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Abstract. Our planet is blooming with vegetation that consists of hun-
dreds of thousands of plant species. Each and every one species is unique
in its own way, thus enabling people to distinguish one plant from an-
other. Distinguishing plant species is a non trivial task, in fact, it is
challenging even for renowned botanists with lots of years of experience
in the field. Having in mind the complexity of the task, in this paper we
present a system for plant species identification based on Convolutional
Neural Networks (CNN’s) and Support Vector Machines (SVM’s). The
combination of these two approaches for both feature generation and
classification results in a powerful plant identification system. Addition-
ally we report state of the art results using this approach, as well as
comparison with other types of approaches on the same dataset.
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1 Introduction

One of the greatest treasures our planet has to offer is a great diversity of plant
species scattered around the world. Ranging from small micro vegetation growing
in rock cracks to the mighty Adansonia1 (Baobab) tree with a lifespan up to 1275
years, these same plants have played a life sustaining role in the lives of small
bug colonies, various mammal groups and even whole ecosystems.

Botanical and agricultural scientific improvements have changed the world
drastically many times over. Today we rely heavily on botanics and agricul-
ture. Modern architecture, construction, medicine and pharmaceuticals, cosmetic
products and even transportation would be unimaginable without the benefits
we enjoy from our rich flora. Though seemingly separate and indestructible, there
exists a delicate link between the flora and the fauna, which if shattered would
have grave consequences on all life on earth. That is why we have to handle them
with great caution and adequate knowledge.

1 BaoBab:http://www.plantzafrica.com/plantab/adansondigit.htm
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If we want to make efficient and smart use of this precious, limited resource
without disturbing the fragile nature of our ecosystem, an accurate understand-
ing and knowledge of identity, geographic distribution and uses of plants is es-
sential in the process. Acquiring this knowledge and gaining the understanding
necessary for efficient resource harvesting is often pretty difficult. This is due
to data incompleteness in high diversity ecosystems or general lack of distribu-
tion mediums in less developed areas. This taxonomic glitch in the system is
a serious problem for scientists, researchers and professionals alike. As a viable
solution of the taxonomic gap issue, image retrieval technologies are considered
a cornerstone in the solution of the problem with promising results. Because this
presents a very challenging task, the CLEF Cross Language Evaluation forum
has been organizing yearly competitions[9] on plant image identification in order
to perform a general evaluation of recent advances in the computer vision and
information retrieval. Since 2011 there have been tremendous advances in both
the competing teams approaches and the dataset available for training and test-
ing. The 2014 competition introduces a new challenge, that is plant observations.
This means that there are several observations of one plant regarding different
organs or even conditions under which the image is taken.

Based on the same image retrieval cornerstone, the system we describe in
this paper uses innovative techniques for image retrieval combined with classical
machine learning paradigms. Plant image classification is a generally compli-
cated type of classification, because all of the images are both semantically and
visually very similar. [6] For example both the leaves of a Japanese maple and a
Cleome plant are green, which proves the visual similarity, and both of them are
leaves which makes the two items semantically identical. Although upon close
examination the texture of both leaves is different and a properly constructed
feature would amplify that difference. This leaves no margin for assumptions
when it comes to feature generation and even classification. Our system tack-
les this fine-grained classification problem using a Convolutional Neural Net-
work implementation from Overfeat NYU 2 for image feature extraction and
a linear support vector machine from LibSVM 3. As training and testing data
we used the dataset from the CLEF Plant Identification challenge, namely the
Pl@ntview dataset. This dataset provided us with 47815 train images and 8163
test images[9].

The rest of this paper is organized as follows: Section 2 gives a brief overview
of related projects and work done in this field, while Section 3 provides a detailed
specification of our architecture as well as the implementation details starting
from pre-training image manipulation to the final prediction phase. Section 4 de-
scribes the experimental process with the experimental setup. Section 5 presents
the results according to the CLEF metrics and discusses the various circum-
stances in which the results were calculated. Finally Section 6 concludes this
paper.

