
Optical character recognition applied on receipts

printed in Macedonian language

Martin Gjoreski, Gorjan Zajkovski, Aleksandar Bogatinov,

Gjorgji Madjarov, Dejan Gjorgjevikj

Faculty of Computer Science and Engineering

Skopje, Macedonia

Hristijan Gjoreski

Department of Intelligent Systems

Jožef Stefan Institute

Ljubljana, Slovenia

Abstract— The paper presents an approach to Optical

Character Recognition (OCR) applied on receipts printed in

Macedonian language. The OCR engine recognizes the

characters of the receipt and extracts some useful information,

such as: the name of the market, the names of the products

purchased, the prices of the products, the total amount of money

spent, and also the date and the time of the purchase. We used

the publicly available OCR framework Tesseract, which was

trained on pictures of receipts printed in Macedonian language.

The results showed that it can recognize the characters with 93%

accuracy. Additionally, we used another approach that uses the

original Tesseract to extract the features out of the picture and

the final classification was performed with k-nearest neighbor’s

classifier using dynamic time warping as a distance metrics. Even

though the accuracy achieved with the modified approach was

for 6 percentage points lower than the original approach, it is a

proof of concept and we plan to further research it in future

publications. The additional analysis of the results showed that

the accuracy is higher for the words which are prescribed for

each receipt, such as the date and the time of the purchase and

the total amount of money spent.

Keywords—OCR; Receipt digitalization; Tesseract; DTW;

I. INTRODUCTION AND RELATED WORK

Optical Character Recognition (OCR) is conversion of
photographed or scanned images, which contain printed or
typewritten text, into machine readable characters (text). The
basic idea origins since 1929 when the first OCR patent is
obtained by Tausheck [1]. It is based on template matching by
using optics and mechanics. After the first commercial
computer (UNIVAC I) is installed (1951), the era of converting
images of text into computer readable text has started. In 1956
the first approach to convert images of text into computer
readable text was presented [2]. At that time hardware and
software are strong limitations, so the OCR approaches are
based on template matching and simple algebraic operations.
Since then a lot research has been done on OCR and with the
advancement of the technology more complex OCR
approaches are developed. Today OCR is done in much more
intelligent way, but it also requires more computational power,
which can be a problem for smartphone implementations.

OCR can be used in common industries and applications
including date tracking on pharmaceutical or food packaging,
sorting mail at post offices and other document handling
applications, reading serial numbers in automotive or

electronics applications, passport processing, secure document
processing (checks, financial documents, bills), postal tracking,
publishing, consumer goods packaging (batch codes, lot codes,
expiration dates), and clinical applications. Also OCR readers
and software can be used, as well as smart cameras and vision
systems which have additional capabilities like barcode reading
and product inspection.

In recent years, numerous OCR-based smartphone
applications were also introduced. A successful example
application is the Google’s Goggles application [3], which has
more than 10 million downloads. Beside the OCR functionality
it has several others such as: image search, text translation, bar
code scanner. Their OCR engine can analyze text in several
languages, not including the Macedonian language.
Additionally, the implementation of the OCR engine is not on
the smartphone itself, but on a server and therefore it requires
internet connection in order to perform an OCR action.
Recently Google has allowed public and freely available API
for their OCR engine [4], which resulted in numerous
smartphone OCR-based applications. However they can only
be used with internet connection and furthermore, the API does
not provide support for the Macedonian language. Finally,
there are some examples of OCR-based applications that claim
to support the Macedonian language, e.g., Translang [5].
However, none of them supports an OCR for Cyrillic script,
which is the official script of the Macedonian language.

In this paper we present an application of OCR on receipts
printed in Macedonian language. The next section presents the
methodology used for the process of OCR. Then, in the
Experimental Results section, the recognition accuracy is
presented. Finally, the conclusion and a brief discussion about
the approach and the results are given.

II. METHODOLOGY

Figure 1 shows the whole process of the OCR. First, the
user takes a photo of a receipt that he/she received from a
market. Then, the OCR engine recognizes the characters
printed on the receipt and therefore extracts some useful
information out of the receipt, e.g., the name of the market, the
names of the products purchased by the user, the prices of the
products, the total amount of money spent, and also the date
and the time of the purchase. For the process of the OCR, the
open source OCR engine called Tesseract [6] is used.

