclid (x1i, x2j) (1) 

 M[i][j] = Cost (x1i, x2j) (2) 

 DTWdist (X1, X2) = M[1][1] + Smin + M[i][j] (3) 

Where, Smin = ∑ (min (M[k+1][t], M[k][t+1], M[k+1][t+1])), k� {1, 2, 
…, i-2} and  t� {1, 2, …, j-2}. 

3) Evaluating Tesseract-DTW 
For evaluating the Tesseract-DTW approach 6 photographs 

of different receipts were used. 5 of them were used as training 
samples and 1 as a test sample. This is repeated 6 times so each 
of the receipts was used once as a test sample.  

First each character of the training receipts is labeled. Then 
feature extraction is done by using Tesseract. After the feature 
extraction each character of the learning receipts is described 
with 4 feature vectors (4). X and Z are with variable size (5) 
and Y and W are with constant size (6). 

 C1 = (X1, Y1, Z1, W1) (4) 

 X1 = (x1, x2, ..., xm), Z1= (z1, z2, ..., zj) (5) 

 Y1 = (y1, y2, y3), W1 = (w1, w2, w3) (6) 

In the classification phase KNN classifier was used. For 
calculating the distance between two characters C1 and C2 
combination of DTW and Euclidean distance measurement is 

used. DTW is used for calculating the distance between the 
vectors with varying size (7) and Euclidean distance is used for 
calculating the distance between the vectors with the no 
varying size (8). After DTW and Euclidean distance is 
calculated between the corresponding vectors of the two 
characters the final distance between the two characters is 
calculated with Euclidean distance based on the four distances 
(d1, d2, d3, d4) calculated in the previous step (9). The 
character with the smallest distance to the test character is 
chosen as the output of the classifier. 

 d1 = DTWdist (X1, X2), d3 = DTWdist (Z1, Z2)  (7) 

 d2= Euclid (Y1, Y2), d4=Euclid (W1, W2) (8)  

 Distance (C1, C2) = Euclid (d1, d2, d3, d4) (9) 

III. EXPERIMENTAL RESULTS 

Figure 4 shows an accuracy comparison for the two 
approaches used for character recognition, Tesseract and 
Tesseract-DTW. The comparison is performed using the 
number of correctly recognized characters from 6 
photographed receipts. One can note that only for the third 
photograph, the Tesseract-DTW is better than the original 
Tesseract. In all other cases the original Tesseract approach is 
better. On average, the Tesseract is better for 6 percentage 
points. Also compared by time of execution Tesseract was 
better that Tesseract-DTW, which was in a way expected given 
the complexity of the DTW and the usage of the so called 
“lazy” (instance-based) classifier – KNN. 
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Figure 4: Accuracy for correctly  recognized characters by using Tesseract 

and Tesseract-DTW. 

IV. DISCUSSION AND CONCUSION 

The paper presented an approach of OCR for receipts 
printed in Macedonian language. The main OCR engine that 
was used is Tesseract. In the process of character recognition 
two approaches were tested. In the first approach the original 
Tesseract was tested. Tests showed that Tesseract is most 
accurate when the training consists of random sampled words 
from different receipts and is written with similar font and size 
as the characters that we are trying to recognize. In the second 
approach modified version of Tesseract was used (Tesseract-
DTW). In this approach the feature extraction was again 
performed by the Tesseract, however the final classification 
was done with KNN classifier using DTW as distance metrics. 
Tests showed that the first approach by using original Tesseract 
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engine outperformed the second approach by 6 percentage 
points. Further analysis showed that the accuracy is higher for 
the numbers and words which are prescribed for each receipt, 
such as the date and the time of the purchase and the total 
amount of money spent. This was in a way expected because 
the classifier has more examples to train on, i.e. they are 
present in each receipt and the numbers are limited only to 10 
characters. On the other hand, the names of the products are 
more difficult to recognize mainly because there are names that 
are not from Macedonian language. In general, the more data is 
used for training, the better the model should be. In future we 
plan to collect much more data samples by providing a free 
smartphone application. 

To the best of our knowledge, this is the first attempt to 
apply OCR on receipts printed in Macedonian language using 
the Cyrillic script, and moreover the first attempt to modify the 
original Tesseract by applying KNN algorithm using DTW 
distance metrics. Even though, the modified version of the 
Tesseract achieved slightly worse results, it gives promising 
results and we plan to further improve it in the future work. We 
are also considering an approach that will combine the both 
methods, e.g. by using meta-learning, and eventually improve 
the recognition accuracy.  
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