2 OverFeat: http://cilvr.nyu.edu/doku.php?id=code:start
3 LibSVM: http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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2 Related work

Because of the nature of this work and the data and evaluation measures used
by this system it is important to mention the systems of some of the competing
teams that participated in the PlantCLEF 2014 Challenge4.

IBM Research, Australia. The winning team of the PlantCLEF 2014 chal-
lenge used multiple techniques one of which used a deep Convolutional Neural
Network for both feature generation, feature construction and final classification.
Their network had 5 Convolutional layers mixed with max pooling layers in the
middle. Acting like a classifier, the final section of their network is consisted of
three fully connected layers combined with a soft-max layer for classification.[4]
At this moment it is important to notice that the Convolutional neural network
was pre-trained on the ImageNet5 dataset. Also given the circumstances their
fully connected segment was limited to 2048 nodes, as that is enough to validly
represent plant images. IBM Research Australia had also submitted a dense
SIFT and Fisher vector encoding run which had the best results and won the
competition [9].

QUT, Australia. Although not the best team in the competition, they pre-
sented an intriguing combination of an extremely Randomized Tree Classifier
with a Convolutional Neural Network. In order to speed up the process they
changed the output layers of the neural network thus gaining different features
with different complexity. After they established the desired complexity, a ex-
tremely Randomized Trees Classifier [2] is used in order to output a probability
distribution over the 500 species [10], one for each feature. The probability distri-
butions are then averaged in order to compute a single probability distribution
for a test image. Finally, probability distributions from several pictures from
a same test observation are added in order to obtain the final list of ranked
species[9].

PlantNet, France. These participants used for all categories a large scale
matching approach, and some shape descriptors in the specific case of LeafS-
can (Directional Fragment Histogram and standard shape parameters). They
extracted numerous local features: SURF, Fourier2D, rotation invariant Local
Binary Patterns, Edge Orientation Histogram, weighted RGB, weighted-LUV
and HSV histograms. [7] After preliminary evaluations, each type of view had its
own subsets of types of local features. These local features are hashed, indexed
and searched in separate index with the Random Maximum Margin Hashing
approach (one for each type of view and for each type of feature). Then, a hier-
archical late fusion scheme is applied in order to combine the image response lists
of the different modalities: first from the different types of local [?], then from

4 PlantCLEF: http://www.imageclef.org/2014/lifeclef/plant
5 ImageNet: http://www.image-net.org/
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the multiple-images from a same category, and finally from all the categories in
order to obtain a final list related to one plant observation[9].

3 System implementation

As mentioned earlier, we developed a system for plant identification that is
based on Convolutional Neural Networks and Support Vector Machines. We
choose a deep architecture for feature extraction over the conventional descriptor
and detector combo because of the robustness and complexity of the features
extracted with the CNN. Additionally, CNNs also provide the possibility to
shorten on prolong the feature extraction time, depending on the time frame
available, feature precision and complexity. This is due to the sole nature of
neural networks themselves, where every layer can be a potential output. Also
there exists a hierarchical feature structure, so as we climb higher up the layers of
the CNN we get more detailed and complex features. Another advantage is that
the feature dimension is unified throughout the dataset, which implies that there
is no need for further feature modification. As soon as the features are generated,
they are ready for the classifier. This type of flexibility is very important with
tasks like this, having in mind the limited training time and tight deadlines.

Fig. 1. System Architecture
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Before any feature extraction takes place we resize and crop the images ac-
cording to the plant organ. This is done due to simplifying the final feature
vectors and faster svm training and predictions.

Even though the CNN itself can be used as a classifier, it is possible to append
any type of classifier at the chosen output layer of the CNN.[1] We have chosen
the SVM approach, as it has been tested multiple times throughout the years
and yields high ranking results with features like ours. Additionally, studying the
approaches of other teams in plant identification challenges, we have come to the
conclusion that SVM approaches report better results in most of the cases.

PlantCLEF also presents the challenge of multi-query classification. Every
plant that is present in the dataset is photographed from multiple observation
points. One observation of one individual-plant is observed the same day by a
same author involving several pictures with the same Observation ID. So each
observation has its own ID and corresponds to a particular plant. One plant can
have up to 8 observations.