Proceedings of the 11th International Conference on Informatics and Information Technologies
CIIT 2014 – Hotel Molika, Bitola, Macedonia – April 11-13, 2014

©2015 Faculty of Computer Science and Engineering, Skopje 59

Figure 1. The OCR process applied on a receipt printed in Macedonian

language (Cyrillic script).

A. Tesseract

Creating an OCR engine is a challenging research task and
requires great knowledge in image processing, feature
extraction and machine learning. However, there are several
open source projects that provide OCR framework and are
widely used in the creation of OCR-related applications. In
order not to reinvent the wheel and also to save time for
development, in this study we decided to use an OCR
framework which is freely available. After studying several
frameworks, we decided to use the Tesseract. Tesseract is OCR
engine that is developed by HP between 1984 and 1994 to run
in a desktop scanner, but it is never used in an HP product [7].
Since then it has a lot of improvements. In 2005 it becomes
open source and is managed by Google since then. The last
stable version (V3.02) is released in 2012 and V3.03 is
expected to be released in 2014. Tesseract is written in C and
C++ but it also has Android and iOS wrappers which make it
useful for smartphone application.

1) Tesseract Architecture
The first approach that is tested in the process of character

recognition is the original Tesseract engine. Tesseract has
traditional step-by-step pipeline architecture (shown in Figure
2). First image preprocessing is done with adaptive
thresholding where a binary image is produced. Then
connected component analysis is done to provide character
outlines. Next techniques for character chopping and character
association are used to organize the outlines into words. In the
end two-pass word recognition is done by using methods of
clustering and classification. For the final decision about the
recognized word, Tesseract consults with both language
dictionary and user defined dictionary. The word with smallest
distance is provided as an output. This is just brief overview of
the Tesseract architecture, more details can be found in the
authors’ literature [7].

2) Training Tesseract
For the training phase, Tesseract needs a photograph (tiff or

pdf file) of a text written in the same language as the one that it
is trying to recognize. For each character from the learning text
Tesseract extracts 4 different feature vectors. Then it uses
clustering technique to construct a model for each character
and those models are later used in the classification phase for
decision of which character should be recognized.

Adaptive

thresholding

Connected

component

analysis

Find lines and

words

Word

classification
Word lists

Binary

image

Character

outlines

Character

features

Final word

output Compare

words

Word

Figure 2. Tesseract OCR engine architecture.

For preparing the training text, several different approaches
were tested regarding the font of the training text, the size of
the characters in the training text and the content of the training
text. Tests were done for each of the three problems. In the first
approach the training text was written with a font that was
made of quality photographs of single characters. In the second
approach the training text was written with a font that is similar
to the font of the receipts. For the size of the characters in the
training text tests were done with different font sizes starting
from 16px to 48px. Regarding the content of the training text
two different approaches were tested. With the first approach
for each character that the model is trying to recognize there
are 10 to 25 different instances with respect to the frequency of
the character in the Macedonian language. For example the
count of the vowels was 20-25 and the count of the special
characters or very infrequent characters such as H or Z was 10-
15. In the second approach the training text was consisted of
1300-1500 random sampled words from different receipts.

The tests showed that the engine is most accurate if the size
of the letters in the training text is similar to the text on the
photographed receipts. In this case the size that is used is 40px.
Also it was concluded that better results can be achieved if the
training text is consisted of random sampled words from
different receipts the second approach. After all the testing
done on Tesseract, the training text that was used for further
analysis consisted of 1300-1500 random sampled words from
different receipts, it was written with a font similar to the font
of the receipts and the size of the characters was 40px.

B. Tesseract-DTW

For the process of character recognition we also tried
another approach that uses Dynamic Time Warping (DTW) [8]
and K-Nearest Neighbors (KNN) classifier [9]. This approach,
Tesseract-DTW (shown in Figure 3), uses the original
Tesseract only for feature extraction; the final classification is
performed by the KNN classifier using the DTW as a distance
metrics. The DTW metric was chosen because the size of each
feature vector extracted by the Tesseract varies, and is not the
same for each character. Please note that applying a standard
classifier such as decision tree, SVM, etc., was not an option
because of the varying size of the feature vectors.