STEM ENTIRE FLOWER

FLOWER LEAF SCAN

PLUM TREEFRUIT BRANCH

LEAF

Fig. 2. Observation and image correlation example

3.1 Dataset modification

Sometimes the background of the images can be noisy and distracting when it
comes to classification. That is why it is better to improve the ratio between
the subject of the image and the unnecessary background data. Improving this
ratio can be done with segmentation - separating the image subject from the
rest of the image or just simple cropping, so that we can reduce the amount
of background data. In our case some of the images like those in the Fruit,
Flower and Leaf categories showed better results when they were cropped by
50px on each side. Cropping requires a trivial check for image dimensions before
the operation itself, because an image cannot be cropped to dimensions smaller
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than 0px. For this purpose we used the crop command from the Pillow library
for Python 2.7.4 with the respectful checks and precautions.

Figure 2 presents a graphical depiction of the image altering process that
takes place before feature extraction.

i) ii)

Fig. 3. i) This a raw image from the Pl@ntview dataset ii) This is the cropped and
reduced final image

The images in the Pl@ntView dataset have variable width and height. When
using a Convolutional Neural Network for feature extraction, due to the slid-
ing window approach, the features extracted would have different dimensions
depending on the image in question. This type of variability can cause serious
implementation problems further on. With this in mind we deliberately reduced
the image dimensions to strictly 231px width and 231px height. Which is the
dimension of the sliding filter we use for feature extraction. In this case a simple
image transformation saves a lot of development and training time in the future
because this way we only get a single vector per image.

Reducing the dimensions of the images is done without preservation of the
image aspect ratio. The robust features of the CNN implementation allows for
such irregularities when it comes to feature extraction of distorted images. We
performed the dimension adjustment using the latest stable version ImageMagick
for Debian OS.

3.2 Feature extraction

Deep architectures have revolutionized the computer vision world [8]. Offering
robust and precise features, easy setup and an unprecedented potential for par-
allelism over GPU, deep architectures have improved results in classification and
retrieval challenges multiple times. One of the most frequently used implemen-
tation of these deep architecture is the Convolutional Neural Network. We as
well have chosen this type of architecture for the feature generation part of our
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system. Concretely we are using a pretrained network package from OverFeat.
This network is pretrained on the ImageNet dataset and offers an easy to use
interface for data extraction. Overfeat also offers two types of neural networks
for feature extraction or classification. A smaller network that is faster but a
little less accurate and a larger, deeper network that improves accuracy but also
increases the execution times.

For our system we used the smaller Overfeat network. This network outputs
a 3 dimensional tensor so that the first dimension correspond to the features,
while dimensions two and three are spatial (y and x respectively). One 231x231px
patch produces 4096 features which means that if the image is not cropped to
exactly 231x231px there will be multiple vectors for the differently cropped re-
gions. Having in mind that this PlantCLEF is a multi-query challenge this would
immensely complicate further development. Just assembling and combining the
features for multiple observation would prolong the SVM training and prediction
times by a couple of times .

In our case we use the 19-th layer of the network because it offers the best
trade-off between speed and acuracy.

3.3 SVM training and prediction

The latest stable version of LibSVM powers our SVMs [3]. Using the features
generated from the CNN we performed training of our classifiers. Having better
accuracy in mind we trained one classifier per class in such a way that the images
that belong to the class for which the classifier is trained on, were marked as
positive and rest as negative.

Although it improves accuracy, this resulted in a great imbalance between
the number of positive and negative sample in the training process. We solve this
problem by adding weights to the classes depending on the number of images that
they have. More precisely, the weight assigned to the positive class is calculated in
the following manner: NmPos+NmNeg

NmPos ; whereas the weight of the negative class

in this manner: NmPos+NmNeg
NmNeg . In the formulas NmPos and NmNeg represent

the number of positive and negative images in the training set, accordingly.[6]
Classification was performed using the model created from the generated

visual features. Our SVMs use a precomputed χ2y kernel for every class. For
score improvement we optimize a cost parameter named C according to the
evaluation scores.