1) DTW
DTW also known as dynamic programming matching is a

well-known technique to find an optimal alignment between
two given sequences [8]. It finds an optimal match between
two sequences of feature vectors by allowing stretching and

SESSION 2. INTERDISCIPLINARY RESEARCH

60 CIIT 2014

compression of sections of the sequences. DTW first has been
used by Sakoe and Chiba [10] to compare different speech
patterns in automatic speech recognition. In fields such as data
mining and information retrieval, DTW has been successfully
applied to automatically cope with time deformations and
different speeds associated with time-dependent data. Also it
successfully has been used both for online [11] and offline
signature verification [12].

Adaptive

thresholding

Connected

component

analysis

Find lines

and words

KNN with

DTW

Binary

image

Character

outlines

Character

features

Final

character
Character

Tesseract

Figure 3. Tesseract-DTW architecture.

2) DTW distance
To calculate the distance between two vectors X1 = (x11,

x12, ..., x1i), and X2 = (x21, x22, ..., x2j), DTW needs a local
cost measure, sometimes also referred to as local distance
measure. In this study an Euclidean distance is used as cost
measure, see equation (1). By evaluating the local cost measure
for each pair of elements of the sequences X1 and X2, cost
matrix M is calculated, see equation (2). The goal is to find an
alignment between X1 and X2 having minimal overall cost. For
calculating the minimal overall cost three conditions must be
satisfied: boundary condition, monotonicity condition and step
size condition. The minimal overall cost is the output of the
DTW algorithm, shown in equation (4).

 Cost (x1i, x2j) = Euclid (x1i, x2j) (1)

 M[i][j] = Cost (x1i, x2j) (2)

 DTWdist (X1, X2) = M[1][1] + Smin + M[i][j] (3)

Where, Smin = ∑ (min (M[k+1][t], M[k][t+1], M[k+1][t+1])), k� {1, 2,
…, i-2} and t� {1, 2, …, j-2}.

3) Evaluating Tesseract-DTW
For evaluating the Tesseract-DTW approach 6 photographs

of different receipts were used. 5 of them were used as training
samples and 1 as a test sample. This is repeated 6 times so each
of the receipts was used once as a test sample.

First each character of the training receipts is labeled. Then
feature extraction is done by using Tesseract. After the feature
extraction each character of the learning receipts is described
with 4 feature vectors (4). X and Z are with variable size (5)
and Y and W are with constant size (6).

 C1 = (X1, Y1, Z1, W1) (4)

 X1 = (x1, x2, ..., xm), Z1= (z1, z2, ..., zj) (5)

 Y1 = (y1, y2, y3), W1 = (w1, w2, w3) (6)

In the classification phase KNN classifier was used. For
calculating the distance between two characters C1 and C2
combination of DTW and Euclidean distance measurement is

used. DTW is used for calculating the distance between the
vectors with varying size (7) and Euclidean distance is used for
calculating the distance between the vectors with the no
varying size (8). After DTW and Euclidean distance is
calculated between the corresponding vectors of the two
characters the final distance between the two characters is
calculated with Euclidean distance based on the four distances
(d1, d2, d3, d4) calculated in the previous step (9). The
character with the smallest distance to the test character is
chosen as the output of the classifier.

 d1 = DTWdist (X1, X2), d3 = DTWdist (Z1, Z2) (7)

 d2= Euclid (Y1, Y2), d4=Euclid (W1, W2) (8)

 Distance (C1, C2) = Euclid (d1, d2, d3, d4) (9)

III. EXPERIMENTAL RESULTS

Figure 4 shows an accuracy comparison for the two
approaches used for character recognition, Tesseract and
Tesseract-DTW. The comparison is performed using the
number of correctly recognized characters from 6
photographed receipts. One can note that only for the third
photograph, the Tesseract-DTW is better than the original
Tesseract. In all other cases the original Tesseract approach is
better. On average, the Tesseract is better for 6 percentage
points. Also compared by time of execution Tesseract was
better that Tesseract-DTW, which was in a way expected given
the complexity of the DTW and the usage of the so called
“lazy” (instance-based) classifier – KNN.