3.4 Probability fusion and classification

Having in mind that the images in the test dataset are associated with plant
observations to perform multiple image queries for all image organs and scans
having the same ObservationID value. The procedure of fusing the information
is carried out in 4 steps. We first grouped all the images I2, ..., Ik coming
from the same plant observation using the ObservationID in meta-data.Then, we
computed similarity ranking lists of the retrieved images L1, ..., Lk corresponding
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to the query images I1, ..., Ik.Finally, the 300 first image results were kept for
each list and were merged into a final list L using a late fusion scheme.[6]

We used a probability fusion scheme, first the classes associated to the images
from the lists L1, ..., Lk are ranked per organ (i.e. scans), according to the
average L2 distance between the corresponding query images and the images
from their ranked lists L1, ..., Lk. We took into account only the best two ranked
images of one observation. The final predictions (per observation) are obtained
by calculating the minimal ranks of the classes.[6]

4 Experiments

4.1 Dataset

PlantCLEF is based on the Pl@ntView dataset which focuses on 500 herb, tree
and fern species centered on France (some plants observations are from neigh-
boring countries). The training data results in 47815 images (1987 of ”Branch”,
6356 photographs of ”Entire”, 13164 of Flower”, 3753 ”Fruit”, 7754 of ”Leaf”,
3466 ”Stem” and 11335 scans and scan-like pictures of leaf) with complete xml
files associated to them. On the other side, the test data results in 8163 plant-
observation-queries. These queries are based on 13146 images (731 of ”Branch”,
2983 photographs of ”Entire”, 4559 of Flower”, 1184 ”Fruit”, 2058 of ”Leaf”,
935 ”Stem” and 696 scans and scan-like pictures of leaf).

4.2 Experimental setup

For our experiments we used a HP Z800 Workstation with a 4 Core Intel Xeon
processor E5620 that runs on 2.40 GHz with 12MB cache. Our workstation is also
equipped with 24 GigaBytes, 1066 MHz RAM memory and a hard disk drive of
1 TB. All of the experiments were run on a 64 bit Debian 3.16.3-2 operating sys-
tem [5], codename Jessie, running Python 2.7.4 with the latest stable versions of
OpenBLAS6, Mono7, Pillow 8 and ImageMagick. The computationally demand-
ing functions were optimized on the lowest possible level using advanced parallel
features of the latest .Net packages. As mentioned above in the text, feature
extraction was performed using the OverFeat Convolutional Neural Network.

5 Results and discussion

The primary metric used to evaluate the submitted runs is a score related to the
rank of the correct species in the list of retrieved species. Each plant observation
test is attributed with a score between 0 and 1: of 1 if the 1st returned species is
correct and will decrease quickly while the rank of the correct species increases.
An average score will then be computed on all test individual plants as well.[9]

6 OpenBLAS: http://www.openblas.net/
7 Mono: http://www.mono-project.com/
8 Pillow: https://pypi.python.org/pypi/Pillow/
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Competing team name Competing team score
IBM Australia 0.471
CURRENT 0.325
PlantNet 0.289
BME TMIT 0.255
QUT 0.249
FINKI 0.205
Sabanci 0.127
I3S 0.091
SZTE 0.088
Miracl 0.063
IV Processing 0.043

Table 1 presents the overall scores for the complete task of 2014. It is clearly
visible that our approach generates promising results. There are many pros to
our solution because it scales well and it does not need retraining for different
datasets. Robust features and incremental training assure a context independent
architecture, which is also proven by the fact that the CNN is trained on a
completely different type of dataset. We believe that by improving the training
conditions of the CNN and carefully adjusting the train dataset we can gain even
better results.

Fig. 4. Evaluation results by organ

Figure 4 demonstrates the PlantCLEF 2014 scores separated by plant organs.
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6 Conclusion and future work

In the end, after the completion of all the experiments and the experience we
had through the whole process, we have only excellent remarks regarding deep
architectures when it comes to image classification and retrieval. In future we
will explore the possibility of training a CNN on only plant data and try to
generate even better feature filters with hopes of improved results and faster
training and prediction times.
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