0

10

20

30

40

50

60

70

80

90

100

p 1 p 2 p 3 p 4 p 5 p 6 average

Tesseract vs Tesseract-DTW Accuracy (%)

Teeseract Original Tesseract DTW

Figure 4: Accuracy for correctly recognized characters by using Tesseract

and Tesseract-DTW.

IV. DISCUSSION AND CONCUSION

The paper presented an approach of OCR for receipts
printed in Macedonian language. The main OCR engine that
was used is Tesseract. In the process of character recognition
two approaches were tested. In the first approach the original
Tesseract was tested. Tests showed that Tesseract is most
accurate when the training consists of random sampled words
from different receipts and is written with similar font and size
as the characters that we are trying to recognize. In the second
approach modified version of Tesseract was used (Tesseract-
DTW). In this approach the feature extraction was again
performed by the Tesseract, however the final classification
was done with KNN classifier using DTW as distance metrics.
Tests showed that the first approach by using original Tesseract

Proceedings of the 11th International Conference on Informatics and Information Technologies
CIIT 2014 – Hotel Molika, Bitola, Macedonia – April 11-13, 2014

©2015 Faculty of Computer Science and Engineering, Skopje 61

engine outperformed the second approach by 6 percentage
points. Further analysis showed that the accuracy is higher for
the numbers and words which are prescribed for each receipt,
such as the date and the time of the purchase and the total
amount of money spent. This was in a way expected because
the classifier has more examples to train on, i.e. they are
present in each receipt and the numbers are limited only to 10
characters. On the other hand, the names of the products are
more difficult to recognize mainly because there are names that
are not from Macedonian language. In general, the more data is
used for training, the better the model should be. In future we
plan to collect much more data samples by providing a free
smartphone application.

To the best of our knowledge, this is the first attempt to
apply OCR on receipts printed in Macedonian language using
the Cyrillic script, and moreover the first attempt to modify the
original Tesseract by applying KNN algorithm using DTW
distance metrics. Even though, the modified version of the
Tesseract achieved slightly worse results, it gives promising
results and we plan to further improve it in the future work. We
are also considering an approach that will combine the both
methods, e.g. by using meta-learning, and eventually improve
the recognition accuracy.

ACKNOWLEDGMENT

The authors would like to thank the developers of the

Tesseract OCR framework and making it freely available to

the research and developers community.

REFERENCES

[1] G. Tauschek, “Reading machine” U.S. Patent 2026329, Dec. 1935

[2] S. Mori, C.Y. Suen, K. Yamamoto“Historical Review of OCR research
and development”, Proceeding of the IEEE (Volume:80, Issue 7), Jul
1992

[3] Google’s Goggle application.

https://play.google.com/store/apps/details?id=com.google.android.apps.
unveil

[4] Google’ API for OCR.
https://developers.google.com/google-apps/documents-
list/#uploading_documents_using_optical_character_recognition_ocr

[5] Thanslang application.
https://play.google.com/store/apps/details?id=icactive.app.translang

[6] Tesseract-ocr. Mar-2012. URL: http://code.google.com/p/tesseract-ocr/.

[7] Ray Smith. “An overview of the Tesseract OCR engine". In: Document
Analysis and Recognition, 2007. ICDAR (2007).

[8] M. Müller, “Information Retrival for music and motion”, 2007, XVI,
318 p. 136 illus. 39.

[9] D. Aha, D. Kibler (1991). Instance-based learning algorithms. Machine
Learning. 6:37-66D. Aha, D. Kibler (1991). Instance-based learning
algorithms. Machine Learning. 6:37-66.

[10] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 26, no. 1, pp. 43–49, 1978.

[11] Y. Qiao, X. Wang, C. Xu, “Learning Mahalanobis Distance for DTW
based Online SignatureVerification”, Information and Automation
(ICIA), 2011 IEEE International Conference, June 2011

[12] A. Piyush Shanker, A.N. Rajagopalan, “Off-line signature verification
using DTW”, Journal Pattern Recognition Letters Volume 28 Issue 12,
September 2007

SESSION 2. INTERDISCIPLINARY RESEARCH

62 CIIT 2014

